江苏省中考数学几何填空题精选48题

合集下载

江苏中考数学《填空压轴题》专题练习含解析

江苏中考数学《填空压轴题》专题练习含解析

2016年中考数学《填空压轴题》专题练习(1)1. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.(第1题)(第2题)2. (2015年广东深圳3分)如图,已知点A 在反比例函数(0)ky x x=<上,作Rt ABC ∆,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若BCE ∆的面积为8,则k =.3. (2015年广东汕尾5分)(2015年广东梅州3分)若()()121212121a bn n n n =+-+-+,,对任意自然数n 都成立,则a =,b =; 计算:11111335571921m =+++⋅⋅⋅+=⨯⨯⨯⨯.. 4. (2015年广东广州3分)如图,四边形ABCD 中,∠A =90°,33AB =,AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为.(第4题)(第6题)(第7题)5. (2015年广东佛山3分)各边长度都是整数,最大边长为8的三角形共有个.6. (2015年陕西3分)如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是.7. (2015年浙江衢州4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是.【8. (2015年浙江绍兴5分)(2015年浙江义乌4分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.(第8题)(第9题)9. (2015年浙江台州5分)如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为。

江苏省连云港市2001-2012年中考数学试题分类解析 专题08 平面几何基础

江苏省连云港市2001-2012年中考数学试题分类解析 专题08 平面几何基础

[中考12年]连云港市2001-2012年中考数学试题分类解析专题08平面几何基础一、选择题1. (2001年江苏连云港3分)在比例尺1∶n的某市地图上,规划出一块长5cm、宽2cm的矩形工业园区,则该园区的实际面积是【】(单位:平方米)(A)n1000(B)2n1000(C)10n (D)210n2. (2001年江苏连云港3分)下列四个命题中的真命题是【】(A)同位角相等,则它们的平分线互相垂直(B)内错角相等,则它们的平分线互相垂直(C)同旁内角互补,则它们的平分线互相垂直(D)同旁内角相等,则它们的平分线互相垂直3. (2002年江苏连云港3分)下面给出四个命题,其中假命题是【】A.两条直线被第三直线所截,同位角相等B .不相等的两角不是对顶点C .平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧D .以已知线段AB 为弦的圆的圆心的轨迹是线段AB 的垂直平分线4. (2004年江苏连云港3分)下列图案中,既是中心对称又是轴对称的图案是【 】A .B .C .D .5. (2005年江苏连云港3分)如图,直线1l ∥2l ,3l ⊥4l .有三个命题:①︒=∠+∠9031;②︒=∠+∠9032;③42∠=∠.下列说法中,正确的是【 】(A )只有①正确 (B )只有②正确 (C )①和③正确 (D )①②③都正确6. (2006年江苏连云港3分)下列图案中,不是..中心对称图形的是【】A、 B、 C、 D、7. (2006年江苏连云港3分)多边形的内角和不可能...为【】A、180°B、680°C、1080°D、1980°8. (2008年江苏连云港3分)已知AC为矩形ABCD的对角线,则图中1∠一定不相等∠与2的是【】A. B. C.D.9. (2010年江苏连云港3分)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是【】A.①② B.②③ C.②④ D.①④10. (2011年江苏连云港3分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是【】A.B.C.D.11.(2012年江苏连云港3分)下列图案是轴对称图形的是【】A. B. C. D.12.(2012年江苏连云港3分)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为【】A.50° B.60° C.70° D.80°二、填空题1. (2004年江苏连云港3分)如图,两平面镜OA与OB之间的夹角为110°,光线经平面镜OA反射到平面镜OB上,再反射出去,其中∠1=∠2,则∠1的度数为▲ 度.2. (2005年江苏连云港3分)已知一个五边形的4个内角都是100,则第5个内角的度数是▲ .3. (2006年江苏连云港3分)如图,∠BAC=30°,AB=10。

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(学生版)

