2023年中考数学一轮专题练习 ——锐角三角函数(含解析)
2023年中考数学高频考点训练——锐角三角函数(有答案)

2023年中考数学高频考点训练——锐角三角函数一、综合题1.如图, AB 是O 的直径,点C 、G 为圆上的两点,当点C 是弧 BG 的中点时, CD 垂直直线AG ,垂足为D ,直线 DC 与 AB 的延长线相交于点P ,弦 CE 平分 ACB ∠ ,交 AB 于点F ,连接BE .(1)求证: DC 与 O 相切;(2)求证: PC PF = ; (3)若 1tan 3E =, 5BE =,求线段 PF 的长. 2.如图,AB 是⊙O 的直径,AC 交⊙O 于点D ,点E 时弧AD 的中点,BE 交AC 于点F ,BC =FC.(1)求证:BC 是⊙O 的切线; (2)若BF =3EF ,求tan⊙ACE 的值.3.如图,ABC 内接于,O D 是O 的直径 AB 的延长线上一点, DCB OAC ∠=∠ .过圆心 O作 BC 的平行线交 DC 的延长线于点 E .(1)求证: CD 是 O 的切线;(2)若 4,6CD CE == ,求O 的半径及 tan OCB ∠ 的值;4.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点D 是AC 的中点,连接OD ,交AC 于点E ,作BFCD ,交DO 的延长线于点F.(1)求证:四边形BCDF 是平行四边形. (2)若AC=8,连接BD ,tan⊙DBF=34,求直径AB 的长及四边形ABCD 的周长. 5.如图,已知 AB 是O 的直径,弦 CD AB ⊥ 于点 E , 42AC =, 2BC = .(1)求 sin ABC ∠ ; (2)求CD 的长.6.如图,点 O 在 ABC ∆ 的 BC 边上,O 经过点 A 、 C ,且与 BC 相交于点 D .点 E 是下半圆弧的中点,连接 AE 交 BC 于点 F ,已知 AB BF = .(1)求证: AB 是O 的切线;(2)若 3OC = , 1OF = ,求 cos B 的值.7.如图,在Rt ΔABC 中,9068C AC BC ∠=︒==,,,AD平分ABC 的外角BAM ∠,AD BD ⊥于点D ,过D 点作DE 平行BC 交AM 于点E.点P 在线段AB 上,点Q 在直线AC 上,且22CQ BP t ==,连接PQ ,作P 点关于直线DE 的对称点P ',连接PP P Q '',.(1)当P 在AB 中点时,t = ;连接DP ,则此时DP 与EC 位置关系为 (2)①求线段AD 的长:②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上,求点A 到对应点A '的距离;(3)如图,当PP Q '的一边与ABD 的AD 或BD 边平行时,求所有满足条件的t 的值.8.如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A(﹣3,0),B(1,0),与y 轴交于点C ,顶点为点D ,连接AC ,BC.(1)求抛物线的解析式;(2)在直线CD 上是否存在点P ,使⊙PBC =⊙BCO ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分线段MN 时,请直接写出点M 和点N 的坐标.9.如图,点F 是正方形ABCD 边AB 上一点,过F 作FG⊙BC ,交CD 于G ,连接FC ,H 是FC 的中点,过H 作EH⊙FC 交BD 于点E .(1)连接EF ,EA ,求证:EF =AE .(2)若BFk BA= , ①若CD =2, 13k = ,求HE 的长;②连接CE ,求tan⊙DCE 的值.(用含k 的代数式表示)10.如图,在 Rt ABC 中, 90,6,8ACB BC AC ∠=︒== ,D 是边AB 的中点,动点P 在线段BA 上且不与点A ,B ,D 重合,以PD 为边构造 Rt PDQ ,使 PDQ A ∠=∠ , 90DPQ ∠=︒ ,且点Q 与点C 在直线AB 同侧,设 BP x = ,PDQ 与 ABC 重叠部分图形的面积为S .(1)当点Q 在边BC 上时,求BP 的长; (2)当 7x ≤ 时,求S 关于x 的函数关系式.11.如图,在⊙ABC中,⊙ABC =90°,过点B 作BD⊙AC 于点D .(1)尺规作图,作边BC 的垂直平分线,交边AC 于点E . (2)若AD :BD =3:4,求sinC 的值.(3)已知BC =10,BD =6.若点P 为平面内任意一动点,且保持⊙BPC =90°,求线段AP 的最大值.12.【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.(1)【理解运用】如图1,对余四边形中,AB = 5,BC = 6,CD = 4,连接AC ,若AC = AB ,则cos⊙ABC= , sin⊙CAD= .(2)如图2,凸四边形中,AD = BD ,AD⊙BD ,当2CD 2 + CB 2 = CA 2时,判断四边形ABCD 是否为对余四边形,证明你的结论.(3)【拓展提升】在平面直角坐标中,A (-1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于⊙ABC 内部,⊙AEC = 90° + ⊙ABC.设AEBE= u ,点D 的纵坐标为t ,请在下方横线上直接写出u 与t 的函数表达,并注明t 的取值范围 .13.如图,在梯形ABCD 中,AD⊙BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF=5.AE 的延长线交边BC 于点G ,AF 交BD 于点N 、其延长线交BC 的延长线于点H .(1)求证:BG =CH ;(2)设AD =x ,⊙ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结FG ,当⊙HFG 与⊙ADN 相似时,求AD 的长.14.(1)【问题提出】如图1,在四边形ABCD 中,60A ∠=︒,90ABC ADC ∠=∠=︒,点E 为AB 延长线上一点,连接EC 并延长,交AD 的延长线于点F ,则BCE DCF ∠+∠的度数为 °;(2)【问题探究】如图2,在Rt⊙ABC 中,90ABC ∠=︒,点D 、E 在直线BC 上,连接AD 、AE ,若60DAE ∠=︒,6AB =,求⊙ADE 面积的最小值;(3)【问题解决】近日,教育部印发了《义务教育课程方案和课程标准(2022年版)》,此次修订中增加的跨学科主题学习活动,突破学科边界,鼓励教师开展跨学科教研,设计出主题鲜明、问题真实的跨学科学习活动.为此,某校欲将校园内一片三角形空地ABC (如图3所示)进行扩建后作为跨学科主题学习活动中心,在AB 的延长线上取一点D ,连接DC 并延长到点E ,连接AE ,已知AE BC ,40AB BC ==米,90ABC ∠=︒,为节约修建成本,需使修建后⊙ADE 的面积尽可能小,问⊙ADE 的面积是否存在最小值?若存在,求出其最小面积;若不存在,请说明理由.15.抛物线y =﹣x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且B (﹣1,0),C (0,3).(1)求抛物线的解析式;(2) 如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,且DD'=2CD ,点M 是平移后所得抛物线上位于D'左侧的一点,连结CN.当5D'N+CN 的值最小时16.在 Rt ABC 中, 90ACB ∠=︒ , 3AC = , 4BC = .将 Rt ABC 绕点B 顺时针旋转()060αα︒<<︒ 得到 Rt DEB ,直线DE , AC 交于点P.(1)如图1,当 BD BC ⊥ 时,连接BP. ①求BDP 的面积;②求 tan CBP ∠ 的值;(2)如图2,连接AD ,若F 为AD 中点,求证;C ,E ,F 三点共线.17.如图,抛物线与x 轴交于A (5,0),B ( 1- ,0),与y 轴的正半轴交于点C ,连接BC ,AC ,已知2sin 2BAC ∠=.(1)求抛物线的解析式;(2)直线 y kx = ( 0k > )交线段AC 于点M ,当以A 、O 、M 为顶点的三角形与⊙ABC 相似时,求k 的值,并求出此时点M 的坐标;(3)P 为第一象限内抛物线上一点,连接BP 交AC 于点Q ,请判断: PQQB是否有最大值,如有请求出这个最大值,如没有请说明理由.18.如图1,已知 Rt ABC ∆ 中, 90ACB ∠= , 2AC = , 23BC = ,它在平面直角坐标系中位置如图所示,点 ,A C 在 x 轴的负半轴上(点 C 在点 A 的右侧),顶点 B 在第二象限,将 ABC ∆ 沿AB 所在的直线翻折,点 C 落在点 D 位置(1)若点 C 坐标为 ()1,0- 时,求点 D 的坐标;(2)若点 B 和点 D 在同一个反比例函数的图象上,求点 C 坐标;(3)如图2,将四边形 BCAD 向左平移,平移后的四边形记作四边形 1111B C A D ,过点 1D 的反比例函数 (0)ky k x=≠ 的图象与 CB 的延长线交于点 E ,则在平移过程中,是否存在这样的 k ,使得以点 1,,E B D 为顶点的三角形是直角三角形且点 11,,D BE 在同一条直线上?若存在,求出 k 的值;若不存在,请说明理由答案解析部分1.【答案】(1)证明:CD AD ⊥,90D ∴∠=︒ ,∴⊙DAC+⊙DCA=90°, 点c 是弧 BG 的中点, ∴CG BC =DAC BAC ∴∠=∠ , OA OC = , OCA BAC ∴∠=∠ , OCA DAC ∴∠=∠ , //AD OC ∴ ,∴⊙D=⊙OCP=90°,OC 是圆O 的半径, DC ∴ 与O 相切,(2)证明:AB 是O 的直径,90ACB ∴∠=︒ ,90PCB ACD ∴∠+∠=︒ ,由(1)得: 90DAC DCA ∠+∠=︒ ,PCB DAC ∴∠=∠ , DAC BAC ∠=∠ , PCB BAC ∴∠=∠ , CE 平分 ACB ∠ , ACF BCF ∴∠=∠ ,∵⊙PFC=⊙BAC+⊙ACF ,⊙PCF=⊙PCB+⊙BCF ,PFC PCF ∴∠=∠ , PC PF ∴= ;(3)解:连接 AE ,CE 平分 ACB ∠ ,∴ AE BE = ,AE BE ∴= , AB 是O 的直径,90AEB ∴∠=︒ ,AEB ∴∆ 为等腰直角三角形,∵AB=210BE = ,∴OB=OC= 10∵1tan 3E =∴1tan 3BC CAB AC ∠== , ∵⊙PCB=⊙BAC ,⊙P=⊙P , ∴⊙PCB⊙⊙PAC , ∴13BC PB AC PC == , ∴ 设 PB x = , 3PC x = ,在 Rt OCP ∆ 中, 222OC PC OP += , ∴2221010(3))22x x +=+ , ∴10x =或x=0(舍去), ∴PC=310,∴PF=310.2.【答案】(1)证明:连接AE ,如图,∵AB 是⊙O 的直径, ∴⊙AEB =90°.∴⊙EAF+⊙AFE =⊙EAB+⊙ABE =90°. ∵点E 是弧AD 的中点, ∴AE DE = . ∴⊙EAD =⊙ABE. ∴⊙AFE+⊙ABE =90°. ∵⊙AFE =⊙BFC ,∴⊙ABE+⊙CFB =90°. ∵BC =FC , ∴⊙CFB =⊙CBF. ∴⊙CBF+⊙ABE =90°. ∴⊙ABC =90°, ∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线. (2)解:连接OE ,BD ,∵点E 是弧AD 的中点,∴OH⊙AD ,AH =HD = 12AD . ∵AB 是⊙O 的直径, ∴BD⊙AD.∴BD⊙OE. ∴EH EFBD BF = . ∵BF =3EF ,∴13EH BD = . 设EH =2a ,则BD =6a. ∵OE⊙BD ,OA =OB , ∴OF =12BD =3a. ∴OA =OE =OH+HE =5a. ∴AB =2OA =10a. ∴AD =228AB BD a -= .∴HD =12AD =4a. ∵⊙ABC =90°,BD⊙AC , ∴⊙ABD⊙⊙BCD. ∴AD BDBD CD= . ∴CD = 292BD a AD = .∴CH =HD+CD =172a . 在Rt⊙EHC 中,tan⊙ACE = 2417172EH a CH a ==.3.【答案】(1)证明:如图,,OA OC =OAC OCA ∴∠=∠ ,DCB OAC ∠=∠ , OCA DCB ∴∠=∠ ,AB 是O 的直径,90ACB ∴∠=︒ ,90OCA OCB ∴∠+∠=︒ ,90DCB OCB ∴∠+∠=︒ ,即 90OCD ∠=︒ , OC DC ∴⊥ ,又OC 是 O 的半径,CD ∴ 是O 的切线.(2)解:,BC OEBD CD OB CE ∴= ,即 4263BD OB == , ∴设 2BD x = ,则 3,5OB OC x OD OB BD x ===+= ,,OC DC ⊥222OC CD OD ∴+=222(3)4(5)x x ∴+= ,解得, 1x = ,33OC x ∴== .即O 的半径为3,,BC OEOCB EOC ∴∠=∠ ,在 Rt OCE 中, 6tan 23EC EOC OC ∠=== , tan tan 2OCB EOC ∴∠=∠=4.【答案】(1)证明:∵AB 是⊙O 的直径,∴⊙C=90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD=DC , ∴CA⊙DF ,AE=EC , ∴⊙AEO=90°,∴BC DF , ∵BF CD ,∴四边形BCDE 是平行四边形; (2)∵BC DF , ∴⊙DBF=⊙CDB ,又∵根据圆周角定理有⊙CDB=⊙BAC , ∴⊙DBF=⊙BAC , 即tan⊙BAC=34, ∵AC=8, ∴CB=6,则在Rt⊙ACB 中,利用勾股定理可得AB=10,即AO=5=OD , ∵AE=EC=12AC , ∴AE=EC=4,在Rt⊙AEO 中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt⊙AED 中,利用勾股定理,得55 ∴四边形ABCD 的周长5555.