八年级数学试题及答案

合集下载

江苏省南京市秦淮区重点中学2023-2024学年八年级上学期期末数学试题(含答案)

江苏省南京市秦淮区重点中学2023-2024学年八年级上学期期末数学试题(含答案)

20232024学年度第一学期第二阶段学业质量监测试卷八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.2.答选择题必须用铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.下列手机应用的图标是轴对称图形的是( )A B C D2.下列长度的三条线段首尾相连能组成直角三角形的是()A .B .C .D .3.点关于轴对称的点的坐标为()A .B .C .D .4.如图,,垂足为,是上一点,且,.若,,则的长为( )(第4题)A .2B .2.5C .3D .5.55.如图,一次函数的图像与的图像相交于点,则关于,的方程组的解是()-2B 2B 4,5,61,2,32,3,45,12,13()2,1-x ()2,1()2,1-()2,1-()2,1--EC BD ⊥C A EC AC CD =AB DE = 3.5AC =9BD =AE 3942y x =+y kx b =+()2,P n -x y 34180,0x y kx y b -+=⎧⎨-+=⎩(第5题)A .B .C .D .6.如图,用7个棱长为1的正方体搭成一个几何体,沿着该几何体的表面从点到点的所有路径中,最短路径的长是() (第6题)A .5BC .D.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)7______.8.在实数,中,无理数有______个.9.(填“”“”或“”)10.如图,已知,要使,可以添加的条件为______.(写出一个即可)(第10题)11.已知,是一次函数图像上的两点,若,则______.(填“”“”或“”)12.在等腰三角形中,.若为底角,则______.13.已知一次函数(为常数)的图像与轴的交点在轴的上方,则的取值范围为______.14.如图,在中,,,平分,交于点,为的中点,连接,则的周长为______.2,2x y =-⎧⎨=⎩2,3x y =-⎧⎨=⎩3,2x y =⎧⎨=-⎩2,2x y =⎧⎨=-⎩M N 1+2=3211 3.1415π31-><=12∠=∠ABC ADC △△≌()111,P x y ()222,P x y 21y x =-+12x x >1y 2y ><=ABC 2A B ∠=∠A ∠C ∠=︒3y x m =-+m y x m ABC △10AB AC ==8BC =AD BAC ∠BC D E AC DE CDE △(第14题)15.在课本上的“数学活动 折纸与证明”中,我们曾经两次折叠正方形纸片(如图).若正方形纸片的边长为,则的长为______.第1次折 第2次折(第15题)16.如图,一次函数的图像与轴交于点.将该函数图像绕点逆时针旋转,则得到的新图像的函数表达式为______.(第16题)三、解答题(本大题共10小题,共68分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(1;(2).18.(6分)求下列各式中的:(1);(2).19.(6分)已知:如图,,,,且.求证:(1);(2).2cm EA 'cm 122y x =+x A A 45︒-2-x 2312x =()3164x -=-AB AC =AB AC ⊥AD AE ⊥ABD ACE ∠=∠ABD ACE △△≌ADE AED ∠=∠(第19题)20.(7分)一次函数(,为常数)的图像经过点,.(1)求该函数的表达式;(2)画出该函数的图像;(3)不等式的解集为______.21.(8分)如图,在中,,,的垂直平分线交于点,连接.(第21题)(1)若,求的度数;(2)若,求的长.22.(6分)已知一次函数(为常数,).(1)若该函数的图像经过原点,求的值;(2)当时,该函数图像经过第______象限.23.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.将点,分别向下平移3个单位长度得到点,.(第23题)(1)点,的坐标分别为______,______;(2)求证:点,,在一条直线上.24.(6分)如图,已知线段,,.求作,使,,且分别满足下列条件:(1)上的中线为.(2)上的高为.(说明:①尺规作图,保留作图痕迹;②可以有必要的作图说明;③每小题作出满足条件的一个三角形即可.)y kx b =+k b ()2,2-()0,20kx b +<ABC △90C ∠=︒8AC =AB MN AC D BD 25A ∠=︒DBC ∠4BC =BD 22y mx m =+-m 0m ≠m 01m <<ABC △()1,1A ()5,2B ()2,2C A C A 'C 'A 'C 'A 'C 'B a b c ABC △AB a =BC b =AB c AB c(第24题)25.(9分)甲、乙两家快递公司都要将货物从地派送至地.甲公司运输车要先在地的集货中心拣货,然后直接发往地.乙公司运输车从地出发后,先到达位于、两地之间的地休息,再以原速驶往地.两车离地的距离与乙公司运输车所用时间的关系如图所示.已知两车均沿同一道路匀速行驶,且同时到达地.(1)地与地之间的距离为______.(2)求线段对应的函数表达式.(3)已知地距离地,当为何值时,甲、乙两公司运输车相距?(第25题)26.(8分)回顾旧知(1)如图①,已知点,和直线,如何在直线上确定一点,使最小?将下面解决问题的思路补充完整.解决问题的思路可以构造全等三角形,将两条线段集中到一个三角形中!据此,在上任取一点,作点关于的对称点,与直线相交于点.连接,易知______,从而有.这样,在中,根据“______”可知与的交点即为所求.①A B A B A A B C B B ()km s ()h t B A B km MN C A 160km t 80km A B l l P PA PB +l P 'A l A 'AA 'l C P A ''AP C '△≌P A P A '=''A P B ''△A B 'l P解决问题(2)如图②,在中,,,,为上的两个动点,且,求的最小值.②变式研究(3)如图③,在中,,,,点,分别为,上的动点,且,请直接写出的最小值.③20232024学年度第一学期第二阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号123456答案二、填空题(每小题2分,共20分)7.58.29.10.答案不唯一,如11.12.7213.14.1415.16.三、解答题(本大题共10小题,共68分)17.(本题6分)解:(1.(2).ABC Rt △90ACB ∠=︒8AB =E F AB AE BF =CE CF +ABC △60ABC ∠=︒5AC =4BC=D E AB AC AD CE =CD BE +-C D A AB A>AB AD =<3m <2-312y x =+323=+-2=22=-2=-18.(本题6分)解(1)两边同除以3,得.开平方,得.(2)开立方,得.移项,合并同类项,得.19.(本题6分)证明:(1),,.,即.在和中,.(2),..20.(本题7分)解:(1)因为一次函数(,为常数)的图像经过点,,所以解得所以一次函数的表达式为.(2)图像正确.(3).21.(本题8分)解:(1)是的垂直平分线,点在上,..又,.,...(2)设,则,.在中,,..解得,即的长为5.22.(本题6分)解:(1)因为一次函数的图像经过原点,所以.解得.(2)一、三、四.(说明:每个答案1分,答案中有“二”不给分.)23.(本题6分)24x =2x =±14x -=-3x =-AB AC ⊥ AD AE ⊥90BAC DAE ∴∠=∠=︒BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △,,,BAD CAE AB AC ABD ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD ACE ∴△△≌ABD ACE △△≌AD AE ∴=ADE AED ∴∠=∠y kx b =+k b ()2,2-()0,222,2.k b b -=+⎧⎨=⎩2,2.k b =-⎧⎨=⎩22y x =-+1x >MN AB D MN AD BD ∴=DAB DBA ∴∠=∠25A ∠=︒ 25DBA ∴∠=︒90C ︒∠= 90A ABC ∴∠+∠=︒90902565ABC A ∴∠=-∠=-︒=︒︒︒652540DBC ABC DBA ∴∠=∠--︒∠=︒=︒BD x =AD x =8DC AC AD x =-=-Rt CBD △90C ∠=︒222BC CD BD ∴+=()22248x x ∴+-=5x =BD 22y mx m =+-220m -=1m =解:(1),.(2)设经过点与点的直线对应的函数表达式为.所以解得所以直线对应的函数表达式为.把代入,得.因为点的坐标是,所以点在一条直线上.24.(本题6分)解:(1)如图①,即为所求.① ②③ ④(2)如图②或③或④,即为所求.25.(本题9分)解:(1)360.(2)设经过点与点的线段对应的函数表达式为.所以解得所以线段对应的函数表达式为.(3)方法一 由题意得,乙车的速度为.如图,线段对应的函数表达式为.当,即时,.()1,2A '-()2,1C '-()1,2A '-()2,1C '-y kx b =+2,2 1.k b k b +=-⎧⎨+=-⎩1,3.k b =⎧⎨=-⎩A C '3y x =-5x =3y x =-532y =-=B ()5,2,,A C B ''ABC △ABC △()2,360M ()8,0N s kt b =+2360,80.k b k b +=⎧⎨+=⎩60,480.k b =-⎧⎨=⎩MN 60480s t =-+()160280km /h ÷=PQ 80360s t =+'-36080s '-=()3608036080t --+=1t =当,即时,.所以当为或时,甲、乙两公司运输车相距.方法二 由题意得,乙车的速度为.因为甲车在地集货中心拣货2小时,乙车先出发,所以(h ).因为甲车的速度为,所以.所以.所以当为或时,甲、乙两公司运输车相距.26.(本题8分)解:(1).三角形两边之和大于第三边.(说明:写“两点之间线段最短”也可.)(2)如图,取中点,连接并延长至点,使,连接.是中点,.,,即.又,,...当点运动到点时,的值最小,此时.,为中点,.,即的最小值为8.(3.()36016080s --=()6048020080t -+-=103t =t 1h 10h 380km ()160280km /h ÷=A 80801t =÷=()()3608260km /h ÷-=()()41608060h 3-÷=()4102h 33t =+=t 1h 10h 380km A P C ''△AB D CD G DG CD =EG D AB AD BD ∴=AE BF = AD AE BD BF ∴-=-DE DF =EDG FDC ∠=∠ DG CD =EDG FDC ∴△△≌GE CF ∴=CE CF CE EG ∴+=+∴E D CE EG +CE EG CG +=90BCA =︒∠ D AB 142CD AB ∴==28CG CD ∴==CE CF +。