2023年中考数学压轴题专项训练--填空压轴题(几何篇)一、压轴题速练1一.填空题(共40小题)1(2023•龙湾区二模)如图,在△ABC中,AB=13,BC=14,AC=15,点D是线段AC上任意一点,分别过点A、C作直线BD的垂线,垂足为E、F,AE=m,CF=n,则n+m的最大值是,最小值是.2(2023•湖北模拟)如图,正方形ABCD的对角线交于点O,AB=22,现有半径足够大的扇形OEF,∠EOF=90°,当扇形OEF绕点O转动时,扇形OEF和正方形ABCD重叠部分的面积为.3(2023•榆树市二模)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交BC于点M.若AB=13,EF=1,则GM的长为.4(2023•道外区二模)如图,在四边形ABCD中,AB=BC,∠A=∠ABC=90°,以CD为斜边作等腰直角△ECD,连接BE,若CD=213,BE=2,则AB=.5(2023•包河区二模)Rt△ABC中,点D是斜边AB的中点.(1)如图1,若DE ⊥BC 与E ,DF ⊥AC 于F ,DE =3,DF =4,则AB =;(2)如图2,若点P 是CD 的中点,且CP =52,则PA 2+PB 2=.6(2023•庐江县三模)如图,四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,连接MN ,若∠DAM =105°,∠BAN =75°,若AM AN=3+12,则∠ANM =°.7(2023•中山市二模)如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =4,BE =10.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为.8(2023•新都区模拟)青朱出入图,是魏晋时期数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”,若图中DF =1,CF =2,则AE 的长为.9(2023•黄埔区一模)△ABC为等腰直角三角形,AB=AC=6,∠BAC=90°,动点D在边BC上运动.以A为直角顶点,在AD右侧作等腰直角三角形△ADE(如图).M为DE中点,N为BC三等分点,CN=13BC,连接MN,则线段MN的最小值为.10(2023•雁塔区校级模拟)如图,菱形ABCD的边长为5,将一个直角的顶点放置在菱形的中心O 处,此时直角的两边分别交边AD,CD于点E,F,当OE⊥AD时,OE的长为2,则EF的长是.​11(2023•奉贤区二模)如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 2 .12(2023•吕梁一模)如图,在正方形ABCD中,点P在对角线BD上,点E,F分别在边AB和BC 上,且∠EPF=45°,若CF=2DP=4,AE=12,则AB的长度为.13(2023•蚌埠二模)如图,点E为正方形ABCD的边CD上一点,以点A为圆心,AE长为半径画弧EF,交边BC于点F,已知正方形边长为1.(1)若∠DAE=15°,则DE的长为;(2)△AEF的面积为S的最大值是.14(2023•兰考县一模)如图,方形ABCD中,AB=8,点P为射线BC上任意一点(与点B、C不重合),连接AP,在AP的右侧作正方形APGH,连接AG,交射线CD于E,当ED长为2时,点BP的长为.15(2023•本溪一模)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C,D都在格点上,∠A=60°,则cos∠CDB的值为.16(2023•沂南县校级一模)如图,矩形ABCD中,AC、BD相交于点O,过点B作BF⊥AC交CD 于点F,交AC与点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN、EM,则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是.17(2023•琼海一模)如图,菱形ABCD,AE⊥BC,点E为垂足,点F为AE的中点,连接BF并延长交AD于点G,连接CG,CE=2,CG=211,则DG=,AG=,AF=.18(2023•镇江一模)如图,在矩形ABCD中,AB=6,BC=8,△BEF的顶点E在对角线AC上运动,且∠BFE=90°,∠EBF=∠BAC,连接AF,则AF的最小值为.19(2023•泉州模拟)如图,在菱形ABCD 中,∠A =60°,点E 在边AD 上,以BE 为边在菱形ABCD 的内部作等边三角形BEF ,若∠DEF =α,∠EBD =β,则α与β之间的数量关系可用等式表示为.20(2023•市南区一模)如图,正方形ABCD 中,E 、F 分别为BC 、CD 边上的点,∠EAF =45°,则下列结论中正确的有.(填序号)①BE +DF =EF ;②tan ∠AMD =CD DF; ③BM 2+DN 2=MN 2;④若EF =1.5,S △AEF =3,则.S 正方形ABCD =4.21(2023•大连一模)学习菱形时,我们从它的边、角和对角线等方面进行研究,可以发现并证明:菱形的每一条对角线平分一组对角.小明参考平行四边形、矩形判定方法的研究过程,得出下面的猜想:①一条对角线平分一组对角的四边形是菱形;②每一条对角线平分一组对角的四边形是菱形;③一条对角线平分一组对角的平行四边形是菱形.其中正确的是(填序号,填写一个即可).22(2023•石景山区一模)如图,在菱形ABCD 中,点E ,F 分别在BC ,AD 上,BE =DF .只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是(写出一个即可).23(2023•河东区一模)已知,如图,已知菱形ABCD 的边长为6,∠ABC =60°,点E ,F 分别在AB ,CB 的延长线上,且BE =BF =13AB ,G 是DF 的中点,连接GE ,则GE 的长是.24(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.(1)若PA=AB,则∠CPD=;(2)若PB=2,PC=3,则PD的长为.25(2023•鄞州区一模)如图,Rt△ABC中,∠C=90°,AC=BC=8,作正方形CDEF,其中顶点E 在边AB上.(1)若正方形CDEF的边长为26,则线段AE的长是;(2)若点D到AB的距离是2,则正方形CDEF的边长是.26(2023•郓城县校级模拟)如图,在平行四边形ABCD中,对角线AC、BD交于点O.点M是BC 边的中点,连接AM、OM,作CF∥AM.已知OC平分∠BCF,OB平分∠AOM,若BD=32,则sin∠BAM的值为.27(2023•三原县二模)如图,点M是▱ABCD内一点,连接MA,MB,MC,MD,过点A作AP∥BM,过点D作DP∥CM,AP与DP交于点P,若四边形AMDP的面积为6,则▱ABCD的面积为.28(2023•和平区二模)如图,已知正方形ABCD的边长为4,点E为边BC上一点,BE=3,在AE的右侧,以AE为边作正方形AEFG,H为BG的中点,则AH的长等于.29(2023•鼓楼区校级模拟)如图,在矩形ABCD中,AD=3,AB=4,B是边AB上一点,△BCE与△FCE关于直线CE对称,连接BF并延长交AD于点G,过点F作FH⊥AD,垂足为点H,设BE=a,若点H为AG的中点,则BE的长为.30(2023•呼和浩特一模)如图在菱形ABCD中,O为对角线AC与BD的交点,点P为边AB上的任一点(不与A、B重合),过点P分别作PM⊥AC,PN⊥BD,M、N为垂足,则可以判断四边形MPNO 的形状为.若菱形的边长为a,∠ADC=120°,则MN的最小值为.(用含a的式子表示)31(2023•洛阳一模)在扇形OAB中,∠AOB=60°,点C是半径OA上一点,且OC=6,将线段OC 沿OB方向平移,当平移距离是6时,点C的对应点C'恰好落在弧AB上,则图中阴影部分的面积为.32(2023•临渭区二模)如图,正六边形纸片ABCDEF的边长为6cm,从这个正六边形纸片上剪出一个扇形(图中阴影部分),则这个扇形的面积为cm2.(结果保留π)33(2023•桂林二模)如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,半径为1的⊙O在Rt△ABC内移动,当⊙O与∠A的两边都相切时,圆心O到点B的距离为2 .34(2023•万州区模拟)如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,以点B为圆心,AB为半径作圆弧交CB的延长线于点D,以点A为圆心,AC为半径作圆弧交AD于点E.则图中阴影部分的面积为.35(2023•九龙坡区校级模拟)如图,AC、AD是⊙O中关于直径AB对称的两条弦,以弦AC、AD 为折线将弧AC、弧AD折叠后过圆心O,若⊙O的半径r=4,则圆中阴影部分的面积为.36(2023•烟台一模)如图,GC,GB是⊙O的切线,AB是⊙O的直径,延长GC,与BA的延长线交于点E,过点C作弦CD∥AB,连接DO并延长与圆交于点F,连接CF,若AE=2,CE=4,则CD的长度为.37(2023•历下区二模)如图,已知扇形AOB的半径OA=2,∠AOB=120°将扇形AOB绕点A顺时针旋转30°得到扇形AO′B′,则图中阴影部分的面积是.38(2023•邓州市一模)如图,在扇形AOB中,∠AOB=60°,OA=3,半径OC平分AB,点D为半径OA中点,点E为半径OC上一动点,当AE+DE取得最小值时,由AC,AE,CE围成的阴影部分的面积为.39(2023•龙口市二模)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB 为直径的圆经过点C,D,则cos∠ADC的值为.40(2023•渝中区校级二模)如图,扇形纸片AOB的半径为2,沿AB折叠扇形纸片,点O恰好落在AB上的点C处,图中阴影部分的面积为.​。