【答案】(1)解:∵AB 是O 的直径, 42AC =, 2BC = ,∴90ACB ∠=︒ , 22236AB AC BC =+= , ∴6AB = , 2sin 3ABC ∠=(2)解:∵CD AB ⊥ ,∴CE DE = , 由三角形的面积公式得:1122AC BC AB CE ⨯⨯=⨯⨯ , ∴423CE =, ∴822CD CE ==. 6.【答案】(1)证明:连接 OA 、 OE ,∵点 E 是下半圆弧的中点, OE 过 O , ∴OE DC ⊥ , ∴90FOE ∠=︒ , ∴90E OFE ∠+∠=︒ , ∵OA OE = , AB BF = ,∴BAF BFA ∠=∠ , E OAE ∠=∠ , ∵AFB OFE ∠=∠ , ∴90OAE BAF ∠+∠=︒ , 即 OA AB ⊥ , ∵OA 为半径, ∴AB 是O 的切线(2)解:设 AB x = ,则 BF x = , 1OB x =+ , ∵3OA OC == ,由勾股定理得: 222OB AB OA =+ , ∴()22213x x +=+ , 解得: 4x = ,∴4cos 5AB B OB == 7.【答案】(1)5;平行(2)解:①P 在AB 中点时,连接DP 并延长交BC 于点F ,由(1):DP CE ,∴1BF BPFC AP==, ∴142BF FC BC ===,∴132PF AC ==,11822DF DP PF AB AC =+=+=,∵90DEA BCE PDE ∠=∠=∠=︒, ∴四边形DECF 是矩形, ∴84CE DF DE CF ====,, ∴2AE CE AC =-=, ∴22222425AD AE DE =+=+=②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上, ∴AA '与DD '垂直平分,两条线段的交点O 即为旋转中心,如图所示:则:OD AB ⊥,∵902510ADB AD AB ∠=︒==,,, ∴()2222102545BD AB AD =-=-=∵1122ABD S AD BD AB DO ∆=⋅=⋅, ∴254510DO =, ∴4OD =, ∴222AO AD OD =-=,∴24AA OA '==;(3)解:当P Q AD '时;如图:延长P P '交BC 于点G ,过点P P ',分别作PH AC P T CQ '⊥⊥,,垂足为:H T ,,则:四边形CGP T '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PG BP sin ABC t BG BP cos ABC t =⋅∠==⋅∠=,,∴34855CH PG t P T CG BC BG t ====-=-',,∴385HE CE CH t =-=-,∵P ,P '关于直线DE 对称 ∴385ET EH t ==-,∴3138821655t QT CT CQ CE ET CQ t t =-=+-=+--=-,∵P Q AD ', ∴P QT DAE ∠=∠',∴2DEtan P QT tan DAE AE∠='∠==, ∴2P T TQ '=,即:413821655t t ⎛⎫-=- ⎪⎝⎭, 解得:6011t =; 当PQ BD 时,延长BD 交CQ 于点K ,∵PQ BD ,∴APQ ABD AQP AKB ∠=∠∠=∠,,∵90ADB ADK DAB KAD ∠=∠=︒∠=∠,(角平分线), ∴ABD AKB ∠=∠, ∴APQ AQP ∠=∠, ∴AP AQ =,∵1026AP AB BP t AQ CQ AC t =-=-=-=-,, ∴1026t t -=-, 解得:163t =; 当P Q BD '时,如图:延长P P '交BC 于点G ,过点P P ',分别作PO AC P R CQ '⊥⊥,,垂足为:OR,,延长BD ,交CM 于点S ,则:四边形CNP R '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PN BP sin ABC t BN BP cos ABC t =⋅∠==⋅∠=,,∴34855CO PN t P R CN BC BN t ====-=-',,∴385OE CE CO t =-=-,∵P ,P '关于直线DE 对称 ∴385ER OE t ==-,∴3132881655t QR CQ CR CQ CE ER t t =-=-+=--+=-; ∵AD BD ⊥,90AED ∠=︒,∴90ADE EDS ADE DAE ∠+∠=∠+∠=︒ ∴EDS DAE ∠=∠, ∵P Q BD ',∴QP R EDS DAE ∠=∠=∠', ∴2DEtan QP R tan DAE AE∠='∠==, ∴2QR P R =', 即:413281655t t ⎛⎫-=- ⎪⎝⎭,解得:8011t =; 综上:当PP Q '的一边与ABD 的AD 或BD 边平行时,6011t =或163t =或8011t =. 8.【答案】(1)解:根据二次函数交点式为 ()()()120y a x x x x a =--≠ ,抛物线过A(﹣3,0),B(1,0)两点,∴设 ()()2331y ax bx a x x =+-=+- ,∵x=0时,y =ax 2+bx ﹣3=-3,∴将 ()0,3- 代入 ()()31y a x x =+- ∴﹣3a =﹣3, ∴a =1,故抛物线的表达式为:y =x 2+2x ﹣3.(2)解:由抛物线的表达式知,点C 、D 的坐标分别为(0,﹣3)、(﹣1,﹣4), 由点C 、D 的坐标知,直线CD 的表达式为:y =x ﹣3①,1tan 3BCO ∠= ,则 cos 10BCO ∠= ,当点P (P′)在点C 的右侧时,如图所示:∵⊙P'BC =⊙BCO ,故P′B⊙y 轴,则点P′(1,﹣2), 当点P 在点C 的左侧时,设直线PB 交y 轴于点H ,过点H 作HN⊙BC 于点N , ∵⊙P'BC =⊙BCO , ∴⊙BCH 为等腰三角形,则 222cos 23110BC CH BCO CH =⋅∠=⨯=+, 解得: 53CH =,则 433OH CH =-= ,故点 4(0,)3H = , 由点B 、H 的坐标得,直线BH的表达式为: 4433y x =-②,联立①②并解得:58xy=-⎧⎨=-⎩,故点P的坐标为(﹣5,﹣8),综上所述,满足条件的点P坐标为(1,﹣2)或(﹣5,﹣8).(3)M(﹣1,2﹣2),N(﹣1﹣2,﹣2)或M'(﹣1,﹣2﹣2),N'(﹣1+ 2,﹣2) 9.【答案】(1)证明:如图,连接EF,EA,EC,∵ EH⊙FC,H是FC的中点,∴EF=EC,∵AD=CD,⊙ADE=⊙CDE=45°,DE=DE,∴⊙ADE⊙⊙CDE,∴AE=EC,∴EF=AE;(2)解:如图,①∵CD=2,13 BFBA=,∴BF=23,AF=43,∴FC=22210 3BC BF+=,过点E作EM⊙AB于点M,∵EF=AE,∴EM垂直平分FA,∴FM=AM=23,∴BM=ME=43,∴2253FM ME+=,∵H是FC的中点,∴10,∴2210EF FH-=②设AB=2a,∵BFkBA=,∴BF=2ak,∴FM=MA=a-ka,BM=a+ak=ME,∵⊙ADE⊙⊙CDE,∴⊙DCE=⊙DAE=⊙FEM,∴tan⊙DCE=tan⊙FEM=11FM kME k-=+. 10.【答案】(1)解:在Rt ABC中,90,6,8 ACB BC AC∠=︒==,22226810 AB AC BC∴+=+=.4tan3ACBBC==,3tan4BCAAC==, ∵D是边AB的中点,∴5BD=如图,当点Q落在BC上时,BP x = ,4tan 3PQ BP B x ==, ∵PDQ A ∠=∠ , 90DPQ ∠=︒ ,16tan 9QP PD x A == , 5BD PD BP =+= ,1659xx += , 解得, 95x = ,95BP ∴= ;(2)解:如图,当 905x < 时,设PQ 、DQ 与BC 交于点M 、N ,∵D 是边AB 的中点,∴5BD = , 4ND = , 3BN = ,4tan 3PM BP B x == , 211423462233BNDPBMS SSx x x =-=⨯⨯-⨯=- ; 当955x << 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 当 57x <≤ 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 故 PDQ 与 ABC 重叠部分图形的面积关系式为: 2222960353157595848531575(57)848x x S x x x x x x ⎧⎛⎫-< ⎪⎪⎝⎭⎪⎪⎛⎫=-+<<⎨ ⎪⎝⎭⎪⎪-+<⎪⎩ . 11.【答案】(1)解:作图如下:(2)解:∵⊙ABC=⊙BDC=90°, ∴⊙ABD +⊙CBD=90°,⊙CBD +⊙C=90°,∴⊙ABD=⊙C ,在Rt⊙ABD 中,AD :BD =3:4, ∴AB⊙AD=3⊙5,∴sinC=sin⊙ABD=35AD AB =. (3)解:如图,点P 在BC 为直径的圆上,O 为圆心,当A 、P 、O 三点共线时,AP 最大,∵BC =10,BD =6,∴CD=8,∵⊙ABD⊙⊙BCD ,∴2BD AD CD =⋅,26=8AD ,解得9=2AD , 在Rt⊙ABD 中,AB=152,∵BC=10, ∴BO=OP=5, 在Rt⊙ABO 中,22513AO AB OB =+=, ∴AP=AO +513, 故答案为:5132.. 12.【答案】(1)35;1225(2)解:如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM⊙DC ,使得DM =DC ,连接CM. ∵四边形ABCD 中,AD =BD ,AD⊙BD ,∴⊙DAB =⊙DBA =45°, ∵⊙DCM =⊙DMC =45°, ∴⊙CDM =⊙ADB =90°, ∴⊙ADC =⊙BDM , ∵AD =DB ,CD =DM , ∴⊙ADC⊙⊙BDM (SAS ), ∴AC =BM ,∵2CD 2+CB 2=CA 2,CM 2=DM 2+CD 2=2CD 2,∴CM 2+CB 2=BM 2, ∴⊙BCM =90°,∴⊙DCB =45°, ∴⊙DAB+⊙DCB =90°, ∴四边形ABCD 是对余四边形. (3)4)2tu t =<< 13.【答案】(1)解:∵AD⊙BC ,∴AD DE BG EB = , AD DFCH FC= . ∵DB =DC =15,DE =DF =5,∴12DE DF EB FC == , ∴AD ADBG CH= . ∴BG =CH .(2)解:过点D 作DP⊙BC ,过点N 作NQ⊙AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP =CP =9,DP =12.∵12AD DE BG EB == , ∴BG =CH =2x , ∴BH =18+2x . ∵AD⊙BC ,∴AD DNBH NB = , ∴182x DNx NB=+ , ∴18215xDN DNx x NB DN ==+++ ,∴56xDNx=+.∵AD⊙BC,∴⊙ADN=⊙DBC,∴sin⊙ADN=sin⊙DBC,∴NQ PD DN BD=,∴46xNQx=+.∴211422266x xy AD NQ xx x=⋅=⋅=++(0<x≤9).(3)解:∵AD⊙BC,∴⊙DAN=⊙FHG.(i)当⊙ADN=⊙FGH时,∵⊙ADN=⊙DBC,∴⊙DBC=⊙FGH,∴BD⊙FG,∴BG DF BC DC=,∴5 1815 BG=,∴BG=6,∴AD=3.(ii)当⊙ADN=⊙GFH时,∵⊙ADN=⊙DBC=⊙DCB,又∵⊙AND=⊙FGH,∴⊙ADN⊙⊙FCG.∴AD FC DN CG=,∴5(182)106xx xx⋅-=⨯+,整理得x2﹣3x﹣29=0,解得3552x+=,或3552x-=(舍去).综上所述,当⊙HFG与⊙ADN相似时,AD的长为3或3552x+=.14.【答案】(1)60(2)解:S⊙ADE=12DE·AB=3DE,∴当DE取最小值时,⊙ADE面积取最小值.作⊙ADE的外接圆,圆心为O,连接OD、OE、OA,过O作OH⊙DE于H,则⊙DOE=2⊙DAE=120°,由OD=OE知,⊙ODH=30°,∴OD=2OH,∵OA+OH≥AB,∴OA+12OA≥6,即OA≥4,OH≥2,由垂径定理得:3OH≥3此时,A、O、H共线,AD=AE,∴⊙ADE面积的最小值为:3×433(3)解:过C作CH⊙AE于H,如图所示,设BD=x,EF=y,∵⊙ABC=90°,AE⊙BC,∴四边形ABCF 为矩形, ∵AB=BC=40∴四边形ABCF 为正方形, 由tan⊙E=tan⊙BCD 知,CF BDEF BC=, 即4040x y =, ∴y=1600x, 即xy=1600, ∵22220x x y y x y-+=≥,∴2x y xy +≥,当x=y 时取等号,即x+y 的最小值为80,又⊙ADE 的面积=正方形ABCF 面积+三角形BCD 面积+三角形CEF 面积, 即⊙ADE 的面积=1600+20(x+y )≥1600+20×80=3200, 综上所述,⊙ADE 的面积的最小值为3200 m 2.15.【答案】(1)解:∵y =﹣x 2+bx+c 经过B (﹣1,6),3),∴340c b c =⎧⎨-++=⎩ , 解得 25b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+7(2)解:如图1中,过点B 作BT⊙y 轴交AC 于T.设P(m ,﹣m 2+2m+3),对于抛物线y =﹣x 2+5x+3,令y =0,∴A(2,0), ∵C(0,8),∴直线AC 的解析式为y =﹣x+3, ∵B(﹣1,2), ∴T(﹣1,4), ∴BT =3, ∵PQ⊙OC , ∴Q(m ,﹣m+3),∴PQ =﹣m 2+2m+3﹣(﹣m+3)=﹣m 3+3m , ∵PQ⊙BT , ∴PQ BT = PE BC = 15, ∴﹣m 2+3m =4,解得m =1或2,∴P(4,4)或2.