八年级上数学试题及答案

八年级上数学试题及答案

八年级上数学试题及答案一、选择题(每题3分,共30分)1. 若a > 0,b < 0,且|a| > |b|,则a+b的符号为()A. 正数B. 负数C. 零D. 不确定2. 计算下列式子的结果:(-2)^3 + (-2)^2,其值为()A. 2B. -2C. -6D. 63. 已知x^2 - 5x + 6 = 0,下列哪个是方程的解?()A. x = 1B. x = 2C. x = 3D. x = 64. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 65. 计算下列式子的结果:(-3) × (-2),其值为()A. -6B. 6C. 0D. 96. 一个数的绝对值是5,这个数可能是()A. 5B. -5C. 5或-5D. 07. 下列哪个是不等式2x - 3 > 0的解?()A. x = 0B. x = 1C. x = 2D. x = 38. 计算下列式子的结果:(-1)^4 × (-1)^3,其值为()A. 1B. -1C. 0D. 29. 一个数的平方是9,这个数是()A. 3B. -3C. 3或-3D. 910. 计算下列式子的结果:(-5)^2 ÷ (-5),其值为()A. -1B. 1C. 5D. -5二、填空题(每题3分,共30分)11. 已知一个数的立方是-8,这个数是______。

12. 计算下列式子的结果:(-4)^2 - 4^2,其值为______。

13. 一个数的倒数是2,这个数是______。

14. 计算下列式子的结果:(-2)^3 × (-3)^2,其值为______。

15. 一个数的绝对值是-5(这是不可能的,因为绝对值总是非负的),所以这个数是______。

16. 计算下列式子的结果:(-3)^2 + (-3),其值为______。

17. 一个数的相反数是-2,这个数是______。

八年级数学测试题及答案

八年级数学测试题及答案

八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是等腰三角形的性质?A. 三条边相等B. 两条边相等C. 三个角相等D. 两个角相等答案:B2. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2答案:A3. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B4. 下列哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3x^3D. y = 1/x答案:A5. 一个等差数列的首项是2,公差是3,那么第5项是:A. 14B. 17C. 20D. 23答案:A6. 如果一个三角形的两边长分别是3和4,那么第三边的长x满足:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 7D. 0 < x < 7答案:A7. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个点C. 一个抛物线D. 一个圆答案:C10. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 2D. 4答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。

答案:±52. 一个等腰三角形的底边长是6,两腰长是5,那么它的周长是____。

答案:163. 一个圆的直径是10,那么它的半径是____。

答案:54. 一个数列的前三项是2,4,8,那么第四项是____。

答案:165. 如果一个三角形的两边长分别是5和12,那么第三边的长x满足的条件是____。

答案:7 < x < 17三、解答题(每题10分,共50分)1. 已知一个等差数列的前三项分别是2,5,8,求第10项的值。

八年级上册数学测试题及答案

八年级上册数学测试题及答案

八年级上册数学测试题及答案八年级上册数学测试题及答案一、选择题1、在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长度为() A.2.5 B. 3 C. 4 D. 52、已知等腰三角形的一边长为3,腰长为4,则这个三角形的周长为() A. 9 B. 10 C. 11 D. 123、一个正多边形的内角和为1800°,则这个多边形的边数为() A.6 B. 8 C. 10 D. 124、已知一次函数y=kx+b的图象经过点(2,-1)和点(-2,3),则这个函数的表达式为() A. y=-2x+3 B. y=x-2 C. y=x+2 D. y=-x+3二、填空题5、在等腰三角形中,已知底角的度数和腰的长度,则顶角的度数为_______。