中考数学几何图形专题训练50题含参考答案

中考数学几何图形专题训练50题含参考答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图是一正方体展开图,则有、志、者三面的对面分别是()A.事竟成B.事成竟C.成竟事D.竟成事2.下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.3.如图,下列说法正确的是()A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.线段OM与线段ON是同一条线段D.射线NO与射线MO是同一条射线4.如图是某同学在数学实践课上设计的正方体纸盒的展开图,每个面上都有一个汉字,其中与“明”字相对的面上的字是()A.诚B.信C.友D.善5.图是一个正方体的表面展开图,将它折成正方体后,“法”字在上面,那么在下面的一定是()A .明B .诚C .信D .制 6.如图,在直线l 上的点是( )A .点AB .点BC .点CD .点D 7.如图,C 为线段AB 上一点,点D 为AC 的中点,且2AD =,10AB =.若点E 在直线AB 上,且1BE =,则DE 的长为( )A .7B .10C .7或9D .10或11 8.已知3725α∠=︒',则α∠的补角是( )A .14235︒'B .15235︒'C .14275︒'D .15275︒' 9.能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( ) A .垂线段最短B .两点确定一条直线C .两点之间线段最短D .同角的补角相等10.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60° 11.用度、分、秒表示21.24为( )A .211424'''B .212024'''C .21144'''D .2114' 12.在下面的四个几何体中,它们各自的主视图、左视图与俯视图都一样的是( )A .正方体B .正四棱台C .有正方形孔的正方体D .底面是长方形的四棱锥 13.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A ,B ,C ,D 中的( )位置拼接正方形.A .AB .BC .CD .D14.下列立体图形中,俯视图与主视图不同的是( )A .B .C .D .15.下列图形中,不可以作为一个正方体的表面展开图的是A .B .C .D . 16.如图,将ABC 绕点C 顺时针旋转得到DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:∠AC CD =;∠A BEC ∠=∠;∠AB EB ⊥;∠CD 平分ADE ∠;其中一定正确的是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠17.下列说法中,正确的是( )∠射线AB 和射线BA 是同一条射线;∠等角的余角相等;∠若AB BC =,则点B 为线段AC 的中点;∠点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点,若5MN =,则线段10AB =.A .∠∠B .∠∠C .∠∠D .∠∠ 18.已知射线OC 是∠AOB 的平分线,若∠AOC=30°,则∠AOB 的度数为( ) A .15 B .30 C .45 D .60 19.用两把常用三角板不可能拼成的角度为( )A .45B .105C .125D .150 20.如图,在∠ABC 中,BF 平分∠ABC ,过A 点作AF∠BF ,垂足为F 并延长交BC 于点G ,D 为AB 中点,连接DF 延长交AC 于点E .若AB=12,BC=20,则线段EF 的长为( )A .2B .3C .4D .5二、填空题21.已知2437α'∠=︒,那么α∠的补角等于______.22.已知∠α=60°,则∠α的余角等于____度.23.在空间搭4个大小一样的等边三角形,至少要_______根游戏棒.24.已知线段14cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是___________cm .25.下午12:20 分,钟表上时针与分针所夹角的度数为_____度(所求夹角小于180︒).26.和都是 的余角,则______.27.图,∠AOC =∠BOD =90°,OB 在∠AOC 的内部,OC 在∠BOD 的内部,OE 是∠AOB 的一条三等分线.请从A ,B 两题中任选一题作答.A.当∠BOC=30°时,∠EOD的度数为__________.B.当∠BOC=α°时,∠EOD的度数为__________(用含α的代数式表示).28.将一副三角尺如图所示叠放在一起,则∠AEC=______度.29.对几何体分类时,首先确定标准,即:(1)从形状方面,按柱体、________、球划分;(2)从面的方面,按组成的面有无__________划分;(3)从顶点方面,按有无________划分.30.几个同学在公园玩,发现一个漂亮的“古董”. 甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形,这个长方形有八种颜色,挺好看. 通过这四个同学的对话,从几何体的名称来看,这个“古董“的形状是_____________.31.如图,一艘船由A港沿北偏东65︒方向航行30km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为______km.32.如图是一个正方体的展开图,将它折叠成正方体后,字母B的对面是________.(用图中字母表示)33.甲、乙两艘客轮同时离开港口,航行的速度都是40m /min ,甲客轮沿北偏东30°的方向航行15min 到达点A ,乙客轮沿南偏东60°的方向航行20min 到达点B .则A 、B 两点的直线距离为______m .34.平行四边形ABCD 中,AE 平分∠BAD 交BC 与点E ,且将BC 分成4cm 和6cm 两部分,则平行四边形ABCD 的周长为_____________.35.如图,AB 是∠O 的直径,点C 、D 是AB 两侧∠O 上的点,若∠CAB =34°,则∠ADC =_____°.36.点C 在直线AB 上,若AB =3,BC =2,则AC 为_____.37.由O 点引出的7条射线如图,若OA OE ⊥,OC OG ⊥,BOC FOG ∠>∠,则图中以O 为顶角的锐角共有________个.38.一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个正方体,把大正方体中相对的两面打通,结果如图,则图中剩下的小正方有______个.39.如图,∠α=120°,∠β=90°,则∠γ的度数是________ °.40.Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为______.三、解答题41.如图,AD为△ABC的角平分线,点E在AC上,点F在BC上,连接BE交AD于点G,连接EF,∠1=∠2.(1)求证:∠BEF与∠AGB互补;(2)若∠C=75°,EF∠BC,求∠ABC的度数.42.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.求出∠D0E及其补角的度数.43.小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的∠和∠.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的∠重新粘贴到∠上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在∠上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍)(3)小明说:已知这个长方形纸盒高为3cm ,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm ,请计算,这个长方体纸盒的体积是___________cm 3.44.如图1,已知AB //CD ,点G 在AB 上,点H 在EF 上,连接CG 、CH ,CG CH ⊥,90CHE CGA ∠+∠=︒.(1)求证:AB //EF ;(2)如图2,若90BAE ∠=︒,延长HC 交BA 的延长线于点M ,请直接写出图2中所有与AGC ∠互余的角.45.如图,100AOB ∠=︒,射线OC 以2/s ︒的速度从OA 位置出发,射线OD 以10/s ︒的速度从OB 位置出发,设两条射线同时绕点O 逆时针旋转s t .(1)当10t =时,求COD ∠的度数;(2)若015t ≤≤.∠当三条射线OA 、OC 、OD 构成的三个度数大于0︒的角中,有两个角相等,求此时t 的值;∠在射线OD ,OC 转动过程中,射线OE 始终在BOD ∠内部,且OF 平分AOC ∠,当110EOF ∠=︒,求BOE AOD∠∠的值. 46.如图:点A ,B ,E 在同一条直线上,AD AC ⊥,且BD AD AE EC ⊥⊥,,垂足分别为A ,D ,E .(1)求证:ABD ∽CAE ;(2)若1356AB BD AC ===,,,求CE 的值.47.如图,AF BC ∥.72FAC ∠=︒,CD 平分ACB ∠,4CDE BCD ∠=∠.(1)求CDE ∠的度数.(2)求证:AED B ∠=∠.48.(1)如图1,已知点C ,D 在线段AB 上,P 是BD 的中点,线段AB ,CP 的长度m ,n 满足227(15)0m n -+-=,AD :BC =5:7,求线段CD 的长度;(2)已知∠AOB =140°,将射线OB 绕着点O 逆时针旋转一定的角度α(0°<α<140°)得到射线OD ,作∠BOD 的平分线OP ,将射线OP 绕着点O 逆时针旋转60°得到射线OC .∠AOD :∠BOC =1:t .∠如图2,若t <1,请直接用含有t 的式子表示出∠AOD 的度数;∠若∠COD =12∠AOC ,求t 的值. 49.问题提出(1)如图1,点A ,B 在直线l 的同侧,在直线l 上作一点P ,使得AP BP +的值最小.问题探究(2)如图2,正方形ABCD 的边长为6,点M 在DC 上,且2DM =,N 是AC 上的一动点,则DN MN +的最小值是_________.问题解决(3)现在各大景区都在流行“真人CS ”娱乐项目,其中有一个“快速抢点”游戏,游戏规则如图3,在用绳子围成的一个边长为12m 的正方形ABCD 场地中,游戏者从AB 边上的点E 处出发,分别先后赶往边,,BC CD DA 上插小旗子,最后回到点E .