(3)解:如图8中,连接AD ,过点C 作CT⊙AD 于T.∵抛物线y=﹣x2+2x+6=﹣(x﹣1)2+3,∴顶点D(1,4),∵C(8,3),∴直线CD的解析式为y=x+3,CD=7,∵DD′=2CD,∵DD′=2 4,CD′=3 2,∴D′(4,6),∵A(3,2),∴AD′⊙x轴,∴OD′=22OA D A+'=2256+=3 5,∴sin⊙OD′A=OAOD'=45,∵CT⊙AD′,∴CT=3,∵NJ⊙AD′,∴NJ=ND′•sin⊙OD′A=7D′N,5D'N+CN=CN+NJ,∵CN+NJ≥CT,∴55D'N+CN≥7,5D'N+CN的最小值为8.16.【答案】(1)解:①过点P作PH BD⊥于H.BD BC⊥,PH BD⊥,90CBH PHB C∴∠=∠=∠=︒,∴四边形BCPH 是矩形,4PH BC∴==,在Rt ACB中,2222345AB AC BC++=,由旋转的旋转可知,5BD BA==,11541022PBDS BD PH∆∴=⋅⋅=⨯⨯=.②由旋转的性质可知,4BE BC==,12PBDS PD BE∆=⋅⋅,2054PD∴==,90PHD∠=︒,2222543DH PD PH∴=-=-=,2PC BH∴==,90C∠=︒,21tan42PCPBCBC∴∠===.(2)证明:如图2中,连接BF,取BD的中点T,连接FT,ET.BC BE = , BA BD = ,BCE BEC ∴∠=∠ , BAD BDA ∠=∠ ,BDE ∆ 是由 BAC ∆ 旋转得到, BCE ABD ∴∠=∠ , BEC ADB ∴∠=∠ ,BA BD = , AF DF = , BF AD ∴⊥ , 90AFD ∴∠=︒ ,90BED AFD ∠=∠=︒ , DT TB = ,12ET BD ∴=, 12FT BD = , ET FT DT TB ∴=== , E ∴ ,F ,D ,B 四点共圆, 1DBF ∴∠=∠ ,90DBF BDF ∠+∠=︒ , 190BEC ∴∠+∠=︒ ,1180BEC BED ∴∠+∠+∠=︒ , C ∴ 、E 、F 三点共线.17.【答案】(1)解:由 ()50A ,可知 5OA = , 在Rt⊙AOC 中, 2sin 2BAC ∠= , ∴45BAC ∠=︒ ,∴5OA OC == ,即点C (0,5),由题意可设 ()()51y a x x =-+ ,把点C 代入得: 55a -= , 解得: 1a =- ,∴抛物线解析式为 ()()25145y x x x x =--+=-++ ;(2)解:由(1)可得:C (0,5), ()50A ,,设直线AC 的解析式为 1y k x b =+ ,把点A 、C 坐标代入得:{b =55k 1+b =0 ,解得: {b =5k 1=−1, ∴直线AC 的解析式为 5y x =-+ ,∵直线 y kx = ( 0k > )交线段AC 于点M ,则设 ()5M m m -+,, ∴5m k m-+=, 由(1)可知 5OA OC == , 1OB = , ∴()()22055052AC =-+-=, 6AB = ,由题意可分:①当 AOM ABC ∽ 时,∴56AO AM AB AC == , ∴525266AM AC ==, ∴由两点距离公式可得: ()()226255518m m -+-= , 解得: 1255566m m ==, , ∵05m ≤≤ , ∴56m =, ∴55525655666M k -+⎛⎫== ⎪⎝⎭,, ; ②当 AOM ACB ∽ 时,∴2252AO AM AC AB ===,∴232AM AB ==,∴由两点距离公式可得: ()()225518m m -+-= , 解得: 1228m m ==, (不符合题意,舍去),∴()2532322M k -+==,, ; (3)解:过点B 作BF⊙x 轴,交AC 的延长线于点F ,过点P 作PD⊙x 轴于点D ,交AC 于点H ,如图所示:∴BF⊙PH ,∴BQF PQH ∽ ,∴PQ PHBQ BF= , 由(2)知,直线AC 的解析式为 5y x =-+ ,点 ()10B -, , ∴点 ()16F -, ,即 6BF = , 设点 ()245P a a a -++,,则有 ()5H a a -+, , ∴()224555PH a a a a a =-++--+=-+ ,∴225152566224PQ a a a BQ -+⎛⎫==--+⎪⎝⎭ , ∵106-< , ∴当 52a =时, PQ BQ 的值最大,最大值为 2524.18.【答案】(1)解:如图,过点 D 作 DM x ⊥ 轴于点 M∵90ACB ∠=︒ , ∴3tan 32BC CAB AC ∠===∴60CAB ∠=由题意可知 2DA AC == , 60DAB CAB ∠=∠=︒ . ∴180180606060DAM DAB CAB ∠=︒-∠-∠=︒-︒-︒=︒ . ∴906030ADM ∠=︒-︒=︒ 在 Rt ADM ∆ 中, 2DA = , ∴1AM = , 3DM =.∵点 C 坐标为 (10)-,, ∴1214OM OC AC AM =++=++= . ∴点 D 的坐标是 (3)-(2)解:设点 C 坐标为 (,0)a ( 0a < ),则点 B 的坐标是 (,3)a , 由(1)可知:点 D 的坐标是 (3)a - ∵点 B 和点 D 在同一个反比例函数的图象上, ∴33(3)a a =- .解得 3a =- . ∴点 C 坐标为 (3,0)-(3)解:存在这样的 k ,使得以点 E, 1B , D 为顶点的三角形是直角三角形①当 190EDB ∠= 时.如图所示,连接 ED , 1B B , 1B D , 1B B 与 ED 相交于点 N .则 190EBN NDB ∠=∠=︒ , 1BNE DNB ∠=∠ , 130DBN NB E ∠=∠= .∴BNE ∆ ⊙ 1DNB ∆∴1BN ENDN B N= ∴1BN DNEN B N= 又∵1BND ENB ∠=∠ , ∴BND ∆ ⊙ 1ENB ∆ .∴130NEB NBD ∠=∠= , 130NDB NB E ∠=∠= , ∴30BED BDE ∠=∠=︒ . ∴23BE BD == , 16tan 30BEBB ==设 (43)E m , ( 0m < ),则 1(3)D m - , ∵E , 1D 在同一反比例函数图象上, ∴433(9)m m =- .解得: 3m =- . ∴(343)E -,∴343123k =-⨯=-②当 190EB D ∠= 时.如图所示,连接 ED , 1B B , 1B D ,∵1//BD ED ,∴1118090BDB EB D ∠=︒-∠=︒ .在 1Rt BDB ∆ 中,∵130DBB ∠=︒ , 3BD =, ∴14cos30BDBB == .在 1Rt EBB ∆ 中, ∵130BB E ∠=︒ ,∴143tan 30EB BB =︒=. ∴1033EC BC EB =+=设 3(,)3E m ( 0m < ),则 1(13)D m - ∵E , 1D 在同一反比例函数图象上,1033(7)m=-.解得:3m=-,∴103 (3,3 E-∴3333k=-⨯=-21/ 21。
2023年浙江省中考数学第一轮复习卷:锐角三角函数(含解析)

2023年浙江省中考数学第一轮复习卷:15锐角三角函数一.选择题(共13小题)1.(2022•椒江区校级二模)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形顶点上,则图中∠ACB 的正切值为( )A .23B .13C .√22D .√10102.(2022•鹿城区校级模拟)某滑梯示意图及部分数据如图所示.若AE =1m ,则DF 的长为( )A .tanαtanβB .tanβtanαC .sinβsinαD .sinαsinβ3.(2022•鹿城区校级二模)如图,梯子AB =AC =l ,∠ACB =α,两梯脚之间的距离BC 的长为d .则d 与l 的关系式为( )A .d =l •sin αB .d =2l •cos αC .d =2l •sin αD .d =l •cos α4.(2022•婺城区模拟)如图,小华在课外时间利用仪器测量红旗的高度,从点A 处测得旗杆顶部B 的仰角为α,并测得到旗杆的距离AC 为m 米,若AD 为h 米,则红旗的高度BE为()A.(m tanα+h)米B.(mtana+h)米C.m tanαD.mtana米5.(2022•景宁县模拟)如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB 于点D,下列用线段比表示tanα的值,错误的是()A.CDBD B.ACBCC.CDACD.ADCD6.(2022•浦江县模拟)某停车场入口的栏杆如图所示,栏杆从水平位置AB绕点O旋转A′到A′B′的位置,已知OA=a米,若栏杆的旋转角∠AOA′=α,则栏杆最外点A升高的高度为()A.a tanα米B.a cosα米C.asina米D.a sinα米7.(2022•鹿城区校级三模)铁路道口的栏杆如图.已知栏杆长为3米,当栏杆末端从水平位置上升到点C处时,栏杆前端从水平位置下降到点A处,下降的垂直距离AD为0.5米(栏杆的粗细忽略不计),上升前后栏杆的夹角为α,则栏杆末端上升的垂直距离CE 的长为()A .(3tanα−0.5)米B .(3sinα−0.5)米C .(3tan α﹣0.5)米D .(3sin α﹣0.5)米8.(2022•温州校级模拟)为了疫情防控工作的需要,某学校在学校门口的大门上方安装了一个人体体外测温摄像头,摄像头到地面的距离DE =2.7米,小明身高BF =1.5米,他在点A 测得点D 的仰角是在点B 测得点D 仰角的2倍,已知小明在点B 测得的仰角是a ,则体温监测有效识别区域AB 的长为( )米.A .65tan α−65tan2αB .65tanα−65tan2α C .65tan2α−65tanα D .56tanα−56tan2α9.(2022•西湖区模拟)如图,边长为1的小正方形网格中,点A 、B 、C 、E 在格点上,连接AE 、BC ,点D 在BC 上且满足AD ⊥BC ,则∠AED 的正切值是( )A .12B .2C .√52D .√5510.(2022•杭州模拟)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =2,∠BOC =α,则OA 2的值为( )A.4tan2α−4B.sin2α﹣4C.4sin2α−4D.tan2α﹣411.(2022•乐清市一模)如图,一只正方体箱子沿着斜面CG向上运动,∠C=α,箱高AB =1米,当BC=2米时,点A离地面CE的距离是()米.A.1cosα+2sinαB.1cosα+12sinαC.cosα+2sinαD.2cosα+sinα12.(2022•洞头区模拟)如图1是放置在水平地面上的落地式话筒架.图2是其示意图,主杆AB垂直于地面,斜杆CD固定在主杆的点A处,若∠CAB=α,AB=120cm,AD=40cm,则话筒夹点D离地面的高度DE为()cmA.120+40sinαB.120+40cosαC.120+40sinαD.120+40cosα13.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC =α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+3sinα)m D.(4+3tanα)m二.填空题(共7小题)14.(2022•婺城区校级模拟)金华新金婺大桥是华东第一的独塔斜拉桥,如图1是新金婺大桥的效果图.2022年4月13日开始主塔吊装作业.如图2,我们把吊装过程抽象成如下数学问题:线段OP为主塔,在离塔顶10米处有一个固定点Q(PQ=10米).在东西各拉一根钢索QN和QM,已知MO等于214米.吊装时,通过钢索MQ牵拉,主塔OP由平躺桥面的位置,绕点O旋转到与桥面垂直的位置.中午休息时∠PON=60°,此时一名工作人员在离M6.4米的B处,在位于B点正上方的钢索上A点处挂彩旗.AB正好是他的身高1.6米.(1)主塔OP的高度为米,(精确到整数米)(2)吊装过程中,钢索QN也始终处于拉直状态,因受场地限制和安全需要,QN与水平桥面的最大张角在37°到53°之间(即37°≤∠QNM≤53°),ON的取值范围是.(注:tan37°≈0.75,√3≈1.73).15.(2022•丽水模拟)如图,图1是图2推窗的左视图,AF为窗的一边,窗框边AB=1米,EF是可移动的支架,点C是AB的中点,点E可以在线段BC上移动.若AF=2EF=1米.(1)当E与B重合时,则∠AFE=.(2)当E从点C到点B的移动过程中,点F移动的路径长为米.(结果保留π,参考数据:若sinα=0.25,则α取14°)16.(2022•鹿城区校级三模)图1是一款摆臂遮阳蓬的实物图,图2是其侧面示意图,点A,O为墙壁上的固定点,摆臂OB绕点O旋转过程中,遮阳蓬AB可自由伸缩,蓬面始终保持平整.如图2,∠AOB=90°,OA=OB=1.5米,光线l与水平地面的夹角约为tanα=3,此时身高为1米的小朋友(MN=1米)站在遮阳蓬下距离墙角1.2米(QN=1.2米)处,刚好不被阳光照射到,此时小朋友的头顶M距离遮阳蓬的竖直高度(MP)为米;同一时刻下,旋转摆臂OB,点B的对应点B'恰好位于小朋友头顶M的正上方,当小朋友后退至刚好不被阳光照射到时,其头顶距离遮阳蓬的竖直高度为米.17.(2022•鹿城区二模)小郑在一次拼图游戏中,发现了一个很神奇的现象:(1)他先用图形①②③④拼出矩形ABCD.(2)接着拿出图形⑤.(3)通过平移的方法,用①②③④⑤拼出了矩形ABMN.已知AE:EO=2:3,图形④的面积为15,则增加的图形⑤的面积为:,当CO=31 2,EH=4时,tan∠BAO=.18.(2022•义乌市模拟)图1是某折叠式躺椅的实物图,图2是靠背垂直地面时的侧面展开图,此时四边形ABCD 是矩形,AB =20cm ,AD =30√5cm ,DE =60cm ,BF =30cm .点H 在BC 上,椅子的支撑杆AF 、BG 、CE 分别绕B 、H 、D 转动并带动AI 转动,支撑杆LK 、JM 不动.躺椅在转动时:(1)若直线EF 过点J ,当∠ADE =120°时,△AFJ 的面积是 cm 2.