51、在直角三角形中,已知一个锐角的度数,以及两直角边的长度,则另一个锐角的度数为_______。

511、等边三角形的边长为4,则它的高为_______。

5111、已知一次函数y=kx+b的图象与x轴的交点为(-2,0),则方程kx+b=0的解为_______。

三、解答题9、在△ABC中,∠A=70°,∠B=60°,CD是∠ACB的角平分线。

求∠BCD的度数。

91、等腰三角形的一个角是70°,求这个等腰三角形的另外两个角的度数。

911、等腰三角形的一边长为4cm,另一边的长为8cm,求这个等腰三角形的周长。

9111、已知一次函数y=kx+b的图象经过点(0,-3),且与x轴相交于点(2,0)。

求这个一次函数的表达式。

四、附加题13、等边三角形的边长为6cm,将它每条边六等分,然后连接每个分点形成新的三角形,求这些新三角形的面积之和。

答案:一、1. D 2. C 3. B 4. C二、5. arcsin(√3/3)或约为35.26° 6. 90°-arcsin(邻边/斜边)或用三角函数计算 7. √(4²-2²)=√12=2√3 8. x=-2三、9. ∵∠A=70°,∠B=60°,∴∠ACB=50°,又CD平分∠ACB,∴∠BCD=25°。

人教版八年级上册数学期末试题及答案

人教版八年级上册数学期末试题及答案

人教版八年级上册数学期末试卷一、单选题1.下列四个图案中,不是轴对称图形的是()A .B .C .D .2.将0.00000095用科学记数法表示为()A .70.9510-⨯B .89.510-⨯C .79.510-⨯D .59510-⨯3.若分式方程233x m x x +=++无解,则m 的值为()A .﹣1B .0C .1D .34.下列运算正确的是()A .2a aa +=B .632a a a ÷=C .()0-31π=D .()21224a b a b --=5.下列等式从左到右的变形是因式分解的是()A .()2212x x x x --=--B .()()25623x x x x -+=--C .211x x x x ⎛⎫-=- ⎪⎝⎭D .()()2224x x x +-=-6.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是()A .5B .4C .7D .67.如图,在△ABC 中,AD 是∠BAC 的平分线,E 为AD 上一点,且EF ⊥BC 于点F .若∠C=35°,∠DEF=15°,则∠B 的度数为()A .65°B .70°C .75°D .85°8.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为()A .8815 2.5x x+=B .8184 2.5x x +=C .88152.5x x =+D .8812.54x x =+9.如图,在ABC 中,90,30A C PQ ∠=︒∠=︒,垂直平分BC ,与AC 交于点,P 下列结论正确的是()A .2PC PA <B .2PC PA >C .2AB PA <D .2AB PA>10.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS二、填空题11.使分式211x x -+的值为0,这时x=_____.12.计算:22222155ab b a b ab a b+⋅-=______________.13.已知点1(1,5)P a -和点2(2,1)P b -关于x 轴对称,则2016()b a +的值为_____________.14.若m+n=3,则2m 2+4mn+2n 2-6的值为________.15.已知6m x =,3n x =,则2m n x -的值为________.16.多项式x 2+2mx+64是完全平方式,则m =________.17.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.18.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.19.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.20.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为_____________(答案不唯一,只需填一个)三、解答题21.解分式方程:(1)21322x x x-+=--(2)262393x x x x x -+=+--22.化简求值:(1)()()()322484a b a b ab a bab +-+-÷,其中21a b ==,(2)2234221121x x x x x x ++-÷---+(,其中x 取﹣1,1,﹣2,﹣3中你认为合理的数.23.在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .(1)求证:△ABE ≌△CBF ;(2)若∠CAE=30°,求∠ACF 度数.24.如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE=CF ,AD+EC=AB .(1)求证:△DEF 是等腰三角形;(2)当∠A=40°时,求∠DEF 的度数;(3)△DEF 可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A 为多少度时,∠EDF+∠EFD=120°,并请说明理由.25.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?26.已知如图,AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .27.已知:如图,已知△ABC(1)点A 关于x 轴对称的点A 1的坐标是,点A 关于y 轴对称的点A 2的坐标是;(2)画出与△ABC 关于x 轴对称的△A 1B 1C 1;(3)画出与△ABC 关于y 轴对称的△A 2B 2C 2.28.某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?参考答案1.C【分析】根据轴对称的概念对各选项分析判断即可求解.【详解】解:A 、是轴对称图形,故本选项不合题意;B 、是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不合题意.故选:C .【点睛】本题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000095=79.510-⨯故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.A【详解】解:两边同乘以(x+3)得:x+2=m ,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴1m =-,故选:A.4.C【分析】根据合并同类项法则、幂运算法则进行计算判断.【详解】A 、2a a a +=,故原计算错误;B 、633a a a ÷=,故原计算错误;C 、()0-31π=,故正确;D 、()21224a b a b ---=,故原计算错误;故选:C .【点睛】本题考查整式的加减乘除运算,熟练掌握运算法则是关键.5.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、()()2221x x x x --=-+,没有把一个多项式转化为几个整式积的形式,故A 错误;B 、把一个多项式转化为几个整式积的形式,故B 正确;C 、()()21+11x x x -=-,故C 错误;D 、()()2224x x x +-=-,整式的乘法,故D 不是因式分解.故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.6.D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D .【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.7.A【详解】解:∵EF ⊥BC ,∠DEF=15°,∴∠ADB=90°-15°=75°.∵∠C=35°,∴∠CAD=75°-35°=40°.∵AD 是∠BAC 的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°.故选A .8.D【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【详解】解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+.故选D .【点睛】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.9.C【分析】由题意连接BP ,并根据垂直平分线的性质进行分析求解即可.【详解】解:连接BP则130C ∠∠︒==.230∴∠︒=2PC PB PA ∴==.AB PB <,2AB PA ∴<.故选:C.【点睛】本题考查垂直平分线相关,熟练掌握垂直平分线的性质是解题的关键.10.D【分析】根据作图过程可知:OC=OD ,PC=PD ,又OP=OP ,从而利用SSS 判断出△OCP ≌△ODP ,根据全等三角形的对应角相等得出∠COP=∠DOP ,即OP 平分∠AOB ,从而得出答案.【详解】解:由画法得OC=OD ,PC=PD ,而OP=OP ,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.11.1【详解】由题意得211x x -+=0,所以x 2-1=0且x+1≠0,解之得x=1,故答案为:1.12.3aa b-【分析】先把分子、分母分别分解因式,再约分计算.【详解】原式=()()()22155b a b a b ab a b a b +⋅+-=3a a b-,故填:3a a b-.