求游戏者所跑的最少路程.50.如图,已知,在Rt ABC 中,斜边10AB =,4sin 5A = ,点P 为边AB 上一动点(不与A ,B 重合),PQ 平分CPB ∠交边BC 于点Q ,QM AB ⊥于M QN CP ⊥,于N .(1)当AP=CP 时,求QP ;(2)若CP AB ⊥ ,求CQ ;(3)探究:AP 为何值时,四边形PMQN 与BPQ 的面积相等?参考答案:1.A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“有”与面“事”相对,面“志”与面“竟”相对,“者”与面“成”相对.故选A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.C【详解】试题解析:A、折叠后,没有上下底面,故不能围成正方体;B、折叠后,缺少一个底面,故也不能围成正方体;C、折叠后能围成正方体;D、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故选C.考点:展开图折叠成几何体.3.A【分析】根据直线、射线、线段的概念求解即可【详解】解:同一条直线可由这条直线上任意两点的大写字母表示,选项A正确;同一条射线必须满足端点相同,延伸方向相同,选项B,D错误;同一条线段的两个端点相同,选项C错误.故选:A.【点睛】本题考查的知识点是线段、射线以及直线的概念,熟记概念定义是解题的关键. 4.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“明”字相对的面上的字是“信”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.C【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∠与“法”字相对的面上的汉字是“信”.故应选:C .【点睛】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键6.B【分析】根据图像点与线的关系可直接得出答案.【详解】解:由图像可知点A 、C 、D 在直线l 外,点B 在直线l 上故选B .【点睛】本题考查了点线关系,比较简单.7.C【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长.【详解】解:∠点D 为AC 的中点,且2AD =,∠2AD DC ==,∠10AB =,∠6BC AB AD DC =--=,∠1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=,当E 在B 右侧,2619DE DC BC BE =++=++=.∠DE 的长为7或9.故选:C.【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质. 8.A【分析】根据互补两角之和180°计算即可.【详解】∠3725α∠=︒'∠α∠的补角=1803725︒-︒'=14235︒',故选A .【点睛】本题考查补角定义和角度计算,需要注意角度度分秒计算时进制时60. 9.B【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,故选B .【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键. 10.B【分析】根据平行线的性质可得∠FDC =∠F =30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∠EF ∠BC ,∠∠FDC =∠F =30°,∠∠1=∠FDC +∠C =30°+45°=75°,故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.11.A【分析】根据度、分、秒之间的进制,先将度中的小数部分转化为分,再将分的小数部分转化为秒即得.【详解】解:21.24210.2460︒'︒=+⨯2114.4︒'=+21140.460'''=︒++⨯211424'''=︒++211424'''=︒.故选:A .【点评】本题考查了度、分、秒运算,熟练掌握度、分、秒之间的六十进制是解题关键,六十进制与十进制易混淆.12.A【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到三个图形一致的几何体即可.【详解】解:A、正方体的三视图是全等的正方形,符合题意;B、正四棱台的三视图分别为梯形,梯形,两个正方形的组合图形,不符合题意;C、有正方孔的正方体的左视图与主视图都是正方形里面有两条竖直的虚线,俯视图是两个正方形的组合图形,不符合题意;D、四棱锥的三视图分别是三角形,三角形,四边形及中心,不符合题意;故选A.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意看不到的棱用虚线表示.13.A【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.【点睛】此题主要考查了应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.14.C【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】A .俯视图与主视图都是正方形,故该选项不合题意;B .俯视图与主视图都是矩形,故该选项不合题意;C .俯视图是圆,左视图是三角形;故该选项符合题意;D .俯视图与主视图都是圆,故该选项不合题意;故选C .【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.15.B【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B .不可以作为一个正方体的展开图,C .可以作为一个正方体的展开图,D .可以作为一个正方体的展开图,故选B .【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.16.A【分析】根据旋转的性质得到AC CD =,BC CE =,A EDC ∠=∠,故∠正确;得到ACD BCE ∠=∠,CBE BEC ∠=∠,根据三角形的内角和得到1802ACD A ADC ︒-∠∠=∠=,1802BCE CBE BEC ︒-∠∠=∠=,求得A BEC ∠=∠,故∠正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故∠错误,可求得ADC EDC ∠=∠,故可判定∠.【详解】解:∠ABC 绕点C 顺时针旋转得到DEC ,∠AC CD =,BC CE =,A EDC ∠=∠,ACB ECD ∠=∠,故①正确;∴A ADC EDC ∠=∠=∠,ACD DCB DCB BCE ∠+∠=∠+∠,∠CD 平分ADE ∠,ACD BCE ∠=∠,故∠正确;∠BC CE =,∠CBE BEC ∠=∠,∠根据三角形内角和定理可知1802ACDA ADC︒-∠∠=∠=,1802BCECBE BEC ︒-∠∠=∠=,∠A BEC∠=∠,故∠正确;∠A ABC∠+∠不一定等于90︒,ABC CBE∴∠+∠不一定等于90︒,故∠错误.综上,正确的由①②④,故选:A.【点睛】本题考查了旋转的性质,等腰三角形的性质、、三角形的内角和定理、角平分线的定义,正确的识别图形是解题的关键.17.C【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【详解】∠射线AB和射线BA不是同一条射线,错误;∠同角的余角相等,正确;∠若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;∠点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选:C.【点睛】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.18.D【分析】根据角平分线的定义即可求解.【详解】解:∠射线OC是∠AOB的平分线,∠AOC=30°,∠∠AOB=60°.故答案选:D.【点睛】此题考查了角的计算,以及角平分线的定义,关键是熟练掌握角平分线的定义.19.C【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∠三角板的度数为30°,60°,90°;45°,45°,90°∠可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.20.CAB,由角平分线的定义可证得【分析】由直角三角形的性质可求得DF=BD=12DE∠BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∠AF∠BF,D为AB的中点,∠DF=DB=1AB=6,2∠∠DBF=∠DFB,∠BF平分∠ABC,∠∠DBF=∠CBF,∠∠DFB=∠CBF,∠DE∠BC,∠DE为∠ABC的中位线,∠DE=1BC=10,2∠EF=DE−DF=10−6=4,故选C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得∠DBF 为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为∠ABC的中位线,从而计算出DE,继而求出EF.21.155°23′【分析】根据补角的概念,直接作答即可.【详解】解:根据题意,∠α=24°37′,则∠α的补角=180°-24°37′=155°23′.故答案为:155°23′.【点睛】此题考查补角的问题.解题的关键是掌握补角的定义,涉及角度问题时,需要特别注意题干中是否带有单位.22.30【详解】∠互余两角的和等于90°,∠α的余角为:90°-60°=30°.故答案为:3023.6【分析】根据题意可知在同一平面内用游戏棒搭4个大小一样的等边三角形(两个菱形),至少要9根游戏棒,在空间搭4个大小一样的等边三角形,如三棱锥,至少要6根游戏棒.【详解】由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒;因为空间可以共棱,所以至少要6根游戏棒.【点睛】此题涉及到规律型:数字的变化类.