(2)若12<tan ∠EDI <2,EF 与地面的夹角为α,则tan α的取值范围是 .19.(2022•衢州一模)三折伞是我们生活中常用的一种伞,它的骨架是一个“移动副”和多个“转动副”组成的连杆机构,如图1是三折伞一条骨架的结构图,当“移动副”(标号1)沿着伞柄移动时,折伞的每条骨架都可以绕“转动副”(标号2﹣9)转动;图2是三折伞一条骨架的示意图,其中四边形CDEF 和四边形DGMN 都是平行四边形,AC =BC =13cm ,DE =2cm ,DN =1cm .(1)若关闭折伞后,点A 、E 、H 三点重合,点B 与点M 重合,则BN = cm .(2)在(1)的条件下,折伞完全撑开时,∠BAC =75°,则点H 到伞柄AB 距离是 cm .(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,结果精确到0.1cm )20.(2022•金华)图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B′处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8√3m,在点A观测点F的仰角为45°.(1)点F的高度EF为m.(2)设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是.三.解答题(共11小题)21.(2022•宁波模拟)21、由于发生山体滑坡灾害,武警救援队火速赶往灾区救援,探测出某建筑物废墟下方点c处有生命迹象.在废墟一侧地面上探测点A,B相距2m,探测线与该地面的夹角分别是30°和60°(如图所示),试确定生命所在点C的深度.(参考数据:√2≈1.414,√3≈1.732,结果精确到0.1米)22.(2022•婺城区模拟)大跳台滑雪比赛的某段赛道如图所示,中国选手谷爱凌从离水平地面100米高的A点出发(AB=100米),沿俯角为30°的方向先滑行一定距离到达D点,然后再沿俯角为60°的方向滑行到地面的C处,求:(1)若AD=140米,则她滑行的水平距离BC为多少米?(2)若她滑行的两段路线AD与CD的长度比为4:√3,求路线AD的长.23.(2022•北仑区校级三模)图1是淘宝上常见的“懒人桌”,其主体由一张桌面以及两根长度相等的支架组成,支架可以通过旋转收拢或打开,图2是其打开示意图,经操作发现,当∠ADC=∠BCD≥90°时,可稳定放置在水平地面上,经测量,AD=BC=30cm,CD=40cm.(1)当其完全打开且置于水平地面上时,测得∠ADC=140°,求AB距离;(2)在(1)的基础上,若要在该桌上办公,已知眼睛与桌面的垂直距离以30cm为佳,实际办公时,眼睛与桌面的垂直距离为34.8cm,若保持身体不动,通过旋转支架AD以及BC抬高桌面,则A点应向内移动多少厘米,才能达到最佳距离?(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)24.(2022•嘉兴一模)图1是小明家电动单人沙发的实物图,图2是该沙发主要功能介绍,其侧面示意图如图3所示.沙发通过开关控制,靠背AB和脚托CD可分别绕点B,C旋转调整角度.“n°某某”模式时,表示∠ABC=n°,如“140°看电视”模式时∠ABC =140°.已知沙发靠背AB长为50cm,坐深BC长为54cm,BC与地面水平线平行,脚托CD长为40cm,∠DCD'=∠ABC﹣80°,初始状态时CD⊥BC.(1)求“125°阅读”模式下∠DCD'的度数.(2)求当该沙发从初始位置调至“125°阅读”模式时,点D运动的路径长.(3)小明将该沙发调至“150°听音乐”模式时,求点A,D′之间的水平距离(精确到个位).(参考数据:√3≈ 1.7,sin70°≈0.9,cos70°≈0.3)25.(2022•嘉兴二模)如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)26.(2022•金东区三模)如图,一个书架上放着8个完全一样的长方体档案盒,其中左边7个档案盒紧贴书架内侧竖放,右边一个档案盒自然向左斜放,档案盒的顶点D在书架底部,顶点F靠在书架右侧,顶点C靠在档案盒上,若书架内侧长为60cm,∠CDE=53°,档案盒长度AB=35cm.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)(1)求点C到书架底部距离CE的长度;(2)求ED的长度;(3)求出该书架中最多能放几个这样的档案盒.27.(2022•奉化区二模)图1是某种手机支架在水平桌面上放置的实物图,图2是其侧面的示意图,其中支杆AB=BC=20cm,可绕支点C,B调节角度,DE为手机的支撑面,DE =18cm,支点A为DE的中点,且DE⊥AB.(1)若支杆BC与桌面的夹角∠BCM=70°,求支点B到桌面的距离;(2)在(1)的条件下,若支杆BC与AB的夹角∠ABC=110°,求支撑面下端E到桌面的距离.(结果精确到1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.78,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)28.(2022•台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2.梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)29.(2022•绍兴)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即∠ABC )为37°,夏至正午太阳高度角(即∠ADC )为84°,圭面上冬至线与夏至线之间的距离(即DB 的长)为4米.(1)求∠BAD 的度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192) 30.(2022•绍兴)(1)计算:6tan30°+(π+1)0−√12. (2)解方程组:{2x −y =4x +y =2.31.(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD =BE =10cm ,CD =CE =5cm ,AD ⊥CD ,BE ⊥CE ,∠DCE =40°.(1)连结DE ,求线段DE 的长. (2)求点A ,B 之间的距离.(结果精确到0.1cm .参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)2023年浙江省中考数学第一轮复习卷:15锐角三角函数参考答案与试题解析一.选择题(共13小题)1.(2022•椒江区校级二模)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形顶点上,则图中∠ACB 的正切值为( )A .23B .13C .√22D .√1010【解答】解:由勾股定理 可求出:BC =2√2,AC =2√5,DF =√10,DE =√2, ∴FD AC =√22FE BC =√22,ED AB =√22, ∴FD AC=ED AB=EF BC,∴△FDE ∽△CAB , ∴∠DFE =∠ACB , ∴tan ∠DFE =tan ∠ACB =13, 故选:B .2.(2022•鹿城区校级模拟)某滑梯示意图及部分数据如图所示.若AE =1m ,则DF 的长为( )A .tanαtanβB .tanβtanαC .sinβsinαD .sinαsinβ【解答】解:∵tanα=BEAE ,AE =1m , ∴BE =tan α,∵BE=CF,∴BE=CF=tanα,∴tanβ=CF DF,∴DF=CFtanβ=tanαtanβ.故选:A.3.(2022•鹿城区校级二模)如图,梯子AB=AC=l,∠ACB=α,两梯脚之间的距离BC的长为d.则d与l的关系式为()A.d=l•sinαB.d=2l•cosαC.d=2l•sinαD.d=l•cosα【解答】解:作AD⊥BC于点D,∵AB=AC=l,BC=d,∴CD=12d,∵∠ACB=α,cos∠ACD=CD AC,∴cosα=12d l,∴d=2l cosα,故选:B.4.(2022•婺城区模拟)如图,小华在课外时间利用仪器测量红旗的高度,从点A处测得旗杆顶部B的仰角为α,并测得到旗杆的距离AC为m米,若AD为h米,则红旗的高度BE为()A.(m tanα+h)米B.(mtana+h)米C.m tanαD.mtana米【解答】解:如图,DE=m米,∠BAC=α,DE=h米,∵四边形ADEC为矩形,∴DE=AC=m米,AD=CE=h米,在Rt△ADC中,∵tan∠BAC=BC AC,∴BC=m tanα,∴BE=BC+CE=(m tanα+h)米.故选:A.5.(2022•景宁县模拟)如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB 于点D,下列用线段比表示tanα的值,错误的是()A.CDBD B.ACBCC.CDACD.ADCD【解答】解:∵AC⊥BC于点C,CD⊥AB于点D,∴∠ACB=∠CDB=90°,∴∠B+∠BCD=90°,∠BCD+∠ACD=90°,∴∠B=∠ACD=∠α,∴tan B=tan∠ACD,∴tan B=tanα=CDBD=ACBC=ADCD,故选:C.6.(2022•浦江县模拟)某停车场入口的栏杆如图所示,栏杆从水平位置AB绕点O旋转A′到A′B′的位置,已知OA=a米,若栏杆的旋转角∠AOA′=α,则栏杆最外点A升高的高度为()A.a tanα米B.a cosα米C.asina米D.a sinα米【解答】解:过点A′作A′D⊥AB,垂足为D,由旋转得:OA=OA′=a米,在Rt△A′DO中,∠AOA′=α,∴A′D=A′O•sin∠AOA′=a sinα(米),∴栏杆最外点A升高的高度为a sinα米,故选:D.7.(2022•鹿城区校级三模)铁路道口的栏杆如图.已知栏杆长为3米,当栏杆末端从水平位置上升到点C处时,栏杆前端从水平位置下降到点A处,下降的垂直距离AD为0.5米(栏杆的粗细忽略不计),上升前后栏杆的夹角为α,则栏杆末端上升的垂直距离CE 的长为()A.(3tanα−0.5)米B.(3sinα−0.5)米C.(3tanα﹣0.5)米D.(3sinα﹣0.5)米【解答】解:如图:过点A 作AF ∥DE ,交CE 的延长线于点F , ∵CE ⊥DE , ∴∠CED =90°, ∵AF ∥DE ,∴∠CF A =∠CED =90°,∠CAF =∠CBE =α, 由题意可知:EF =AD =0.5米,AC =3米, ∵sin ∠CAF =CFAC , ∴CF =3sin α(米),∴CE =CF ﹣EF =(3sin α﹣0.5)(米),即栏杆末端上升的垂直距离CE 的长为(3sin α﹣0.5)米. 故选:D .8.(2022•温州校级模拟)为了疫情防控工作的需要,某学校在学校门口的大门上方安装了一个人体体外测温摄像头,摄像头到地面的距离DE =2.7米,小明身高BF =1.5米,他在点A 测得点D 的仰角是在点B 测得点D 仰角的2倍,已知小明在点B 测得的仰角是a ,则体温监测有效识别区域AB 的长为( )米.A .65tan α−65tan2αB .65tanα−65tan2αC .65tan2α−65tanαD .56tanα−56tan2α【解答】解:由题意得: ∠DCA =90°,CE =BF =1.5米,∵DE =2.7米,∴DC =DE ﹣CE =2.7﹣1.5=1.2(米), 在Rt △DCB 中,∠DBC =α, ∴BC =DCtanα= 1.2tanα=65tanα(米), 在Rt △DCA 中,∠DAC =2∠DBC =2α, ∴AC =DCtan2α= 1.2tan2α=65tan2α(米), ∴AB =BC ﹣AC =(65tanα−62tan2α)米,故选:B .9.(2022•西湖区模拟)如图,边长为1的小正方形网格中,点A 、B 、C 、E 在格点上,连接AE 、BC ,点D 在BC 上且满足AD ⊥BC ,则∠AED 的正切值是( )A .12B .2C .√52D .√55【解答】解:连接OD ,∵AD ⊥BC ,O 是AB 中点, ∴OD =12AB =1, ∴OD =OA =OE =OD ,∴点A 、D 、B 、E 在以O 为圆心,1为半径的同一个圆上, ∴∠ABC =∠AED ,∴tan ∠AED =tan ∠ABD =12,故选:A.10.(2022•杭州模拟)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC =2,∠BOC=α,则OA2的值为()A.4tan2α−4B.sin2α﹣4C.4sin2α−4D.tan2α﹣4【解答】解:在Rt△OBC中,BC=2,∠BOC=α,∴OB=BCtanα=2tanα,在Rt△ABO中,AB=2,∴OA2=OB2﹣AB2=(2tanα)2﹣22=4tan2α−4,故选:A.11.(2022•乐清市一模)如图,一只正方体箱子沿着斜面CG向上运动,∠C=α,箱高AB =1米,当BC=2米时,点A离地面CE的距离是()米.A.1cosα+2sinαB.1cosα+12sinαC.cosα+2sinαD.2cosα+sinα【解答】解:过点B作BM⊥AD,垂足为M,由题意得:BE=DM,∠ABC=∠BEC=∠ADC=90°,∴∠C+∠CFD=90°,∠AFB+∠BAF=90°,∵∠CFD=∠AFB,∴∠C=∠BAF=α,在Rt△ABM中,AB=1米,∴AM=AB•cosα=cosα(米),在Rt△CBE中,BC=2米,∴BE=BC•sinα=2sinα(米),∴DM=BE=2sinα米,∴AD=AM+DM=(cosα+2sinα)米,∴点A离地面CE的距离是(cosα+2sinα)米,故选:C.12.(2022•洞头区模拟)如图1是放置在水平地面上的落地式话筒架.