【点睛】本题考查分式的乘法运算法则,熟练掌握因式分解是关键.13.1【详解】解:∵点()11,5P a -和点()22,1Pb -关于x 轴对称,∴a-1=2,b-1=-5,∴a=3,b=-4,∴()2016a b +=(-1)2016=1,故答案为:1.14.12【详解】解:原式=2(m 2+2mn+n 2)-6=2(m+n )2-6=2×9-6=12故答案为:12.15.12【分析】逆运用同底数幂的乘法公式和幂的乘方公式对原式适当变形,再将值代入计算即可.【详解】解:2222()6312m n m n n m x x x xx -=÷=÷=÷=.故答案为:12.【点睛】本题考查幂的乘方公式的逆运用,同底数幂的乘法逆运用.熟练掌握相关公式是解题关键.16.±8【详解】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x,所以m=±8.故答案为±8.【点睛】此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.17.9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=12OP=12.∵PM=PN,PD⊥MN,∴MD=ND=12MN=3,∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.18.30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°,∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.19.80【分析】先根据折叠的性质可得AD DF =,根据等边对等角的性质可得B BFD ∠=∠,再根据三角形的内角和定理列式计算即可求解.【详解】解:DEF 是DEA △沿直线DE 翻折变换而来,AD DF ∴=,D 是AB 边的中点,AD BD ∴=,BD DF ∴=,B BFD ∴∠=∠,50B ∠=︒ ,180180505080BDF B BFD ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:80.【点睛】本题考查的是折叠的性质,以及等边对等角、三角形内角和定理,熟知折叠的性质是解答此题的关键.20.AC=DC (答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD ,添加AC=DC 可以利用SAS 来进行判定;添加∠B=∠E 可以利用ASA 来进行判定;添加∠A=∠D 可以利用AAS 来进行判定.故答案为:AC=DC (答案不唯一)21.(1) 1.5x =;(2)无解【分析】(1)两边同乘2x -进行去分母,再求解整式方程,最后检验即可;(2)两边同乘()()33x x +-进行去分母,再求解整式方程,最后检验即可.【详解】(1)21322x x x-+=--解:两边同乘2x -得()2321x x +-=-解得 1.5x =检验:当 1.5x =时,20x -≠,∴ 1.5x =是原分式方程的解,(2)262393x x x x x -+=+--解:两边同乘()()33x x +-得()()()3623x x x x -+=-+解得3x =检验:当3x =时,()()330x x +-=,∴3x =不是原分式方程的解,∴原分式方程无解.【点睛】本题考查解分式方程,熟练掌握分式方程的求解过程并注意检验是解题关键.22.(1)22a ab -,0;(2)11x x -+,2【分析】(1)原式利用平方差公式,以及多项式除以单项式法则计算,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)首先把括号内的分式的分母分解因式,把除法转化为乘法,进行分式的加减,利用分配律计算,然后根据题意选择合理的数,代入即可.【详解】(1)原式2222a b b ab=-+-22a ab =-,当2a =,1b =时,原式22221=-⨯⨯0=;(2)原式()()()()()()22113411112x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+-+-+⎣⎦()()()212112x x x x x -+=⋅+-+11x x -=+,由题意可知,1x ≠±且2x ≠-∴3x =-,当3x =-时,原式2=.【点睛】本题考查了整式和分式的混合运算,熟练掌握运算法则是解题的关键.23.(1)见解析(2)∠ACF=60°【分析】(1)根据HL 可证明Rt △ABE ≌Rt △CBF ;(2)由全等三角形的性质得出∠BCF =∠BAE =15°,则可得出答案.【详解】(1)证明:∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,AE CFAB BC =⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵AB =BC ,∠ABC =90°,∴∠CAB =∠ACB =45°,又∵∠BAE =∠CAB ﹣∠CAE =45°﹣30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =15°,∴∠ACF =∠BCF+∠ACB =15°+45°=60°.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.24.(1)证明见解析;(2)∠DEF=70°;(3)△DEF 不可能是等腰直角三角形,理由见解析;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由见解析.【分析】(1)首先根据条件证明△DBE ≌△ECF ,根据全等三角形的性质可得DE=FE ,进而可得到△DEF 是等腰三角形;(2)由(1)中的全等得出∠BDE=∠CEF ,再由角之间的转化,从而可求解∠DEF 的大小;(3)由于AB=AC ,可得∠B=∠C≠90°=∠DEF ,从而可确定其不可能是等腰直角三角形;(4)先猜想出∠A 的度数,则可得∠EDF+∠EFD=120°,根据前面的推导过程知∠EDF+∠EFD=120°时,∠DEF=60°,再由∠B=∠DEF 以及等腰三角形的性质继而推得猜想的正确性.【详解】(1)∵AB=AC ,∴∠B=∠C ,∵AD+EC=AB ,AB=AD+BD ,∴BD=CE ,在△BDE 和△CEF 中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CEF (SAS )∴DE=EF ,∴△DEF 是等腰三角形;(2)∵∠DEC=∠B+∠BDE ,即∠DEF+∠CEF=∠B+∠BDE ,由(1)知△BDE ≌△CEF ,则∠BDE=∠CEF ,∴∠DEF=∠B ,∵∠A=40°,∴∠B=∠C=()1180402⨯︒-︒=70°,∴∠DEF=70°;(3)△DEF 不可能是等腰直角三角形,∵AB=AC ,∴∠B=∠C≠90°,由(2)知∠DEF=∠B ,∴∠DEF=∠B≠90°,∴△DEF 不可能是等腰直角三角形;(4)当∠A=60°时,∠EDF+∠EFD=120°,理由是:当∠EDF+∠EFD=120°时,则∠DEF=180°-120°=60°,∴∠B=∠DEF=60°,∴∠A=180°-∠B-∠C=180°-60°-60°=60°,∴当∠A=60°时,∠EDF+∠EFD=120°.【点睛】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定和性质问题,能够熟练掌握和灵活运用相关质是解题的关键.25.(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.【分析】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+30)千克材料,根据A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同建立方程求出其解即可得;(2)设购进A 型机器人a 台,根据每小时搬运材料不得少于2800kg 列出不等式进行求解即可得.【详解】(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x+30)千克材料,根据题意,得100080030x x=+,解得:x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)设购进A 型机器人a 台,则购进B 型机器人(20﹣a )台,根据题意,得150a+120(20﹣a )≥2800,解得a≥403,∵a 是整数,∴a≥14,答:至少购进A 型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.26.见解析【分析】根据角平分线的性质可得DE DF =,易证AE AF =,即△AEF 为等腰三角形,根据三线合一可证结论.【详解】证明:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∴12∠=∠,∵90AED AFD ∠=∠=︒,∴3=4∠∠,∴AE AF =,∵AD 是等腰三角形AEF 的顶角平分线,∴AD 垂直平分EF (三线合一)【点睛】本题考查了角平分线的性质和等腰三角形的性质—“三线合一”的应用,熟练掌握性质是解题的关键.27.(1)(-4,-2),(4,2);(2)图形见解析(3)图形见解析【分析】(1)分别利用关于x 轴以及y 轴对称点的性质得出对应点坐标即可;(2)直接利用关于x轴对称点的性质得出对应点坐标即可;(3)直接利用关于y轴对称点的性质得出对应点坐标即可.【详解】解:(1)(-4,-2),(4,2);(2)如图所示:△A1B1C1,即为所求;(3)如图所示:△A2B2C2,即为所求.28.10元、30元.【分析】设甲农药的单价为x元,乙农药的单价为3x元,根据购买250元甲农药的数量比购买300元乙农药的数量多15件列出方程,求出方程的解即可得到结果;【详解】解:设甲农药的单价为x元,乙农药的单价为3x元,根据题意得,250360-=15x3x,解得x=10,经检验,x=10是所列方程的根,∴3x=3×10=30(元),答:甲、乙两种农药品的单价分别为10元、30元.【点睛】本题主要考查了分式方程的应用,掌握分式方程是解题的关键.。