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.24.7【分析】本题需要分两种情况讨论,∠当点C在线段AB上时,∠当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【详解】如图,当点C在线段AB上时,则14410AC=-=∠M是AC的中点,N是BC的中点,∠1152722MN MC CN AC BC=+=+=+=;如图,当点C在线段AB的延长线上时,则14418AC=+=,∠M是AC的中点,N是BC的中点,∠1192722MN MC CN AC BC=-=-=-=,综上所述,段MN的长度是7cm,故答案为:7【点睛】本题考查了两点间的距离,关键是利用了线段的中点的定义,分情况讨论.25.110【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∠时针在钟面上每分钟转0.5°,分针每分钟转6°,∠钟表上12时20分钟时,时针与分针的夹角可以看成时针转过12时0.5°×20=10°,分针在数字4上.∠钟表12个数字,每相邻两个数字之间的夹角为30°,∠12时20分钟时分针与时针的夹角4×30°-10°=110°.故答案为:110.【点睛】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.26.=【详解】解:∠α=90°-∠AOB ,∠β=90°-∠AOB ,故∠α=∠β.故答案为=. 27. 110°或130° 1203α⎛⎫-︒ ⎪⎝⎭或21503α⎛⎫-︒ ⎪⎝⎭ 【分析】A 、根据角的和差得到∠AOB =90°-30°=60°,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB =20°,∠当∠BOE ′=13∠AOB =20°,根据角的和差即可得到结论;B 、根据角的和差得到∠AOB ,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB ,∠当∠BOE ′=13∠AOB ,根据角的和差即可得到结论. 【详解】解:A 、如图,∠∠AOC =90°,∠BOC =30°,∠∠AOB =90°-30°=60°,∠OE 是∠AOB 的一条三等分线,∠∠当∠AOE =13∠AOB =20°, ∠∠BOE =40°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=130°,∠当∠BOE′=13∠AOB=20°,∠∠DOE′=90°+20°=110°,综上所述,∠EOD的度数为130°或110°,故答案为:130°或110°;B、∠∠AOC=90°,∠BOC=α°,∠∠AOB=90°-α°,∠OE是∠AOB的一条三等分线,∠∠当∠AOE=13∠AOB=30°-13α°,∠∠BOE=90°-α-(30-13α)°=60°-23α°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=150°-23α°,∠当∠BOE′=13∠AOB=30°-13α°,∠∠DOE′=90°+30°-13α°=120°-13α°,综上所述,∠EOD的度数为150°-23α°或120°-13α°,故答案为:150°-23α°或120°-13α°;【点睛】本题考查了余角和补角的定义,角的倍分,熟练掌握余角和补角的性质是解题的关键.28.75【分析】由∠BAC=∠ACD=90°,可得AB∠CD,所以∠BAE=∠D=30°,利用三角形的外角关系即可求出∠AEC的度数.【详解】解:∠∠BAC=∠ACD=90°,∠AB∠CD,∠∠BAE=∠D=30°,∠∠AEC=∠B+∠BAE=75°,故答案为:75.【点睛】此题主要三角形的外角的性质,平行线的性质与判定,三角板中角度的计算,判断出AB ∠CD 是解本题的关键.29. 锥体 曲的面 顶点【分析】根据不同的分类标准的要求即可求解.【详解】解:(1)从形状方面,按柱体、__锥体______、球划分;(2)从面的方面,按组成的面有无____曲的面______划分;(3)从顶点方面,按有无____顶点____划分.故答案为(1)锥体,(2)曲的面,(3)顶点.【点睛】本题考查立体图形的不同分类方法,掌握各种分类标准及要求是解题关键. 30.八棱柱【分析】棱柱有两个面互相平行,其余各面都是多边形,并且每相邻两个四边形的公共边都互相平行;据此,再结合“这个‘古董’有8个面是正方形,2个面是多边形”,即可确定答案.【详解】根据甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形.可知它符合棱柱的特征,可知是一个八棱柱.故答案为八棱柱.【点睛】本题考查了认识立体图形,解题的关键是熟练掌握棱柱的特征.31.【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【详解】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,30AB =, 过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒,30AB =,AE BE ∴== 在Rt CBE ∆中,60ACB ∠=︒,CE ∴=AC AE CE ∴=+=∴,C两港之间的距离为km,A故答案为:【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.32.D【分析】由平面图形的折叠及立体图形的表面展开图的特点解答即可.【详解】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以字母B的对面是D.故答案为D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.1000【分析】先画出草图,根据∠COA=30°,∠EOB=60°,∠EOC=180°,得到∠AOB=90°,根据路程=速度×时间,得到OA=40×15=600,OB=40×20=800,利用勾股定理计算AB即可.【详解】画出草图如下,∠∠COA=30°,∠EOB=60°,∠EOC=180°,∠∠AOB=90°,∠路程=速度×时间,∠OA =40×15=600,OB =40×20=800,∠AB =1000,故答案为:1000.【点睛】本题考查了方位角,勾股定理,正确理解方位角的意义,熟练掌握勾股定理是解题的关键.34.32cm 或28cm【分析】根据角平分线性质,得BAE DAE ∠=∠;根据平行四边形及平行线性质,得BEA DAE ∠=∠,从而得BAE BEA ∠=∠;根据等腰三角形性质,得BA BE =;根据题意,分两种情况分析,通过计算即可得到答案.【详解】根据题意,如图:∠AE 平分∠BAD 交BC 与点E ,∠BAE DAE ∠=∠∠平行四边形ABCD∠//AD BC∠BEA DAE ∠=∠∠BAE BEA ∠=∠∠BA BE =AE 将BC 分成4cm 和6cm 两部分,当6cm BE =时,得6cm BA BE ==∠10cm BC BE EC =+=∠平行四边形ABCD 的周长为2232cm BA BC +=当4cm BE =时,得4cm BA BE ==∠平行四边形ABCD 的周长为2228cm BA BC +=故答案为:32cm 或28cm .【点睛】本题考查了角平分线、平行四边形、平行线、等腰三角形的知识;解题的关键是熟练掌握角平分线、平行四边形、等腰三角形的性质,从而完成求解.35.56【分析】先由圆周角定理得∠ACB =90°,求得∠ABC 的度数,然后由圆周角定理,即可求得∠ADC 的度数.【详解】解:∠AB 为∠O 的直径,∠∠ACB =90°,∠∠CAB =34°,∠∠ABC =90°﹣∠CAB =56°,∠∠ADC =∠ABC =56°.故答案为:56.【点睛】本题考查了圆周角定理以及直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.36.1或5【分析】分为两种情况,画出图形,根据线段的和差即可得出答案.【详解】解:当C 在线段AB 上时,AC=AB-BC=3-2=1,当C 在线段AB 的延长线时,AC=AB+BC=3+2=5,即AC=1或5,故答案为:1或5.【点睛】本题考查了线段的和差,能求出符合的所有情况是解此题的关键,注意要进行分类讨论.37.15【分析】分别以OA 、OB 、OC 、OD 、OE 、OF 为一边,数出所有角,找出其中的非锐角,相减即可得答案.【详解】解:以OA 、OB 、OC 、OD 、OE 、OF 为始边,分别有角6个,5个,4个,3个,2个,1个,图中共有角21个,OA OE ⊥,所以以OA 为边的非锐角有3个,分别为,,AOG AOF AOE ,,OC OG ,BOC FOG∠∠COF +∠BOC >90°,∠∠FOB >90°.所以以OB 为边的非锐角有2个,分别为,BOG BOF ,以OC 为边的非锐角有1个,为COG ∠.于是图中共有锐角21-(3+2+1)=15个.故答案为15.【点睛】此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数,要注意去掉非锐角.38.73【分析】根据题意:我们把相对面打通需要去掉的小正方体分三种情况,按一定的顺序数去掉的小正方体数量,如前后面,上下面,左右面分别去数数,然后用总数125减掉数出来的三部分即可,注意:前面数过的后面的一定去掉,否则会重复的.【详解】解:前后面少(3+2)×5=25(个),上下面少的(去掉与前后面重复的)(5-3)+2×3+1×5=13(个),左右面少的(去掉与前后,上下重复的)(5-3)+(5-1)+(5-2)+(5-2-1)+(5-2)=14(个), 125-(25+13+14)=73(个),答:图中剩下的小正方体有73个.故答案为:73.【点睛】本题考查了正方体的对面上的数字,要注意不能重复和遗漏.39.150.【分析】根据周角的定义,利用360度减去∠α和∠β即可求解.【详解】由题意可得,∠γ=360°-∠α-∠β=360°-120°-90°=150°.故答案是:150.【点睛】本题考查了角度的计算,正确得到图中三个角之间的关系是解决问题的关键.40.16【分析】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',即可确定C'E 就是CD+DE的最小值,然后运用勾股定理和相似三角形的知识求解即可.【详解】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',则CD+DE的最小值为C'E的长;∠∠ACB=90°,AC=20,BC=10,,∠∠A=∠C',∠''C E AC CC AB,∠C'E=16;故答案为16;【点睛】本题考查了相似三角形、勾股定理和最短距离问题,其中运用作对称点确定最短距离是解答的关键.41.(1)证明见解析(2)∠ABC=75°【分析】(1)先利用角平分线的定义得到∠DAC=∠1,则∠DAC=∠2,于是可判断。