图2是其示意图,主杆AB垂直于地面,斜杆CD固定在主杆的点A处,若∠CAB=α,AB=120cm,AD=40cm,则话筒夹点D离地面的高度DE为()cmA.120+40sinαB.120+40cosαC.120+40sinαD.120+40cosα【解答】解:过点A作AF⊥DE,垂足为F,∵AB⊥BE,DE⊥BE,∴∠AFE=∠ABE=∠BEF=90°,∴四边形AFEB是矩形,∴AB=FE=120cm,AB∥EF,∴∠D=∠CAB=α,在Rt△ADF中,AD=40cm,∴DF=AD•cosα=40cosα(cm),∴DE=DF+EF=(40cosα+120)cm,∴话筒夹点D离地面的高度DE为(40cosα+120)cm,故选:B.13.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC =α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+3sinα)m D.(4+3tanα)m【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=12BC=3m,在Rt△ADB中,∵tan∠ABC=AD BD,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.二.填空题(共7小题)14.(2022•婺城区校级模拟)金华新金婺大桥是华东第一的独塔斜拉桥,如图1是新金婺大桥的效果图.2022年4月13日开始主塔吊装作业.如图2,我们把吊装过程抽象成如下数学问题:线段OP为主塔,在离塔顶10米处有一个固定点Q(PQ=10米).在东西各拉一根钢索QN和QM,已知MO等于214米.吊装时,通过钢索MQ牵拉,主塔OP由平躺桥面的位置,绕点O旋转到与桥面垂直的位置.中午休息时∠PON=60°,此时一名工作人员在离M6.4米的B处,在位于B点正上方的钢索上A点处挂彩旗.AB正好是他的身高1.6米.(1)主塔OP的高度为82米,(精确到整数米)(2)吊装过程中,钢索QN也始终处于拉直状态,因受场地限制和安全需要,QN与水平桥面的最大张角在37°到53°之间(即37°≤∠QNM≤53°),ON的取值范围是90≤ON≤120.(注:tan37°≈0.75,√3≈1.73).【解答】解:(1)过点Q作QG⊥MN交于G点,∵MB =6.4米,AB =1.6米, ∴tan ∠AMB =14, ∴MG =4QG , ∵∠PON =60°,∴QG =OG •tan60°=√3OG , ∵MO =214米, ∴214+√33OG =4OG , 解得OG =64212−√3米, ∴OQ =QGsin60°≈72米, ∵QP =10米, ∴OP ≈82米, 故答案为:82;(2)在Rt △QNG 中,GN =QG •tan ∠NQG , 在Rt △OGQ 中,OG =64212−√3米,QG =64212−√3×√3米, ∴GN =12−√3×√3•tan ∠NQG ,∴ON =12−√312−√3√3•tan ∠NQG ,∵37°≤∠QNM ≤53°, ∴37°≤∠NQG ≤53°, ∵tan37°≈0.75, ∴tan53°≈43, ∴34≤tan ∠NQG ≤43,∴90≤ON ≤120, 故答案为:90≤ON ≤120.15.(2022•丽水模拟)如图,图1是图2推窗的左视图,AF为窗的一边,窗框边AB=1米,EF是可移动的支架,点C是AB的中点,点E可以在线段BC上移动.若AF=2EF=1米.(1)当E与B重合时,则∠AFE=76°.(2)当E从点C到点B的移动过程中,点F移动的路径长为8π45米.(结果保留π,参考数据:若sinα=0.25,则α取14°)【解答】解:(1)如图,过点A作AD⊥EF,交EF于点D,则∠ADF=90°,∵AF=AE=1米,AF=2EF,∴EF=0.5米,DF=DE=0.25米,在Rt△ADE中,sin∠EAD=DEAE=0.251=0.25,∴∠EAD=14°,∴∠AFE=∠AEF=90°﹣∠EAD=90°﹣14°=76°;故答案为:76°;(2)点E 从点C 到点B 的移动过程中,当EF 垂直于AB 时, ∵AF =2EF , ∴∠EF A =30°,即此时∠EAF 取得最大值, 当点E 与点B 重合时,由(1)知,∠EAD =14°,AF =AE ,AD ⊥EF , ∴∠EAF =28°, 当E 与B 重合时, 此时AF 和AB 重合,∴当E 从点C 到点B 的移动过程中,点F 的移动路径是以点A 为圆心,1米长为半径,圆心角为32°的弧, 路径长为:32π×1180=8π45(米).故答案为:8π45.16.(2022•鹿城区校级三模)图1是一款摆臂遮阳蓬的实物图,图2是其侧面示意图,点A ,O 为墙壁上的固定点,摆臂OB 绕点O 旋转过程中,遮阳蓬AB 可自由伸缩,蓬面始终保持平整.如图2,∠AOB =90°,OA =OB =1.5米,光线l 与水平地面的夹角约为tan α=3,此时身高为1米的小朋友(MN =1米)站在遮阳蓬下距离墙角1.2米(QN =1.2米)处,刚好不被阳光照射到,此时小朋友的头顶M 距离遮阳蓬的竖直高度(MP )为 0.3 米;同一时刻下,旋转摆臂OB ,点B 的对应点B '恰好位于小朋友头顶M 的正上方,当小朋友后退至刚好不被阳光照射到时,其头顶距离遮阳蓬的竖直高度为 1.3 米.【解答】解:∵OA=OB,∠AOB=90°,∴∠ABO=45°,∴MP=MB,∵OM=QN=1.2m,OB=1.5m,∴MP=MB=1.5﹣1.2=0.3(m),过点B′作B′C∥BN,与QN交于点C,过B′作B′F⊥AQ于F,过C作CD⊥B′F 于点D,与AB′交于点E,则B′F=OM=QN=1.2(m),∴FO=B′M=√OB′2−OM2=√1.52−1.22=0.9(m),∴B′N=B′M+MN=1.9(m),AF=OA﹣FO=0.6(m),∵B′C∥BN,∴∠B′CN=∠α,∴tan∠B′CN=B′NCN=3,∴B′D=CN=1.93=1930(m),∵DE ∥AF , ∴B′D B′F=DEAF ,即19301.2=DE0.6∴DE =1915≈1.3(m ),即当小朋友后退至刚好不被阳光照射到时,其头顶距离遮阳蓬的竖直高度约为1.3m . 故答案为:0.3;1.3.17.(2022•鹿城区二模)小郑在一次拼图游戏中,发现了一个很神奇的现象: (1)他先用图形①②③④拼出矩形ABCD . (2)接着拿出图形⑤.(3)通过平移的方法,用①②③④⑤拼出了矩形ABMN . 已知AE :EO =2:3,图形④的面积为15,则增加的图形⑤的面积为: 152,当CO =312,EH =4时,tan ∠BAO = 13.【解答】解:(1)如图,在平移后的图形中分别标记O ′,O ″,F ′,H ′,E ′和G ′,由题意可知,AE :EO =2:3 G ′H ′=FC =NF ′ ∴DF :FC =2:3,NO ′:O ′F ′=1:2 又∵图⑤和图④的高相等, ∴图⑤和图④的面积比为1:2, ∴图⑤的面积为152.故答案为:152.(3)由题意可知,S 四边形AOCD =12×(CO +AD)×CD , S 四边形AOMN =12×(MO +AN)×NF , S 四边形AOCD +152=S 四边形AOMN 设DF =2a ,DG =x ,则CF =G ′H ′=3a ,CO =H ′E ′=312,CD =NF =5a , EF =AG ′=4+x ,AG =E ′F ′=312+x , ∴AD =x +312+x =312+2x , AN =4+x +x =4+2x , 又∵ax =152,综上解得:a =3,x =52, ∵OB =2x =5,AB =5a =15, ∴tan ∠BAO =OB AB =515=13, 故答案为:13.18.(2022•义乌市模拟)图1是某折叠式躺椅的实物图,图2是靠背垂直地面时的侧面展开图,此时四边形ABCD 是矩形,AB =20cm ,AD =30√5cm ,DE =60cm ,BF =30cm .点H 在BC 上,椅子的支撑杆AF 、BG 、CE 分别绕B 、H 、D 转动并带动AI 转动,支撑杆LK 、JM 不动.躺椅在转动时:(1)若直线EF 过点J ,当∠ADE =120°时,△AFJ 的面积是1875√1511cm 2. (2)若12<tan ∠EDI <2,EF 与地面的夹角为α,则tan α的取值范围是 1137<tan α<1113 .【解答】解:(1)若直线EF过点J,当∠ADE=120°时,如图1所示,由题意可知,AB∥CD,∴∠F=∠E,∠F AJ=∠ADE=120°,∴△F AJ∽△EDJ,∴AFDE =AJDJ,∵AF=AB+BF=50cm,DE=60cm,∴AFDE =AJDJ=5060=56,∴AJ=511AD=150√511cm,过点F作FN⊥DA交DA的延长线于点N,则∠ANF=90°,在Rt△AFN中,∠F AN=180°﹣∠F AJ=60°,AF=50cm,∴FN=AF sin∠F AN=50×sin60°=25√3,∴△AFJ的面积=12×AJ×FN=1875√1511cm2;(2)当tan∠EDI=12时,如图2所示,作EP⊥DI于点P,则∠EPD=90°,设EF交AD于点Q,由题意可知,AB∥CD,∴∠F=∠QED,∠F AQ=∠QDE,∴△F AQ∽△EDQ,∴AFDE =AQDQ,∵AF=AB+BF=50cm,DE=60cm,∴AFDE =AQDQ=5060=56,∴DQ=611AD=180√511cm,设EP=x,则DP=2x,由勾股定理得:EP2+DP2=DE2,∴x2+(2x)2=602,解得x=12√5cm,∴EP=12√5cm,DP=24√5cm,PQ=DP+DQ=444√511cm,∴tanα=tan∠EQP=EPPQ=√5444√511=1137;当tan∠EDI=2时,如图所示,同理可求得DQ=180√511cm,DP=12√5cm,EP=24√5cm,∴PQ=DP+DQ=312√511cm,∴tanα=tan∠EQP=EPPQ=24√5312√511=1113;∵EF与地面的夹角α随着∠EDI的增大而增大,∴当12<tan ∠EDI <2时,tan α的取值范围是1137<tan α<1113. 故答案为:1875√1511cm 2;1137<tan α<1113. 19.(2022•衢州一模)三折伞是我们生活中常用的一种伞,它的骨架是一个“移动副”和多个“转动副”组成的连杆机构,如图1是三折伞一条骨架的结构图,当“移动副”(标号1)沿着伞柄移动时,折伞的每条骨架都可以绕“转动副”(标号2﹣9)转动;图2是三折伞一条骨架的示意图,其中四边形CDEF 和四边形DGMN 都是平行四边形,AC =BC =13cm ,DE =2cm ,DN =1cm .(1)若关闭折伞后,点A 、E 、H 三点重合,点B 与点M 重合,则BN = 23 cm .(2)在(1)的条件下,折伞完全撑开时,∠BAC =75°,则点H 到伞柄AB 距离是 69.8 cm .(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,结果精确到0.1cm )【解答】解:(1)∵关闭折伞后,点A 、E 、H 三点重合,∴AC =CD +DE ,∴CD =13﹣2=11,∴CN =CD ﹣DN =11﹣1=10,∴BN =BC +CN =13+10=23(cm ),故答案为:23;(2)如图2,A 、E 、H 三点共线并且AH ⊥AB ,过点F 作FK ⊥AE 于点K ,过点G 作GJ ⊥EH 于点J ,∵∠BAC =75°,AC =BC =13cm ,∴∠ACB=30°,∵AC∥DE,DG∥MN,∴∠AFE=∠EGH=150°,∵AF=EF,FK⊥AE,∴∠AFK=∠EFK=75°,AK=EK,∵DE=2cm,∴FC=DE=2cm,∴AF=EF=AC﹣FC=13﹣2=11cm,∴AK=AF•sin75°=11×0.97≈10.67,∴AE=21.34,∵关闭折伞后,点A、E、H三点重合,点B与点M重合,∴BN=MN=23cm,EG=GH,∴EG=MN+DE=23+2=25cm,同理,EJ=EG•sin75°=25×0.97=24.25,∴EH=2EJ=2×24.25=48.5,∵∠BAC=75°,∠F AE=15°,∴AH=AE+EH=21.34+48.5≈69.8.∴AE⊥AB,∴点H到伞柄AB距离为69.8cm.故答案为:69.8.20.(2022•金华)图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B′处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8√3m,在点A观测点F的仰角为45°.(1)点F的高度EF为9m.(2)设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是α﹣β=7.5°.【解答】解:(1)连接A′A并延长交EF于点H,如图,则四边形HEB′A′,HEBA,ABB′A′均为矩形,∴HE=AB=A′B′=1m,HD=EB=8m,HA′=EB′=8√3m,∵在点A观测点F的仰角为45°,∴∠HAF=45°,∴∠HF A=45°,∴HF=HD=8,∴EF=8+1=9(m),故答案为:9;(2)作DC的法线AK,D′C′的法线A′R,如图所示:则∠F AM=2∠F AK,∠F A′N=2∠F A′R,∵HF=8m,HA′=8√3m,∴tan∠HF A′=√3,∴∠HF A′=60°,∴∠AF A′=60°﹣45°=15°,∵太阳光线是平行光线,∴A′N∥AM,∴∠NA′M=∠AMA′,∵∠AMA′=∠AFM+∠F AM,∴∠NA′M=∠AFM+∠F AM,∴2∠F A′R=15°+2∠F AK,∴∠F A′R=7.5°+∠F AK,∵AB∥EF,A′B′∥EF,∴∠BAF=180°﹣45°=135°,∠B′A′F=180°﹣60°=120°,∴∠DAB=∠BAF+∠F AK﹣∠DAK=135°+∠F AK﹣90°=45°+∠F AK,同理,∠D′A′B′=120°+∠F A′R﹣90°=30°+∠F A′R=30°+7.5°+∠F AK=37.5+F AK,∴∠DAB﹣∠D′A′B′=45°﹣37.5°=7.5°,故答案为:α﹣β=7.5°.三.解答题(共11小题)21.(2022•宁波模拟)21、由于发生山体滑坡灾害,武警救援队火速赶往灾区救援,探测出某建筑物废墟下方点c处有生命迹象.