2024届北京市育才学校八年级数学第一学期期末统考试题含解析

2024届北京市育才学校八年级数学第一学期期末统考试题含解析

2024届北京市育才学校八年级数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.下面的图形中,是轴对称图形的是( )A .B .C .D .2.如图,在等腰ABC ∆中,顶角44A ∠=︒,BD 平分底角ABC ∠交AC 于点,D E 是BC 延长线上一点,且CD CE =,则E ∠的度数为 ( )A .22°B .44°C .34°D .68°3.现有甲,乙两个工程队分别同时开挖两条 600 m 长的隧道,所挖遂道长度 y (m )与挖掘时间x (天)之间的函数关系如图所示.则下列说法中,错误的是( )A .甲队每天挖 100 mB .乙队开挖两天后,每天挖50米C .甲队比乙队提前2天完成任务D .当3x =时,甲、乙两队所挖管道长度相同4.如图,直线//,160a b ︒∠=,则2∠=( )A.60︒B.100︒C.150︒D.120︒5.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-26.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(﹣1,﹣2)7.如图,小峰从点O出发,前进5m后向右转45°,再前进5m后又向右转45°,…,这样一直走下去,他第一次回到出发点O时,一共走的路程是()A.10米B.20 米C.40 米D.80米8.某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为45°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A .30cmB .35cmC .352cmD .65cm9.如图,在平面直角坐标系中,()11A ,,()11B ,-,()12C --,,()12D -,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A 处,并按A B C D A -----…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)B .(1,1)C .(-1,1)D .(-1,-2)10.已知ABC ∆中,AB AC =,求证:90B ∠<︒,运用反证法证明这个结论,第一步应先假设( )成立 A .90B ∠≥︒ B .90B ∠>︒ C .90A ∠>︒ D .90A ∠≥︒11.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快12.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去二、填空题(每题4分,共24分)13.如图,A .B 两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C 也在格点上,且△ABC 为等腰三角形,则符合条件的点C 共有______个.14.如图:点C 在AB 上,DAC ∆、EBC ∆均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,则下列结论①AE DB = ②CM CN = ③CMN ∆为等边三角形 ④//BC MN 正确的是______(填出所有正确的序号)15.已知点A (m+3,2)与点B (1,n ﹣1)关于y 轴对称,则代数式(m+n )2017的值为 .16.函数y x 2=+中,自变量x 的取值范围是 .17.如图,在Rt △ABC 中,平分交BC 于D 点,E ,F 分别是上的动点,则的最小值为__________.18.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm ,则它最短边长为________.三、解答题(共78分)19.(8分)如图,将平行四边形ABCD 的边AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD .(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠A=60°,求CE的长.20.(8分)如图, A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOC=1.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)若S△BOP=S△DOP,求直线BD的解析式.21.(8分)(1)计算:(1+3)2﹣12×6;(2)解方程组:125x yx y+=⎧⎨-=⎩①②.22.(10分)某单位欲从内部招聘管理人员一名,对甲乙丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试,面试,民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?23.(10分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).24.(10分)已知1322x =-,求代数式2623x x x -+-的值. 25.(12分)已知一次函数y =﹣33x+4与x 轴交于点A ,与y 轴交于点C ,∠CAO =30°,B 点在第一象限,四边形OABC 为长方形,将B 点沿直线AC 对折,得到点D ,连接点CD 交x 轴于点E .(1)M 是直线AC 上一个动点,N 是y 轴上一个动点,求出EMN 周长的最小值;(2)点P 为y 轴上一动点,作直线AP 交直线CD 于点Q ,将直线AP 绕着点A 旋转,在旋转过程中,与直线CD 交于Q .请问,在旋转过程中,是否存在点P 使得CPQ 为等腰三角形?如果存在,请求出∠OAP 的度数;如果不存在,请说明理由.26.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值.参考答案一、选择题(每题4分,共48分)1、C【分析】沿着一条直线对折,两边能够完全重合的图形就是轴对称图形,根据定义判断即可.【题目详解】A 选项图形不是轴对称图形,不符合题意;B 选项图形不是轴对称图形,不符合题意;C 选项图形是轴对称图形,符合题意;D 选项图形不是轴对称图形,不符合题意;故选C .【题目点拨】本题考查轴对称图形的判断,熟记轴对称图形的定义是解题的关键.2、C【分析】先根据等腰三角形的性质求得∠ACB=68º,从而求出∠ACE=112º,再由CD CE =求出E ∠的度数.【题目详解】∵在等腰ABC ∆中,顶角44A ∠=︒,∴∠ACB =(18044)682-︒=︒, 又∵CD CE =,∠ACB =∠E+∠CDE, ∴∠E=∠CDE=68342︒=︒. 故选:C .【题目点拨】考查了三角形外角性质、等腰三角形的性质和三角形内角和定理,解题关键是利用了三角形的一个外角等于与它不相邻的两个内角和.3、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【题目详解】解:由图象,得600÷6=100米/天,故A 正确;(500-300)÷4=50米/天,故B 正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C 正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D 错误;故选:D.【题目点拨】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.4、D【分析】由//,160a b ︒∠=得到∠3的度数为60︒,再根据邻补角即可计算得到∠2的度数.【题目详解】∵//,160a b ︒∠=,∴∠3=∠1=60︒,∴∠2=180︒-60︒=120︒,故选:D.【题目点拨】此题考查平行线的性质,邻补角的定义,正确理解题中角度的关系,由此列式计算得出角度值是解题的关键. 5、B【解题分析】根据一次函数图像与不等式的性质即可求解.【题目详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x 的不等式-x+m >nx+5n >0的解集为-5<x <-2故整数解为-4,-3,故选B.【题目点拨】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.6、D【解题分析】试题分析:关于x 轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点A (﹣1,2)关于x 轴对称的点B 的坐标是(﹣1,﹣2).故选D .7、C【分析】小峰从O 点出发,前进5米后向右转45°,再前进5米后又向右转45°,…,这样一直走下去,他第一次回到出发点O 时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【题目详解】依题意可知,小峰所走路径为正多边形,设这个正多边形的边数为n ,则45n =360,解得:n =8,∴他第一次回到出发点O 时一共走了:5×8=40米. 故选:C .【题目点拨】此题考查多边形的外角和,正多边形的判定与性质.解题关键是根据每一个外角判断多边形的边数.8、D【分析】由题意可知,进入容器内的三角形可看作是一个斜边为70cm 的等腰直角三角形,由等腰三角形三线合一的性质可得到高,即可求出答案.【题目详解】由题意可知,进入容器内的三角形可看作是一个斜边为70cm 的等腰直角三角形,由等腰三角形三线合一的性质可得到高斜边上的高应该为35cm ,使容器中的液面与上方装置相接触,容器中液体的高度至少应为100﹣35=65cm .故选D .考点:等腰直角三角形.9、A【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【题目详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即细线另一端所在位置的点的坐标是(1,0).故选:A .【题目点拨】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.10、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【题目详解】解:90B ∠<︒的反面为90B ∠≥︒故选A .【题目点拨】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.11、C【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【题目详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【题目点拨】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.12、C【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【题目详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【题目点拨】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.