【中考12年】江苏省淮安市2001-2012年中考数学试题分类 专题8 平面几何基础

【中考12年】江苏省淮安市2001-2012年中考数学试题分类 专题8 平面几何基础

【中考12年】江苏省淮安市2001-2012年中考数学试题分类专题8平面几何基础选择题2. (2003年江苏淮安3分)四边形的内角和等于【】A.180°B.270°C.360°D.450°【答案】C。

【考点】多边形的内角和定理。

【分析】根据多边形的内角和定理,得四边形的内角和等于()0042180=360-⨯。

故选C。

4. (2003年江苏淮安3分)如图,在△ABC中,DE∥BC,且AD=2,DB=4,则AEEC的值为【】5. (2005年江苏淮安大纲3分)如图,直线a ∥b ,直线c 是截线,如果∠1=50°,那么∠2等于【 】6. (2005年江苏淮安大纲3分)如果三角形的两边长为2和9,且周长为奇数,那么满足条件的三角形共有【 】A .1个B .2个C .3个D .4个【答案】B 。

【考点】三角形构成条件。

【分析】∵三角形的两边长为2和9,∴第三边长x 满足:92x 92<< -,即7x 11<<。

∵x 为整数,∴x=8,9,10。

∵三角形的周长为奇数,∴x=8, 10。

∴满足条件的三角形共有2个。

故选B 。

7. (2005年江苏淮安课标3分)下图是创星中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约300的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是【 】点A B.点B C.点C D.点D9. (2008年江苏淮安3分)如图,直线AB、CD相交于点O.OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是【】A.40°B.50°C.80°D.100°【答案】A。