在废墟一侧地面上探测点A,B相距2m,探测线与该地面的夹角分别是30°和60°(如图所示),试确定生命所在点C的深度.(参考数据:√2≈1.414,√3≈1.732,结果精确到0.1米)【解答】解:如图所示,过点C作CD⊥AB,交AB的延长线于点D,由题意可知,∠CAD=30°,∠CBD=60°,设CD=x米,则BD=xtan60°,AD=xtan30°,∵AB=2米,AD=AB+BD,∴AD=2+BD,∴2+xtan60°=xtan30°,解得x≈1.7,即生命所在点C的深度是1.7米.22.(2022•婺城区模拟)大跳台滑雪比赛的某段赛道如图所示,中国选手谷爱凌从离水平地面100米高的A点出发(AB=100米),沿俯角为30°的方向先滑行一定距离到达D点,然后再沿俯角为60°的方向滑行到地面的C处,求:(1)若AD=140米,则她滑行的水平距离BC为多少米?(2)若她滑行的两段路线AD与CD的长度比为4:√3,求路线AD的长.【解答】解:(1)如图:过点D作DE⊥AB,垂足为E,过点D作DF⊥BC,垂足为F,由题意得:DE=BF,BE=DF,AG∥DE,DH∥BC,∴∠GAD=∠ADE=30°,∠HDC=∠DCF=60°,在Rt△ADE中,AD=140米,∴AE =AD •sin30°=140×12=70(米), DE =AD •cos30°=140×√32=70√3(米),∴DE =BF =70√3米,∵AB =100米,∴BE =AB ﹣AE =30(米),∴BE =DF =30米,在Rt △DFC 中,CF =DF tan60°=√3=10√3(米), ∴BC =BF +CF =80√3(米),∴她滑行的水平距离BC 为80√3米;(2)∵AD 与CD 的长度比为4:√3,∴设AD =4x 米,则CD =√3x 米,在Rt △ADE 中,∠ADE =30°,∴AE =12AD =2x (米),在Rt △DFC 中,∠DCF =60°,∴DF =CD •sin60°=√3x •√32=32x (米), ∴BE =DF =32x 米,∵AB =100米,∴AE +BE =100,∴2x +32x =100,解得:x =2007, ∴AD =4x =8007(米), ∴路线AD 的长为8007米.23.(2022•北仑区校级三模)图1是淘宝上常见的“懒人桌”,其主体由一张桌面以及两根长度相等的支架组成,支架可以通过旋转收拢或打开,图2是其打开示意图,经操作发现,当∠ADC =∠BCD ≥90°时,可稳定放置在水平地面上,经测量,AD =BC =30cm ,CD =40cm .(1)当其完全打开且置于水平地面上时,测得∠ADC=140°,求AB距离;(2)在(1)的基础上,若要在该桌上办公,已知眼睛与桌面的垂直距离以30cm为佳,实际办公时,眼睛与桌面的垂直距离为34.8cm,若保持身体不动,通过旋转支架AD以及BC抬高桌面,则A点应向内移动多少厘米,才能达到最佳距离?(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【解答】解:(1)过点D作DM⊥AB,垂足为M,过点C作CN⊥AB,垂足为N,则CD =MN=40cm,AM=BN=cos∠DAB•AD≈0.77×30=23.1(cm),∴AB=23.1×2+40=86.2(cm),答:AB的距离约为86.2cm;(2)由题意得,桌子要抬高34.8﹣30=4.8(cm),即DM要变为sin∠DAB×30+4.8=24(cm),∴AM=√AD2−DM2=√302−242=18cm,即点A要向内移动23.1﹣18=5.1(cm),答:向内移动5.1cm.24.(2022•嘉兴一模)图1是小明家电动单人沙发的实物图,图2是该沙发主要功能介绍,其侧面示意图如图3所示.沙发通过开关控制,靠背AB和脚托CD可分别绕点B,C旋转调整角度.“n°某某”模式时,表示∠ABC=n°,如“140°看电视”模式时∠ABC =140°.已知沙发靠背AB长为50cm,坐深BC长为54cm,BC与地面水平线平行,脚托CD长为40cm,∠DCD'=∠ABC﹣80°,初始状态时CD⊥BC.(1)求“125°阅读”模式下∠DCD'的度数.(2)求当该沙发从初始位置调至“125°阅读”模式时,点D运动的路径长.(3)小明将该沙发调至“150°听音乐”模式时,求点A ,D ′之间的水平距离(精确到个位).(参考数据:√3≈ 1.7,sin70°≈0.9,cos70°≈0.3)【解答】解:(1)∵“125°阅读”模式下∠ABC =125°,∴∠DCD '=∠ABC ﹣80°=125°﹣80°=45°;(2)∵∠DCD ′=45°,CD =40cm ,∴点D 运动的路径长为:45π×40180=10π(cm 2);(3)如图,过点作AN ⊥BC ,交CB 的延长线于点N ,过点D ′M ⊥CD 于点M ,∵“150°听音乐”模式时∠ABC =150°,∴∠DCD '=∠ABC ﹣80°=150°﹣80°=70°,∠ABN =30°,在Rt △ABN 中,BN =AB •cos30°=50×√32=25√3≈43,在Rt △CMD ′中,MD ′=CD ′•sin70°≈40×0.9=36,∴点A ,D ′之间的水平距离为:BN +BC +MD ′=43+54+36=133(cm ).25.(2022•嘉兴二模)如图1是学生常用的一种圆规,其手柄AB =8mm ,两脚BC =BD =56mm ,如图2所示,当∠CBD =74°时.(1)求A 离纸面CD 的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)【解答】解:(1)连接CD,延长AB交CD于点E,则AE⊥CD,∵BC=BD=56mm,∴∠CBE=12∠CBD=37°,CD=2CE,在Rt△BCE中,BE=BC•cos37°≈56×0.8=44.8(mm),∵AB=8mm,∴AE=AB+BE=8+44.8=52.8(mm),∴A离纸面CD的距离约为52.8mm;(2)在Rt△BCE中,∠CBE=37°,BC=56mm,∴CE=BC•sin37°≈56×0.6=33.6(mm),∴CD=2CE=67.2(mm),∴正六边形的边长为67.2mm,∴正六边形的周长=6×67.2=403.2(mm),∴正六边形的周长约为403.2mm.26.(2022•金东区三模)如图,一个书架上放着8个完全一样的长方体档案盒,其中左边7个档案盒紧贴书架内侧竖放,右边一个档案盒自然向左斜放,档案盒的顶点D在书架底部,顶点F靠在书架右侧,顶点C靠在档案盒上,若书架内侧长为60cm,∠CDE=53°,档案盒长度AB=35cm.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)。
2023年中考数学专题——锐角三角函数与圆的综合计算

2023年中考数学专题——锐角三角函数与圆的综合计算一、综合题1.如图,O 是 ABC 的外接圆, AC 为直径,点 D 在半圆 AC 上,且与点 B 在 AC 的异侧, BE DC ⊥ 交 DC 的延长线于点 E , 1BCE ∠=∠ .(1) 求证: AB BD = ; (2) 求证: BE 是O 的切线;(3) 若 1EC = , 4CD = ,求 cos DBA ∠ .2.如图,四边形ABCD 内接于O ,135ABC ∠=︒,OE AC ⊥.(1)证明:AOE D ∠=∠; (2)若6AC =,求O 的半径长.3.如图,ABC 是O 的内接三角形,60ACB ∠=︒,AD 经过圆心O 交O 于点E ,连接BD ,30ADB ∠=︒.(1)判断直线BD 与O 的位置关系,并说明理由; (2)若3AB =.4.如图,AB 是O 的直径,点E 是劣弧BD 上一点,PAD AED ∠=∠,且2DE =,AE 平分BAD ∠,AE 与BD 交于点F .(1)求证:PA 是O 的切线;(2)若2tan 2DAE ∠=,求EF 的长; (3)延长DE ,AB 交于点C ,若OB BC =,求O 的半径.5.如图,ABC 内接于 O ,AB 是直径,延长AB 到点E ,使得 6BE BC == ,连接EC ,且ECB CAB ∠=∠ ,点D是AB上的点,连接AD ,CD ,且CD 交AB 于点F.(1)求证:EC 是 O 的切线;(2)若BC 平分 ECD ∠ ,求AD 的长.6.如图,ABC 中, AB AC = , D 为 AC 上一点,以 CD 为直径的 O 与 AB 相切于点E ,交 BC 于点F , FG AB ⊥ ,垂足为 G .(1)求证: FG 是 O 的切线;(2)若 1BG = , 3BF = ,求 CF 的长.7.如图,线段AC 为⊙O 的直径,点D 、E 在⊙O 上,CD DE =,过点D 作DF⊙AC ,垂足为点F.连结CE 交DF 于点G.(1)求证:CG=DG ;(2)已知⊙O 的半径为6,35sin ACE ∠=,延长AC 至点B ,使4BC =.求证:BD 是⊙O 的切线. 8.如图,在 Rt ABC 中, 90C ∠=︒ ,点O 为 AB 边上一点,以 OA 为半径的O 与 BC 相切于点D ,分别交 AB , AC 边于点E ,F.(1)求证: AD 平分 BAC ∠ ; (2)若 3BD = , 1tan 2CAD ∠=,求 O 的半径.9.如图,在ABC 中,90C ∠=︒,BC ,AC 与O 交于点F ,D ,BE 为O 直径,点E 在AB 上,连接BD ,DE ,ADE DBE ∠=∠.(1)求证:AC 是O 的切线; (2)若35sinA =,O 的半径为3,求BC 的长. 10.如图,点C 是以AB 为直径的⊙O 上一点,D 是AB 延长线上一点,过点D 作BD垂线交AC 延长线于点E ,连接CD 且CD =ED .(1)求证:CD 是⊙O 的切线;(2)若tan⊙DCE =2,BD =1,求⊙O 的半径.11.如图,在⊙ABC 中,AC=BC ,以BC 为直径作⊙O ,交AC 于点F ,过C 点作CD⊙AC 交AB 延长线于点D ,E 为CD 上一点,且EB=ED .(1)求证:BE 为⊙O 的切线;(2)若AF=2,tan⊙A=2,求BE 的长.12.如图,锐角⊙ABC 内接于⊙O ,AB=AC ,BD 为直径,过点B 作BF⊙AB 交⊙O 于点E ,交DC 的延长线于点F .(1)求证:⊙ABD=⊙CBF .(2)连结DE ,若DE=20,sin⊙A=2425,求BF 的长. 13.如图,在ABC 中,点E 是 BC 的中点,连接 AE ,以 AB 为直径作 O ,O 交 BE 于点D , AC 为O 的切线.(1)求证: 2AEB C ∠=∠ ; (2)若 8AC = , 4sin 5B =,求 DE 的长. 14.如图,⊙ABC 内接于⊙O ,AB 是⊙O 的直径,AD 是⊙O 的切线,点A 为切点,AD=AC ,连接DC 交AB于点E.(1)求证,BC BE =. (2)若13tan ACE ∠=,5AB =,求BC 的长. 15.如图,已知⊙ABC中,以AB为直径的⊙O 交AC 于点D ,⊙CBD =⊙A .(1)求证:BC 为⊙O 的切线;(2)若E 为 AB 中点,BD =12,sin⊙BED =35,求BE 的长. 16.如图,AB 是⊙O 的直径,点C 是圆上的一点,CD⊙AD 于点D ,AD 交⊙O 于点F ,连接AC ,若AC 平分⊙DAB ,过点F 作FG⊙AB 于点G 交AC 于点H.(1)求证:CD 是⊙O 的切线;(2)延长AB 和DC 交于点E ,若AE =4BE ,求cos⊙DAB 的值; (3)在(2)的条件下,求FHAF的值. 17.如图,O 是ΔABC 的外接圆,AB AC =,BD 是O 的直径,PA BC ,与DB 的延长线交于点P ,连结AD.(1)求证:PA 是O 的切线; (2)若12tan ABC ∠=,4BC =,求BD 与AD 的长. 18.如图,四边形ABCD 内接于O ,BD 为O 的直径,AC 平分22BAD CD ∠=,E 在BC 的延长线上,连接DE .(1)求直径BD 的长;(2)若52BE =19.如图,AB 是⊙O 的弦,OP⊙OA 交AB 于点P ,过⊙O 上点B 的直线交OP 的延长线于点C ,且CP=CB .(1)求证:BC 是⊙O 的切线;(2)若⊙O 55BC 的长.20.如图,在Rt⊙ABC 中,⊙C =90°,AD 平分⊙BAC 交BC 于点D ,O 为AB 上一点,经过点A,D的⊙O分别交AB ,AC 于点E ,F ,连接DF .(1)求证:BC是⊙O的切线;(2)连接DE,求证:⊙BDE ⊙BAD(3)若BE=52,sinB=35,求AD的长.答案解析部分1.【答案】(1)证明:四边形ABCD是O的内接四边形,180BAD BCD∴∠+∠=︒,180BCE BCD∠+∠=︒,BAD BCE∴∠=∠,1BCE∠=∠,1BAD∴∠=∠,弧AB=弧AB,1BDA∴∠=∠,BAD BDA∴∠=∠,AB BD∴=;(2)证明:连接OB,OC OB=,1OBC∴∠=∠,1BCE∠=∠,OBC BCE∴∠=∠,//OB DC∴,BE DC⊥,OB BE∴⊥,OB是O的半径BE∴是O的切线;(3)解:过点B作BF AC⊥于点F,90CFB∴∠=︒,BE DC⊥,90CEB∴∠=︒,CFB CEB∴∠=∠,在FBC与EBC中,1BCECFB CEBBC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,FBC∴⊙ ()EBC AAS,1FC EC∴==,由(1)可知:AB BD=,又 BAF BDE ∠=∠ , AFB DEB ∠=∠ ,ABF ∴ ⊙ ()DBE AAS ,AF DE ∴= ,145DE EC CD =+=+= , 5AF ∴= ,516AC AF FC ∴=+=+= ,弧 AD = 弧 AD ,DBA DCA ∴∠=∠ ,AC 为 O 的直径,90ADC ∴∠=︒ ,2cos 3CD DCA CA ∴∠== , 2cos cos 3DBA DCA ∴∠=∠=. 