二、填空题(每题4分,共24分)13、9【解题分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.14、①②③④【分析】利用等边三角形的性质得CA=CD,∠ACD=60°,CE=CB,∠BCE=60°,所以∠DCE=60°,∠ACE=∠BCD =120°,则利用“SAS”可判定△ACE≌△DCB,所以AE=DB,∠CAE=∠CDB,则可对①进行判定;再证明△ACM≌△DCN得到CM=CN,则可对②进行判定;然后证明△CMN为等边三角形得到∠CMN=60°,则可对③④进行判定.【题目详解】解:∵△DAC、△EBC均是等边三角形,∴CA=CD,∠ACD=60°,CE=CB,∠BCE=60°,∴∠DCE=60°,∠ACE=∠BCD=120°,在△ACE和△DCB中AC CDACE DCB EC BC⎪∠⎪⎩∠⎧⎨===,∴△ACE≌△DCB(SAS),∴AE=DB,所以①正确;∵△ACE≌△DCB,∴∠MAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠MCA=∠DCN=60°,在△ACM和△DCN中MAC NDC CA CDACM DCN ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ACM≌△DCN(ASA),∴CM=CN,所以②正确;∵CM=CN,∠MCN=60°,∴△CMN为等边三角形,故③正确,∴∠CMN=60°,∴∠CMN=∠MCA,∴MN∥BC,所以④正确,故答案为:①②③④.【题目点拨】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件,也考查了等边三角形的判定与性质.15、﹣1.【题目详解】解:∵点A(m+3,2)与点B(1,n﹣1)关于y轴对称,∴m+3=﹣1,n﹣1=2,解得:m=﹣4,n=3,∴(m+n)2017=﹣1.故答案为﹣1.【题目点拨】本题主要考查了关于y轴对称的点的坐标特征,若两个关于y轴对称,则这两点的横坐标互为相反数,纵坐标相等.≥-.16、x2【解题分析】∵x2+在实数范围内有意义,+≥∴x20,≥-∴x2≥-故答案为x217、【分析】利用勾股定理先求出BA,再求到CH,由垂线段最短可得解.【题目详解】如图,在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.在Rt△ABC中,依据勾股定理可知BA=10,CH=.∵EF+CE=EF′+EC,∴当C、E、F′共线,且点F′与H重合时,FE+EC的值最小,最小值为.故答案为.18、3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【题目详解】解:∵三角形三个内角之比为1:2:3,∴设三角形最小的内角为x ,则另外两个内角分别为2x ,3x ,∴x+2x+3x=180°,∴x=30°,3x=90°,∴此三角形是直角三角形.∴它的最小的边长,即30度角所对的直角边长为:12×6=3cm . 故答案为:3cm.【题目点拨】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.三、解答题(共78分)19、(1)见解析;(2)13【分析】(1)利用平行四边形的性质得出AD=BC ,AD ∥BC ,进而利用已知得出DE=FC ,DE ∥FC ,进而得出答案;(2)首先过点D 作DN ⊥BC 于点N ,再利用平行四边形的性质结合勾股定理得出DF 的长,进而得出答案.【题目详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵DE =12AD ,F 是BC 边的中点, ∴DE =FC ,DE ∥FC ,∴四边形CEDF 是平行四边形;(2)解:过点D 作DN ⊥BC 于点N ,∵四边形ABCD 是平行四边形,∠A =60°,∴∠BCD =∠A =60°,CD=AB ,BC=AD ,∵AB =4,AD =6,∴FC =3,NC =12DC =2,DN =23 ∴FN = FC - NC =1,则DF =EC =()2222231DN FN +=+13【题目点拨】本题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.20、(1)A(-1,0),m=125;(2)1=25y x+;(3)62455y x=-+【分析】(1)根据三角形面积公式得到12×OA•2=1,可计算出OA=1,则A点坐标为(-1,0),再求出直线AC的表达式,令x=2,求出y即可得到m值;(2)由(1)可得结果;(3)利用三角形面积公式由S△BOP=S△DOP,PB=PD,即点P为BD的中点,则可确定B点坐标为(4,0),D点坐标为(0,245),然后利用待定系数法确定直线BD的解析式.【题目详解】解:(1)∵S△AOC=1,C(0,2),12×OA•2=1,∴OA=1,∴A点坐标为(-1,0),设直线AC的表达式为:y=kx+b,则0102k bb=-+⎧⎨=⎩,解得:152kb⎧=⎪⎨⎪=⎩,∴直线AC的表达式为:1=25y x+,令x=2,则y=125,∴m的值为125;(2)由(1)可得:∴直线AP的解析式为1=25y x+;(3)∵S△BOP=S△DOP,∴PB=PD,即点P为BD的中点,∴B点坐标为(4,0),D点坐标为(0,245),设直线BD的解析式为y=sx+t,把B(4,0),D(0,245)代入得04 24 5s t t=+⎧⎪⎨=⎪⎩,解得:65245st⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BD的解析式为62455y x=-+.【题目点拨】本题考查了待定系数法求一次函数解析式,一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)(2)21xy=⎧⎨=-⎩.【分析】(1)利用完全平方公式,根据二次根式得运算法则计算即可得答案;(2)利用加减消元法解方程组即可得答案.【题目详解】(1)原式=+3==.(2)125 x yx y+=⎧⎨-=⎩①②①+②得3x=6,解得:x=2,把x=2代入①得2+y=1,解得:y=﹣1,∴方程组的解为21 xy=⎧⎨=-⎩.【题目点拨】本题考查了二次根式的运算和解二元一次方程组,熟练掌握二次根式得运算法则及加减法解二元一次方程组是解题关键.22、(1)甲:50分;乙:80分;丙:70分;(2)丙【分析】(1)根据扇形统计图即可求出三人的得分;(2)利用加权平均数列式计算求出三人的得分,然后判断录用的候选人即可.【题目详解】解:(1)由题意得,民主测评:甲:200×25%=50分, 乙:200×40%=80分, 丙:200×35%=70分; (2)∵43310++=, 则,()7549335031072.9x =⨯+⨯+⨯÷=甲分()8047038031077x =⨯+⨯+⨯÷=乙分()9046837031077.4x =⨯+⨯+⨯÷=丙分∵77.4>77>72.9,∴丙将被录用.【题目点拨】本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.23、每天只需要安排6名工人就可以完成分拣工作.【分析】设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件,根据工作时间=工作总量÷工作效率结合5人用此设备分拣8000件快件的时间比20人用传统方式分拣同样数量的快件节省4小时,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再利用需要人数=工作总量÷每人每天用智能分拣设备后的工作量,即可求出结论(利用进一法取整).【题目详解】解:设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件, 依题意,得:80008000452520x x=-⨯, 解得:x =84,经检验,x =84是原方程的解,且符合题意,∴100000÷(84×25×8)=5(人)……16000(件),∴5+1=6(人).答:每天只需要安排6名工人就可以完成分拣工作.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24、4【分析】先将x 进行化简,然后再代入求值即可.【题目详解】解:3x===+,原式23632+-++=4.【题目点拨】本题考查二次根式的化简与计算,掌握化简方法及运算法则是解题关键.25、(1)1;(2)存在,15°或60°【分析】(1)首先确定A,C的坐标,由矩形的性质和折叠的性质可得AD=AB=4,∠CAD=60°,可得∠DAO=30°,由直角三角形的性质求出点D的坐标,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,由直角三角形的性质可求AE,OE的长,可求点G,点H坐标,即可求解.(2)分两种情况讨论,由等腰三角形的性质可求解.【题目详解】解:(1)∵一次函数4y x+=与x轴交于点A,与y轴交于点C,∴C(0,4),A(0),∴OC=AB=4,BC=OA=∵四边形AOCB是矩形,∠OAC=30°∴AC=2CO=1,∠CAB=60°,∵B点沿直线AC对折,使得点B落在点D处,∴AD=AB=4,∠CAD=60°,∴∠DAO=30°,如图,过点D作DF⊥AO于F,∵DF⊥AO,∠DAO=30°,∴DF=12AD=2,AF=3DF=23,∴OF=AO﹣AF=23,∴点D坐标(23,﹣2).如图,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,∵∠OAD=30°,AD=4,∠ADC=90°∴AE=833,∴OE=433,∵点G,点E关于y轴对称,点E,点H关于AC对称,∴点G 43,0),点H83,4)∴GH22 834348 33⎛⎫++=⎪⎪⎝⎭,∴△EMN的周长最小值为1.(2)存在点P使得△CPQ为等腰三角形,∵∠ACB=∠ACD=30°,∴∠OCE=30°,①如图,若CP=CQ,则∠CPQ=75°,∴∠OAP=90°﹣∠CPQ=15°,②如图,若PQ=CQ,则∠QPC=∠PCQ=30°,∴∠PAO=90°﹣∠CPQ=60°,综上所述,满足条件的∠OAP的值为15°或60°.【题目点拨】本题考查矩形、折叠、直角三角形、等腰三角形等知识和数形结合思想方法的综合应用,熟练应用数形结合的思想方法解决几何综合问题是解题关键.26、11【分析】根据算术平方根和立方根的概念列出方程求出x和y,代入求值即可.x-的算术平方根是3,【题目详解】解:∵1x-,∴1=9x,∴=10∵24x y ++的立方根是3,∴24=27x y ++,即204=27y ++∴3y =,∴2320911x y -=-=.【题目点拨】本题考查算术平方根和立方根.熟练掌握算术平方根与立方根的意义是解题的关键.。