【考点】对顶角的性质,角平分线定义。

【分析】∵∠BOC和∠AOD是对顶角,且∠BOC=80°,∴∠AOD=∠BOC=80°。

2021江苏中考数学选填题几何压轴

2021江苏中考数学选填题几何压轴

1(常州)如图,在Rt ABC ∆中,90ACB ∠=︒,30CBA ∠=︒,1AC =,D 是AB 上一点(点D 与点A 不重合).若在Rt ABC ∆的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是.2(连云港)如图,BE 是ABC ∆的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC =.3(宿迁)如图,在△ABC 中,AB =4,BC =5,点D 、E 分别在BC 、AC 上,CD =2BD ,CE =2AE ,BE 交AD 于点F ,则△AFE 面积的最大值是.4(南京)如图,将▱ABCD 绕点A 逆时针旋转到▱A ′B ′C ′D ′的位置,使点B ′落在BC 上,B ′C ′与CD 交于点E .若AB =3,BC =4,BB ′=1,则CE 的长为.5(苏州)如图,射线OM ,ON 互相垂直,OA =8,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,AB =5.将线段AB 绕点O 按逆时针方向旋转得到对应线段A ′B ′,若点B ′恰好落在射线ON 上,则点A ′到射线ON 的距离d =.6(扬州)如图,在ABC ∆中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为.7(无锡)如图,在Rt△ABC中,∠BAC=90°,AB=22,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.8(徐州)如图,四边形ABCD与AEGF均为矩形,点E、F分别在线段AB、AD上.若BE=FD=2cm,矩形AEGF的周长为20cm,则图中阴影部分的面积为cm.9(盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF ⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.。

专题11图形的性质之填空题-2019年江苏省12地市中考数学真题分类汇编(原卷版)

专题11图形的性质之填空题-2019年江苏省12地市中考数学真题分类汇编(原卷版)

专题 11 图形的性质之填空题一.填空题(共33 小题)1.( 2019?泰州)命题“三角形的三个内角中起码有两个锐角”是(填“真命题”或“假命题”).2.( 2019?常州)假如∠α= 35°,那么∠ α的余角等于°.3.( 2019?苏州)“七巧板” 是我们先人的一项优秀创建,能够拼出很多风趣的图形,被誉为“东方魔板” .图①是由边长为10cm 的正方形薄板分为7 块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7 块图形之一的正方形边长为cm(结果保存根号).4.( 2019?扬州)将一个矩形纸片折叠成如下图的图形,若∠ABC= 26°,则∠ ACD =°.5.( 2019?南京)联合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.6.( 2019?盐城)如图,直线a∥ b,∠ 1= 50°,那么∠ 2=°.7.( 2019?镇江)如图,直线a∥ b,△ ABC 的极点 C 在直线 b 上,边AB 与直线 b 订交于点D.若△ BCD 是等边三角形,∠A=20°,则∠ 1=°.8.( 2019?扬州)如图,在△ ABC 中, AB= 5, AC=4,若进行以下操作,在边BC 上从左到右挨次取点 D1、D2、D 3、D4、;过点 D1作 AB、AC 的平行线分别交AC 、AB 于点 E1、F1;过点 D1作 AB、AC 的平行线分别交 AC、AB 于点 E2、F2;过点 D3作 AB 、AC 的平行线分别交 AC、AB 于点 E3、F 3,则 4(D 1E1+D 2E2+ +D2019E2019) +5( D1F1+D2F 2+ +D2019F2019)=.9.( 2019?苏州)如图,扇形OAB 中,∠ AOB= 90°. P 为弧 AB 上的一点,过点P 作 PC⊥ OA,垂足为 C,PC 与 AB 交于点 D.若 PD= 2,CD = 1,则该扇形的半径长为.10.( 2019?南京)在△ ABC 中, AB= 4,∠ C= 60°,∠ A>∠ B,则 BC 的长的取值范围是.11.( 2019?南京)无盖圆柱形杯子的睁开图如下图.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有cm.12.( 2019?常州)平面直角坐标系中,点P(﹣ 3, 4)到原点的距离是.13.( 2019?徐州)如图, A、 B、C、 D 为一个外角为40°的正多边形的极点.若O 为正多边形的中心,则∠OAD=.14.( 2019?徐州)如图,矩形ABCD 中, AC、 BD 交于点 O, M、 N 分别为 BC、 OC 的中点.若MN = 4,则AC的长为.15.( 2019?常州)如图,在矩形 ABCD 中,AD = 3AB= 3,点P是AD的中点,点E在BC上,CE=2BE,点 M、N 在线段 BD 上.若△ PMN 是等腰三角形且底角与∠DEC 相等,则MN =.16.( 2019?无锡)如图,在△ABC 中, AB= AC= 5, BC= 4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF ,连结 BE,则△ BDE 面积的最大值为.17.( 2019?扬州)如图,已知点 E 在正方形ABCD 的边 AB 上,以 BE 为边向正方形ABCD 外面作正方形BEFG ,连结 DF , M、 N 分别是 DC 、DF 的中点,连结MN.若 AB= 7,BE = 5,则 MN =.18.( 2019?淮安)若一个多边形的内角和是540°,则该多边形的边数是.19.( 2019?泰州)八边形的内角和为°.20.(2019?常州)如图, AB 是⊙ O 的直径, C、D 是⊙ O 上的两点,∠ AOC= 120°,则∠ CDB =°.21.( 2019?常州)如图,半径为的⊙ O与边长为8 的等边三角形ABC的两边 AB、 BC 都相切,连结OC,则 tan∠ OCB=.22.(2019?泰州)如图,⊙ O 的半径为 5,点交⊙O 于点 B、 C.设 PB= x,PC= y,则P 在⊙O 上,点 A 在⊙O 内,且 AP=3,过点 A 作 AP 的垂线y 与 x 的函数表达式为.23.( 2019?连云港)如图,点A、 B、 C 在⊙ O 上, BC= 6,∠ BAC = 30°,则⊙ O 的半径为.24.( 2019?泰州)如图,分别以正三角形的 3 个极点为圆心,边长为半径画弧,三段弧围成的图形称为莱25.( 2019?盐城)如图,点A、 B、 C、D 、 E 在⊙ O 上,且为50°,则∠ E+∠C=°.26.( 2019?扬州)如图, AC 是⊙O 的内接正六边形的一边,点 B 在上,且BC是⊙ O的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=.27.( 2019?南京)如图, PA、 PB 是⊙O 的切线, A、 B 为切点,点C、 D 在⊙O 上.若∠ P= 102°,则∠A+∠ C=.28.( 2019?连云港)一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.29.( 2019?淮安)若圆锥的侧面积是 15π,母线长是5,则该圆锥底面圆的半径是.30.( 2019?宿迁)直角三角形的两条直角边分别是 5 和 12,则它的内切圆半径为.31.( 2019?无锡)已知圆锥的母线长为2cm.5cm,侧面积为 15πcm ,则这个圆锥的底面圆半径为32.( 2019?徐州)如图,沿一条母线将圆锥侧面剪开并展平,获得一个扇形,若圆锥的底面圆的半径r= 2cm,扇形的圆心角θ= 120°,则该圆锥的母线长l 为cm.33.( 2019?无锡)如图,在△ABC 中, AC: BC: AB= 5:12: 13,⊙ O 在△ ABC 内自由挪动,若⊙O的半径为 1,且圆心O 在△ ABC 内所能抵达的地区的面积为,则△ ABC的周长为.。