【解析】【分析】(1)根据圆内接四边形的性质可得⊙BAD+⊙BCD=180°,根据邻补角的性质可得⊙BCE+⊙BCD=180°,则⊙BAD=⊙BCE ,由已知条件知⊙1=⊙BCE ,则⊙BAD=⊙1,根据圆周角定理可得⊙1=⊙BDA ,推出⊙BAD=⊙BDA ,据此证明;(2)连接OB ,根据等腰三角形的性质可得⊙1=⊙OBC ,由已知条件知⊙1=⊙BCE ,则⊙OBC=⊙BCE ,推出OB⊙DC ,结合BE⊙CD 可得OB⊙BE ,据此证明;(3)过点B 作BF⊙AC 于点F ,易证⊙FBC⊙⊙EBC ,得到FC=EC=1,由(1)可知AB=BD ,证明⊙ABF⊙ ⊙DBE ,得到AF=DE ,易得DE=AF=5,则AC=6,根据圆周角定理可得⊙DBA=⊙DCA ,⊙ADC=90°,然后根据三角函数的概念进行计算.2.【答案】(1)证明:如图,连接OC ,135ABC ∠=︒,∴由圆内接四边形对角互补可得=45ADC ∠︒,AC AC =,290AOC ADC ∴∠=∠=︒,又OA OC =,∴AOC 为等腰直角三角形,又OE AC ⊥,45AOE ∴∠=︒, AOE D ∴∠=∠(2)解:由(1)可知AOC 为等腰直角三角形,则45OAC OCA ∠=∠=︒, 又6AC =,64532OA OC sin ∴==⨯︒=,即⊙O 的半径长为32【解析】【分析】(1)连接OC ,根据圆内接四边形的对角互补可得⊙ADC=45°,根据同弧所对的圆心角等于圆周角的2倍可得⊙AOC=90°,进而根据等腰三角形的三线合一可得⊙AOE=45°,据此就不难得出答案了; (2)根据OA=6×sin45°可求出答案.3.【答案】(1)解:直线BD 与O 相切,理由:如图,连接BE ,∵60ACB ∠=︒, ∴60AEB C ∠=∠=︒,连接OB , ∵OB OC =,∴OBE 是等边三角形, ∴60BOD ∠=︒, ∵30ADB ∠=︒,∴180603090OBD ∠=︒-︒-︒=︒, ∴OB BD ⊥, ∵OB 是O 的半径, ∴直线BD 与O 相切; (2)解:如(1)中图,∵AE 是O 的直径, ∴90ABE ∠=︒,∵43AB =∴43360AB sin AEB sin AE ∠=︒===∴8AE =, ∴4OB =,∵OB BD ⊥,30ADB ∠=︒∴330OB tan ADB tan BD ∠=︒==, ∴43BD =, ∴图中阴影部分的面积2160π48π4438323603OBDBOESS ⨯=-=⨯⨯=扇形. 【解析】【分析】(1) 直线BD 与O 相切, 连接BE 、OB ,由同弧所对圆周角相等得⊙AEB=⊙C=60°,推出⊙OBE 是等边三角形,则⊙BOD=60° ,根据三角形的内角和定理得⊙OBD=90°,据此可得结论; (2)根据直径所对的圆周角是直角得⊙ABE=90°,根据锐角三角函数的定义及特殊角的三角函数值可算出AE 、BD 的长,最后根据图中阴影部分的面积=S ⊙OBD -S 扇形BOE ,结合三角形的面积计算公式及扇形面积计算公式计算即可.4.【答案】(1)证明:∵AB是O的直径,90ADB∴∠=︒,90DAB DBA∴∠+∠=︒,AD AD=,AED ABD∴∠=∠,PAD AED∠=∠,PAD ABD∴∠=∠,90BAD PAD BAD ABD∴∠+∠=∠+∠=︒,即90PAB∠=︒,PA∴是O的切线(2)解:如图,连接OE EB,,AE平分BAD∠,DAE BAE∴∠=∠,∴DE=BE=2∴OE⊙BDOA OE=,OEA OAE∴∠=∠,DAE AEO∴∠=∠,AD OE∴,AB是O的直径,AD DB∴⊥,AE EB⊥,即⊙ADF=⊙BEF=90°,DE DE=DAE DBE∴∠=∠,2tan tan2EBF DAE∴∠=∠=,22EFEB∴=,21EF EB∴==(3)解:如图,过点B 作BGAD,由(2)可知AD OE,OE BG ∴ ,AO OB BC == ,DE EG GC ∴== ,设O 的半径为 x ,则 1122GB OE x == ,AD BG ,CGB CDA ∴∽ ,CG GBCD AD∴= , 332AD GB x ∴== ,OE DB ⊥ , DB GB ∴⊥ ,2DE =,222DG DE ∴==,在 Rt DBG 中, 2222182DB DG GB x ⎛⎫=-=- ⎪⎝⎭, 在 Rt ADB 中, 222AD DB AB += ,即 ()222318222x x x ⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭, 解得: 2x = (负值舍去), O ∴ 的半径为2.【解析】【分析】(1)根据直径所对的圆周角是直角得出⊙ADB=90°,即⊙DAB+⊙DBA=90°,根据同弧所对的圆周角相等,结合已知条件得出⊙PAD=⊙ABD ,从而求出⊙PAB=90°,即可得证;(2)连接OE ,EB ,根据角平分线的定义,以及等腰三角形的性质求出DAE AEO ∠=∠,则得AD⊙OE ,根据同弧所对的圆周角相等得出⊙DAE=⊙DBE ,利用垂径定理求出DE=BE=2,进而可得tan⊙EBF 的值,最后根据三角函数定义求EF 长即可;(3)过点B 作BG⊙AD ,根据平行线分线段成比例的性质,得出DE EG GC ==,设 O 的半径为 x ,则GB =12x ,再求出DG 长,证明⊙CGB⊙⊙CDA ,根据成比例的性质求出AD=32x ,在Rt⊙ADB 中,根据勾股定理建立方程求解,即可解答.5.【答案】(1)证明:连接OC.OA OC = ,CAB ACO ∴∠=∠ . ECB CAB ∠=∠ ,ECB ACO ∠=∠ .AB ∴ 是O 的直径,90ACB ∠=︒ .90ACO OCB ∴∠+∠=︒ .90ECB OCB ∴∠+∠=︒ ,即 OC EC ⊥ .又OC 是 O 的半径,EC ∴ 是O 的切线(2)解:BC 平分 ECD ∠ ,BCD ECB ∴∠=∠ . BCD BAD ∠=∠ , ECB BAD ∴∠=∠ .又ECB CAB ∠=∠ ,BAD CAB ∴∠=∠ .又AB 是O 的直径,AB DC ∴⊥ .在 Rt FCE 中,BE BC = ,E ECB ∴∠=∠ .30E ECB BCF ∴∠=∠=∠=︒ .在 Rt BCF 中, 630BC BCF =∠=︒, ,3cos 6332CF BC BCF ∴=⋅∠=⨯=. AB CD ⊥ ,AB 是O 的直径,33DF CF ∴==.在 Rt ADF 中, 30DAF BCF ∠=∠=︒ ,33631sin 2DF AD DAF∴===∠【解析】【分析】(1)连接OC ,由等腰三角形的性质得⊙CAB=⊙ACO ,结合已知条件得⊙ECB=⊙ACO ,根据圆周角定理可得⊙ACB=90°,结合⊙ACO+⊙OCB=90°可得⊙ECB+⊙OCB=90°,则OC⊙EC ,据此证明;(2)根据角平分线的概念⊙BCD=⊙BCE ,根据圆周角定理可得⊙BCD=⊙BAD ,则⊙ECB=⊙BAD ,结合已知条件可得⊙BAD=⊙CAB ,根据垂径定理得AB⊙DC ,根据等腰三角形的性质得⊙E=⊙ECB ,则⊙E=⊙ECB=⊙BCF=30°,根据三角函数的概念可得CF ,由垂径定理可得DF=CF ,然后利用三角函数的概念就可求出AD.6.【答案】(1)证明:如图,连接 DF OF , ,OF OD = ,则 ODF OFD ∠=∠ ,设 ODF OFD ∠=∠ β= , OFC α∠= ,OF OC = ,OFC OCF α∴∠=∠= ,DC 为 O 的直径,90DFC ∴∠=︒ ,90DFO OFC DFC ∴∠+=∠=︒ ,即 90αβ+=︒ ,AB AC= , B ACB α∴∠=∠= ,FG AB ⊥ ,9090GFB B αβ∴∠=︒-∠=︒-= ,90DFB DFC ∠=∠=︒ ,9090DFG GFB βα∴∠=︒-∠=︒-= , 90GFO GFD DFO αβ∴∠=+=+=︒ ,OF 为 O 的半径, FG ∴ 是O 的切线;(2)解:如图,连接 OE ,AB 是O 的切线,则 OE AB ⊥ ,又 OF FG FG AB ⊥⊥, ,∴ 四边形 GEOF 是矩形,OE OF = ,∴ 四边形 GEOF 是正方形,12GF OF DC ∴==, 在 Rt GFB 中, 1BG = , 3BF = ,2222FG BF GB ∴-=,22DC ∴=,由(1)可得 BFG FDC β∠=∠= ,FG AB DF FC ⊥⊥, ,sin GB FCBF DCβ∴== , ∴1322=, 解得 23FC =. 【解析】【分析】(1)连接DF 、OF ,由同圆半径相等可得ODF OFD ∠=∠ ,设 ODF OFD ∠=∠ β= ,OFC α∠= ,由等腰三角形的性质可得 OFC OCF α∠=∠= ,B ACB α∠=∠= ,由圆周角定理得90αβ+=︒ ,由垂直的定义直角三角形的性质得90GFB B β∠=︒-∠= , 由垂直的定义得9090DFG GFB βα∠=︒-∠=︒-= ,即得GFO GFD DFO ∠=∠+∠ =90αβ+=︒,根据切线的判定定理即证;(2)连接OE , 易证四边形GEOF 是正方形,可得12GF OF DC ==,在Rt⊙GFB 中 ,由勾股定理可得2, 由(1)可得 BFG FDC β∠=∠= ,从而得出sin GB FCBF DCβ== ,据此求出FC 的长. 7.【答案】(1)证明:连接AD ,∵AC为⊙O 的直径,∴⊙ADC=90°,则⊙ADF+⊙FDC=90°, ∵DF⊙AC ,∴⊙AFD=90°,则⊙ADF+⊙DAF=90°,∴⊙FDC=⊙DAF,∵CD DE=,∴⊙DCE=⊙DAC,∴⊙DCE=⊙FDC,∴CG=DG;(2)证明:连接OD,设OD与CE相交于点H,∵CD DE=,∴OD⊙EC,∵DF⊙AC,∴⊙ODF=⊙OCH=⊙ACE,∵35 sin ACE∠=,∴sin⊙ODF=sin⊙OCH=35,即OF OHOD OC==35,∴OF=185,由勾股定理得DF=245,FC=OC-OF=125,∴FB= FC+BC=325,由勾股定理得DB=405=8,∴sin⊙B=2458DFBD==35,∴⊙B=⊙ACE,∴BD⊙CE,∵OD⊙EC,∴OD⊙BD,∵OD是半径,∴BD是⊙O的切线.【解析】【分析】(1)连接AD,根据圆周角定理可得⊙ADC=90°,根据垂直的概念可得⊙AFD=90°,由同角的余角相等可得⊙FDC=⊙DAF,根据圆周角定理可得⊙DCE=⊙DAC,则⊙DCE=⊙FDC,据此证明;(2)连接OD,设OD与CE相交于点H,易得⊙ODF=⊙OCH=⊙ACE,根据三角函数的概念可得OF,由勾股定理求出DF,然后根据线段的和差关系求出FC、FB,利用勾股定理求出DB,然后求出sin⊙B的值,得到⊙B=⊙ACE,推出BD⊙CE,结合OD⊙EC可得OD⊙BD,据此证明.8.【答案】(1)证明:如图,连接OD,∵⊙O与BC相切于点D,OD是⊙半径,⊙C=90°,∴⊙ODB=⊙C=90°,∴OD⊙AC,∴⊙ODA=⊙CAD,又∵OD =OA , ∴⊙ODA =⊙OAD , ∴⊙OAD =⊙CAD , ∴AD 平分⊙BAC.(2)解:如图,再连接DE ,过点D 作DH⊙AB 于点H ,∵AE 是⊙O 的直径, ∴⊙ADE =90°,由(1)得:⊙OAD =⊙CAD , ∴tan⊙CAD =tan⊙DAE =ED AD =12, 设ED=a ,则AD=2a ,∴AE=222a a +()=5a ,OD=OA=52a , ∴DH·AE=ED×AD ,即5a·DH=2a 2, ∴DH=255a , ∴OH=22OD DH -=2252525a a -()()=3510a , 又∵tan⊙DOH=tan⊙DOB ,BD=3,∴DH BD OH OD =,即25353510aOD a =, ∴OD=94, 即⊙O 的半径为94. 【解析】【分析】(1)如图,连接OD ,由切线性质及⊙C=90°可得OD⊙AC ,从而得⊙ODA =⊙CAD ,又OD =OA ,可得⊙ODA =⊙OAD ,即⊙OAD =⊙CAD ,进而证得AD 平分⊙BAC ;(2)如图,连接DE ,过点D 作DH⊙AB 于点H ,由圆周角定理得⊙ADE =90°,由(1)得:⊙OAD =⊙CAD ,推出tan⊙CAD =tan⊙DAE =ED AD =12,设ED=a ,则AD=2a ,由勾股定理求得5,从而得OD=OA=5a ,由三角形等面积法得DH·AE=ED×AD 52,求得25a ,再由勾股定理求出35a ,再结合tan⊙DOH=tan⊙DOB ,可列DH BD OH OD =253535OD a =,解得OD 即可求得⊙O 的半径为.9.【答案】(1)证明:连接OD ,如图,∵OD=OB=OE ,∴⊙OBD=⊙ODB ,⊙ODE=⊙OED , ∵BE 是直径,∴⊙BDE=90°=⊙DBE+⊙DEB=⊙ODB+⊙ODE , ∴⊙DBE+⊙ODE=90°, ∵⊙ADE=⊙DBE ,∴⊙ADE+⊙ODE=90°,∴OD⊙AC,∵OD为半径,∴AC是⊙O的切线;(2)解:根据(1)的结论,有OD⊙AC,∵⊙C=90°,∴BC⊙AC,∴OD BC,∴BC AB OD OA=,∵在Rt ADO中,sinA=35 ODOA=,又∵OD=OB=3,∴OA=5,∴AB=OA+OB=8,∵BC AB OD OA=,∴824355ABBC ODOA=⨯=⨯=.即BC为245.【解析】【分析】(1)连接OD,根据等腰三角形的性质得出⊙OBD=⊙ODB,⊙ODE=⊙OED,得出⊙ADE=⊙DBE,根据圆周角定理得出⊙ADE+⊙ODE=90°,得出OD⊙AC,即可得出结论;(2)根据(1)的结论,有OD⊙AC,解直角三角形即可。
2023年中考数学选择题专项复习:锐角三角函数(附答案解析)

2023年中考数学选择题专项复习:锐角三角函数1.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M 处俯角为35°,则M,N之间的距离为()(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m 2.(2021•烟台)如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:
按键的结果为m;
按键的结果为n;
按键的结果为k.下列判断正确的是()
第1 页共13 页。
2023年中考数学解答题专项复习:锐角三角函数(附答案解析)