八年级数学全册全套试卷练习(Word版 含答案)

八年级数学全册全套试卷练习(Word版 含答案)
八年级数学全册全套试卷练习(Word 版 含答案)
一、八年级数学三角形填空题(难)
1.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那 么∠ 3 的度数等于______________.
【答案】12° 【解析】等边三角形的内角的度数是 60°,正方形的内角度数是 90°,正五边形的内角的度 数是 108°,则∠ 3=360°-60°-90°-108°-∠ 1-∠ 2=12°. 点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是 解答此题的关键.
【答案】100° 【解析】 【分析】
根据线段垂直平分线的性质,得 BE BA,根据等腰三角形的性质,得 E A 50,再
根据三角形外角的性质即可求解. 【详解】 ∵BD 垂直平分 AE,
∴ BE BA,
∴ E A 50, ∴ EBC E A 100,
故答案为 100°. 【点睛】 考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的 关键.
∵BE=2CE,
∴S△CEF= 1 S△BEF= 1 (6-x),S△ABE= 2 S△ABC,
2
2
3
∵S△BDC= S△ADC= 1 △ABC, 2
∴S△ABC=2S△BDC
=2[x+ 3 (6-x)] 2
=18-x,
∵S△ABE= 2 S△ABC, 3
∴S△ABC= 3 S△ABE 2
= 3 [2x+ (6-x)] 2
=1.5x+9,
∴18-x =1.5x+9,
解得:x=3.6,
∴S△ABC=18-x, =18-3.6
=14.4,
故选:B.
【点睛】

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末检测八年级数学试卷
一. 选择题(每小题有四个选项,其中只有一个是正确的,请把正确选项的序号填在下表中的相应位置,每小题
2分,共20分)
1.下列式子不属于分式方程的是 A.21211=++-x x x B.211=+x x C.212131-=++x x D.251=+x x
2.化简x y x -2-x
y y -2
的结果是A.-x-y B. y-x C.x-y D. x+y 3.已知反比例函数的图象经过点P (-2,1),则这个函数的图象位于
A.第一、三象限
B.第二、三象限
C.第二、四象限
D.第三、四象限
4.一组数28,29.4,31.9,27,28.8,34.1,29.4的中位数,众数,极差分别是
A.29.4,29.4,2.5
B.29.4,29.4,7.1
C.27,29,4.7
D.28.8,28,2.5
5.直角三角形的斜边长为10,一直角边长是另一直角边长的3倍,则直角三角形的面积为
A.12
B.13
C.14
D.15 6.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是
A.当AB=BC 时,它是菱形
B.当AC ⊥BD 时,它是菱形
C.当∠ABC=90°时,它是矩形
D.当AC=BD 时,它是正方形
7.菱形ABCD 的∠DAB=80°,AB 的垂直平分线交对角线AC 于F ,连DF ,则∠A.50° B.40° C.75° D.60°
8.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是
A .AC=BD ,AD //CD;
B .AD ∥B
C ,∠A=∠C;
C .AO=BO=OC=DO;
D .AO=CO=BO=DO ,AB=BC
9.已知函数y=kx 中,y 随x 的增大而增大,那么函数y=k x
的图像大致是
10.为响应承办“绿色奥运”的号召,八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是
A .3002030060 1.2x x -=
B .300300201.2x x -=
C .300300201.260x x x -=+
D .300300201.260
x x =- 二、填空题(每小题3分,共24分)
11.x_______时,分式
5345
x x -+有意义; 12.已知()21213x y -+-与21025z z -+互为相反数,则以x 、y 、z 为边的三角形是 三角形。