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年江苏省中考数学几何填空题精选48题1(08年江苏常州)3.如图,在△ABC 中BE 平分∠ABC,DE ∥BC,∠ABE=35°,则∠DEB=______°,∠ADE=_______°.2(08年江苏常州)5.已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm 2,扇形的圆心角为______°.3(08年江苏常州)8.若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n>1,且为整数)的正方体切成n 3个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍.4(08年江苏淮安)12.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=______5(08年江苏淮安)13.如图,请填写一个适当的条件:___________,使得DE ∥AB.6(08年江苏连云港)11.在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A =45. 7(08年江苏连云港)14.如图,一落地晾衣架两撑杆的公共点为O ,75OA =cm ,50OD =cm .若撑杆下端点A B ,所在直线平行于上端点C D ,所在直线,且90AB =cm ,则CD = cm .608(08年江苏连云港)15.如图,扇形彩色纸的半径为45cm ,圆心角为40,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为 44.7 cm .(结果精确到0.1cm .参考数据:2 1.414≈,3 1.732≈,5 2.236≈,π 3.142≈)<9(08年江苏南京)13.已知1O 和2O 的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于—(第14题图)!40(第15题图)SBA45cm(第3题)ABC D Ecm .210(08年江苏南京)14.若等腰三角形的一个外角为70,则它的底角为 度.35<11(08年江苏南京)16.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器, 它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.312(08年江苏南通)3. 已知∠A =40°,则∠A 的余角等于 度.50}13(08年江苏南通)5. 一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是 cm 2.614(08年江苏南通)10.如图,DE ∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,/若∠ADE =50°,∠ACF =110°,则∠A = 度.6015(08年江苏南通)13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = 度.12016(08年江苏南通)14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.`现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = .5217(08年江苏苏州)6.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图 的面积为6,则长方体的体积等于 .2418(08年江苏苏州)10.将一个边长为1的正八边形补成如图所示的正方形, 这个正方形的边长等于 (结果保留根号).1+根号2(第16题)A65O A BD E (第13题)A@ C F E D (第10题) 3 2 4 —主视图 左视图(第5题)19(08年江苏宿迁)10.“两直线平行,内错角相等”的逆命题是__________.内错角相等,两直线平行、20(08年江苏宿迁)12.等腰三角形的两边长分别是3和7,则其周长为____17__.21(08年江苏宿迁)14.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是__8____. 22(08年江苏宿迁)15.已知直角三角形两条直角边的长是3和4,则其内切圆的半径是___1___.23(08年江苏宿迁)17.用圆心角为︒120,半径为cm 6的扇形做成一个无底的圆锥侧面,则此圆锥的底面半径为cm ____.224(08年江苏泰州)16.分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙1O 、⊙2O ,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________.相外切(如写相切不给分)25(08年江苏泰州)18.若O 为ABC ∆的外心,且60=∠BOC ,则__________=∠BAC 30°或150°26(08年江苏泰州)20.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大。

当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的21。

已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是2cm ,若铁钉总长度为acm ,则a 的取值范围是<a ≤ (如写成3<a <,给2分)—27(08年江苏无锡)8.五边形的内角和为 .54028(08年江苏无锡)9.如图,OB OC =,80B ∠=,则AOD ∠=.20 29(08年江苏无锡)10.如图,CD AB ⊥于E ,若60B ∠=,则A ∠=.3030(08年江苏无锡)12.已知:如图,边长为a 的正ABC △内有一边长为b 的内接正DEF △,则AEF △的内切圆半径为.3()a b -&31(08年江苏徐州)14.边长为a 的正三角形的面积等于____________.23a 32(08年江苏徐州)15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =°(第9题)(第10题)(第12题)·33(08年江苏徐州)16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于34(08年江苏盐城)12.梯形的中位线长为3,高为2,则该梯形的面积为6 .35(08年江苏盐城)13.将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称 .平行四边形(或矩形或筝形)36(08年江苏盐城)15.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件(写出一个即可)时,△ADE ∽△ACB .∠ADE=∠ACB (或∠AED=∠ABC 或AD AE AC AB=)37(08年江苏盐城)16.如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O的最短距离为 cm .638(08年江苏盐城)17.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a+2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.339(08年江苏盐城)18.如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为 s 时,BP 与⊙O 相切.1或540(08年江苏扬州)14.小红将考试时自勉的话“细心·规范·勤思”写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“细”相对的字是_______________。

、(第15题图)(第16题图) |ab bbaaC B A 第17题图BA OP#第16题图 A BCDE O PBA41(08年江苏扬州)15.一副三角板如图所示叠放在一起,则图中∠α的度数是_________。

42(08年江苏扬州)16.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6㎝,sinA=53,则菱形ABCD 的面积是__________㎝2。

43(08年江苏扬州)17.如图△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ABP ´重合,如果AP=3,那么线段PP ´的长等于____________。

44(08年江苏镇江)7.如图(1),图中的1∠= 65 ;如图(2),已知直线12l l ∥,135∠=,那么2∠= 35 .45(08年江苏镇江)8.如图,DE 是ABC △的中位线,2DE =cm ,12AB AC +=cm ,则BC = 4 cm ,梯形DBCE 的周长为 12 cm .46(08年江苏镇江)10.如图,O 是等腰三角形ABC 的外接圆,AB AC =,45A ∠=,BD 为O 的直径,22BD =,连结CD ,则D ∠= 45 ,BC = 2 .47(08年江苏镇江)11.圆柱的底面半径为1,母线长为2,则它的侧面积为 4π (结果保留π). 48(08年江苏镇江)12.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 A 点.第7题图(1) 1 { 35100 第7题图(2) 1 2 l 1l 2 AE C ! D (第8题图) .D C BO (第10题图)C AF DB G (第12题图)。

相关文档
最新文档