(填“直角”、“等腰”、“任意”)
13.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:
机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2
S 乙=0.06,由此可知:_______(填甲或乙)机床性能好. 14.当k>0时,双曲线x
k y =
与直线y=-kx 的交点的个数是 15.当=x 时,125x x x x +--与互为相反数. A C D
16.如图,E 、F 是 ABCD 对角线BD 上的两点,请你添加一个适当的条件:______•
使四边形AECF 是平行四边形.
17.如图,正方形ABCD 中,AB=1,点P 是对角线AC 上的一点,分别以AP 、PC•
为对角线作正方形,则两个小正方形的周长的和是________.
18.某人要登上6m 高的建筑物,为确保安全,梯子底端要离开建筑物2.5m ,且顶端不低于建
筑物顶部,则梯子长应不少于 m 。

三.解答题(19—25题,共56分)
19.( 6分)有一道题:“先化简再求值:22x 12x 1)x 1x 1x 1
-+÷+--(,其中x=-2010”,小明做题时把“x=-2010”错抄成了“x=2010”,但他的计算结果也是正确的,请你通过计算解释这是怎么回事?
20.(6分)解方程
14222=-+-x x x
21. (7分)在压力不变的情况下,某物体承受的压强p (Pa )是它的受力面积S (m 2)的反比例函数,其图象如图所示.
(1) 求p 与S 之间的函数关系式;
(2) 求当
S =0.5 m 2时物体承受的压强p .
22.(8分) 红星家电商场的一个柜组出售容积分别为268立升、228立升、185立升、182立升四种型号的
同一品牌的冰箱,每卖出一台冰箱,售货员就在一张纸上写出它的容积作为原始记录,到月底,柜组长清点
原始记录,得到一组由10个182、18个185、66个228和16个268组成的数据。

(1)这组数据的平均数有实际意义吗?
(2)这组数据的中位数、众数 分别等于多少?
(3)红星商场总经理关心的是中位数还是众数?
23. (9分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB=8cm ,BC=10cm ,求EC 的长.
(m 2) p S O 0.10.20.30.41000
200030004000(Pa )
24. (9分)甲、乙两同学学习计算机打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同.已知甲每分钟比乙每分钟多打12个字,问甲、乙两人每分钟各打多少个字?
李明同学是这样解答的:
设甲同学打印一篇3 000字的文章需要x分钟,
根据题意,得30002400
12
x x
-=(1)
解得:50
x=.
经检验50
x=是原方程的解.(2)
答:甲同学每分钟打字50个,乙同学每分钟打字38个.(3)
(1)请从(1)、(2)、(3)三个步骤说明李明同学的解答过程是否正确,若有不正确的步骤改正过来.(2)请你用直接设未知数列方程的方法解决这个问题.
25.(11分)如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P•从A开始沿AD边
向D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,•问t为何值时.
(1)四边形PQCD是平行四边形.(2)当t为何值时,四边形PQCD为等腰梯形.
第二学期八年级数学参考答案及评分标准
一.CACBD DDDAA
二.11. 45-≠x 12. 直角 13.甲 14. 0 15. 65 16. BE=FD 或A E ∥FC 或AF ∥EC 17. 4 18. 6.5或25.42三.19. 解:22x 12x 1)x 1x 1x 1
-+÷+--(=x 12x ]x 1(x+1)(x 1)-++-[(x+1)(x 1)-× =2(x 1)2x -+ =21x + ∵当x=-2010或x=2010时,2x 的值均为2010 ∴小明虽然把x 值抄错,但结果也是正确的.
20. 解:方程两边同时乘以42-x 得 4)2(2
-=+x x x 化简,得 2x=-6 解得 x=-3 检验:当x=-3时,42
-x 0≠, ∴x=-3是原方程的解 6分
21. 解:(1)设所求函数解析式为p=k s ,把(2.5,1000)代入解析式,得1000=k 2.5
解得k=2500 ∴所求函数解析式为p=2500s (s>0) (2)当s=0.5m 2时,p=5000(pa) 7分 22. 解:(1)这组数据的平均数没有实际意义,对商店经营也没有任何参考价值。

2分
(2)这组数据共有110个数据,中位数应是从小到大排列后第55个和第56个的
平均数这两个数据都是228,这组数据中228出现的次数最多,所以这组数据的中
位数、众数都是228。

5分
(3)商场总经理关心的是众数,众数是228,表明容积为228立升的冰箱的销量最大,
它能为商场带来较多的利润,因此,这种型号的冰箱要多进货,其他的型号则要少进货。

23. 解:连结AE ,则△ADE ≌△AFE ,所以AF=AD=10,DE=EF . 2分
在R t △ABF 中BF 2=AF 2—AB 2=102-82=36, ∴BF=6, CF=10-6=4. 5分
设CE=x ,则EF=DE=8-x ,在Rt △ECF 中,EF 2=CE 2+CF 2,即(8-x )2=x 2+16,故x=3
24. 解:(1)李明同学的解答过程中第③步不正确 应为:甲每分钟打字
300030006050
x ==(个)乙每分钟打字601248-=(个)答:甲每分钟打字为60个,乙每分钟打字为48个.(2)设乙每分钟打字x 个,则甲每分钟打字(12)x +个, 5分
根据题意得:3000240012x x =+
解得48x =.经检验48x =是原方程的解.甲每分钟打字12481260x +=+= 答:甲每分钟打字为60个,乙每分钟打字为48个
25. 解:(1)∵PD ∥CQ ,∴当PD=CQ 时,四边形PQCD 是平行四边形.
而PD=24-t ,CQ=3t ,∴24-t=3t ,解得t=6. 当t=6时,四边形PQCD 是平行四边形. 6分
(2)过点D 作DE ⊥BC ,则CE=BC-AD=2cm . 7分
当CQ-PD=4时,四边形PQCD 是等腰梯形. 9分
即3t-(24-t )=4.∴t=7. 11分
E。

相关文档
最新文档