2023年中考数学解答题专项复习:锐角三角函数1.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)2.(2021•攀枝花)钓鱼岛及其附属岛屿是中国的固有领土,神圣不可侵犯!自2021年2月1日起,旨在维护国家主权、更好履行海警机构职责的《中华人民共和国海警法》正式实施.中国海警在钓鱼岛海域开展巡航执法活动,是中方依法维护主权的正当举措.如图是钓鱼岛其中一个岛礁,若某测量船在海面上的点D处测得与斜坡AC坡脚点C的距离为140米,测得岛礁顶端A的仰角为30.96°,以及该斜坡AC的坡度i=,求该岛礁的高(即点A到海平面的铅垂高度).(结果保留整数)(参考数据:sin30.96°≈0.51,cos30.96°≈0.85,tan30.96°≈0.60)3.(2021•巴中)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)(1)求灯杆AB的高度;(2)求CD的长度.4.(2021•青岛)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度.如图所示,其中观景平台斜坡DE的长是20米,坡角为37°,斜坡DE底部D 与大楼底端C的距离CD为74米,与地面CD垂直的路灯AE的高度是3米,从楼顶B 测得路灯AE顶端A处的俯角是42.6°.试求大楼BC的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin42.6°≈,cos42.6°≈,tan42.6°≈)5.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m 的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)6.(2021•盘锦)如图,小华遥控无人机从A处飞行到对面大厦MN的顶端M,无人机飞行方向与水平方向的夹角为37°,小华在A点测得大厦底部N的俯角为31°,两楼之间一棵树EF的顶点E恰好在视线AN上,已知树的高度为6m,且=,楼AB,MN,树EF均垂直于地面,问:无人机飞行的距离AM约是多少米?(结果保留整数.参考数据:cos31°≈0.86,tan31°≈0.60,cos37°≈0.80,tan37°≈0.75)7.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)8.(2021•鞍山)小明和小华约定一同去公园游玩,公园有南北两个门,北门A在南门B的正北方向,小明自公园北门A处出发,沿南偏东30°方向前往游乐场D处;小华自南门B处出发,沿正东方向行走150m到达C处,再沿北偏东22.6°方向前往游乐场D处与小明汇合(如图所示),两人所走的路程相同.求公园北门A与南门B之间的距离.(结果取整数.参考数据:sin22.6°≈,cos22.6°≈,tan22.6°≈,≈1.732)9.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.13°28°32°锐角A三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6210.(2021•抚顺)某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C 处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)2023年中考数学解答题专项复习:锐角三角函数参考答案与试题解析1.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;推理能力.【分析】解直角三角形求出BC,BD,根据CD=BC﹣BD求解即可.【解答】解:在Rt△ABD中,∵tan∠BAD=,∴1.60=,∴BD=32(米),在Rt△CAB中,∵tan∠CAB=,∴1.33=,∴BC=26.6(米),∴CD=BD﹣BC=5.4(米).答:避雷针DC的长度为5.4米.【点评】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2021•攀枝花)钓鱼岛及其附属岛屿是中国的固有领土,神圣不可侵犯!自2021年2月1日起,旨在维护国家主权、更好履行海警机构职责的《中华人民共和国海警法》正式实施.中国海警在钓鱼岛海域开展巡航执法活动,是中方依法维护主权的正当举措.如图是钓鱼岛其中一个岛礁,若某测量船在海面上的点D处测得与斜坡AC坡脚点C的距离为140米,测得岛礁顶端A的仰角为30.96°,以及该斜坡AC的坡度i=,求该岛礁的高(即点A到海平面的铅垂高度).(结果保留整数)(参考数据:sin30.96°≈0.51,cos30.96°≈0.85,tan30.96°≈0.60)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力.【分析】根据斜坡AC的坡度i=,可设AB=5x米,BC=6x米,继而表示出BD的长度,再由tan30.96°≈0.60,可得关于x的方程,解出即可得出答案.【解答】解:∵斜坡AC的坡度i=,∴AB:BC=5:6,故可设AB=5x米,BC=6x米,在Rt△ADB中,∠D=30.96°,BD=(140+6x)米,∴tan30.96°==0.60,解得:x=60(米),经检验,x=60是方程的解,∴5x=300(米),答:该岛礁的高AB为300米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的定义,表示相关线段的长度.3.(2021•巴中)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)(1)求灯杆AB的高度;(2)求CD的长度.【考点】解直角三角形的应用﹣坡度坡角问题.【专题】解直角三角形及其应用;应用意识.【分析】(1)延长BA交CG于点E,根据直角三角形的性质求出AE,根据正切的定义求出CE,再根据正切的定义求出BE,计算即可;(2)根据正切的定义求出DE,进而求出CD.【解答】解:(1)延长BA交CG于点E,则BE⊥CG,在Rt△ACE中,∠ACE=30°,AC=12m,∴AE=AC=×12=6(m),CE=AC•cosα=12×=6(m),在Rt△BCE中,∠BCE=60°,∴BE=CE•tan∠BCE=6×=18(m),∴AB=BE﹣AE=18﹣6=12(m);(2)在Rt△BDE中,∠BDE=27°,∴CD=DE﹣CE=﹣6≈24.9(m).【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握正切的定义是解题的关键.4.(2021•青岛)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度.如图所示,其中观景平台斜坡DE的长是20米,坡角为37°,斜坡DE底部D 与大楼底端C的距离CD为74米,与地面CD垂直的路灯AE的高度是3米,从楼顶B 测得路灯AE顶端A处的俯角是42.6°.试求大楼BC的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin42.6°≈,cos42.6°≈,tan42.6°≈)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;推理能力;应用意识.【分析】延长AE交CD延长线于M,过A作AN⊥BC于N,则四边形AMCN是矩形,得NC=AM,AN=MC,由锐角三角函数定义求出EM、DM的长,得出AN的长,然后由锐角三角函数求出BN的长,即可求解.【解答】解:延长AE交CD延长线于M,过A作AN⊥BC于N,如图所示:则四边形AMCN是矩形,∴NC=AM,AN=MC,在Rt△EMD中,∠EDM=37°,∵sin∠EDM=,cos∠EDM=,∴EM=ED×sin37°≈20×=12(米),DM=ED×cos37°≈20×=16(米),∴AN=MC=CD+DM=74+16=90(米),在Rt△ANB中,∠BAN=42.6°,∵tan∠BAN=,∴BN=AN×tan42.6°≈90×=81(米),∴BC=BN+AE+EN=81+3+12=96(米),答:大楼BC的高度约为96米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m 的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力;应用意识.【分析】过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由锐角三角函数定义求出BD=CH=AH,再证△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【解答】解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即这棵古树的高AB为(9+4)m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,相似三角形的应用等知识,正确作出辅助线构造直角三角形,证明△EFG∽△ABG是解题的关键.6.(2021•盘锦)如图,小华遥控无人机从A处飞行到对面大厦MN的顶端M,无人机飞行方向与水平方向的夹角为37°,小华在A点测得大厦底部N的俯角为31°,两楼之间一棵树EF的顶点E恰好在视线AN上,已知树的高度为6m,且=,楼AB,MN,树EF均垂直于地面,问:无人机飞行的距离AM约是多少米?(结果保留整数.参考数据:cos31°≈0.86,tan31°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力;应用意识.【分析】过A作AC⊥MN于C,zm△EFN∽△ABN,得AB=3EF=18(m),则CN=18m,再由锐角三角函数定义求出AC≈30(m),然后在Rt△ACM中,由锐角三角函数定义求出AM的长即可.【解答】解:过A作AC⊥MN于C,如图所示:则CN=AB,AC=BN,∵=,∴=,由题意得:EF=6m,AB⊥BN,EF⊥BN,∴AB∥EF,∴△EFN∽△ABN,∴==,∴AB=3EF=18(m),∴CN=18m,在Rt△ACN中,tan∠CAN==tan31°≈0.60=,∴AC≈CN=×18=30(m),在Rt△ACM中,cos∠MAC==cos37°≈0.80=,∴AM=AC=×30≈38(m),即无人机飞行的距离AM约是38m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,相似三角形的应用等知识,正确作出辅助线构造直角三角形,证明△EFN∽△ABN是解题的关键.7.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;推理能力;应用意识.【分析】先求出BC=4.8m,再由锐角三角函数定义即可求解.【解答】解:∵山坡BM的坡度i=1:3,∴i=1:3=tan M,∵BC∥MN,∴∠CBD=∠M,∴tan∠CBD==tan M=1:3,∴BC=3CD=4.8(m),在Rt△ABC中,tan∠ACB==tan50°≈1.19,∴AB≈1.19BC=1.19×4.8≈5.7(m),即树AB的高度约为5.7m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数定义和坡度坡角定义,求出BC的长是解题的关键.8.(2021•鞍山)小明和小华约定一同去公园游玩,公园有南北两个门,北门A在南门B的正北方向,小明自公园北门A处出发,沿南偏东30°方向前往游乐场D处;小华自南门B处出发,沿正东方向行走150m到达C处,再沿北偏东22.6°方向前往游乐场D处与小明汇合(如图所示),两人所走的路程相同.求公园北门A与南门B之间的距离.(结果取整数.参考数据:sin22.6°≈,cos22.6°≈,tan22.6°≈,≈1.732)【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力.【分析】作DE⊥AB于E,CF⊥DE于F,易得四边形BCFE是矩形,则BE=CF,EF=BC=150 m,设DF=xm,则DE=(x+150)m,在Rt△ADE中利用含30度的直角三角形三边的关系得到AD=2DE=2(x+150)m,在Rt△DCF中,CD=≈xm,根据题意得到2(x+150)=+150,求得x的值,然后根据勾股定理求得AE 和BE,进而求得AB.【解答】解:作DE⊥AB于E,CF⊥DE于F,∵BC⊥AB,∴四边形BCFE是矩形,∴BE=CF,EF=BC=150 m,设DF=xm,则DE=(x+150)m,在Rt△ADE中,∠BAD=30°,∴AD=2DE=2(x+150)m,在Rt△DCF中,∠FCD=22.6°,∴CD=≈=xm,∵AD=CD+BC,∴2(x+150)=+150,解得x=250(m),∴DF=250 m,∴DE=250+150=400 m,∴AD=2DE=800 m,∴CD=800﹣150=650 m,由勾股定理得AE===400m,BE=CF===600 m,∴AB=AE+BE=400+600≈1293(m),答:公园北门A与南门B之间的距离约为1293 m.【点评】本题考查了解直角三角形的应用﹣方向角问题,正确构建直角三角形是解题的关键.9.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.13°28°32°锐角A三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.62【考点】解直角三角形的应用﹣坡度坡角问题.【专题】等腰三角形与直角三角形;解直角三角形及其应用;运算能力;推理能力;应用意识.【分析】(1)在Rt△ADF中,由锐角三角函数定义求出AF的长,再在Rt△AEF中,由锐角三角函数定义求出AE的长即可;(2)设DG交AB于M,过点A作AN⊥DG于N,由锐角三角函数定义求出DF、FG的长,得出AG的长,再由锐角三角函数定义求出AN的长,然后证△AMN为等腰直角三角形,得AM=AN≈123.1(cm),由EM=AM﹣AE,即可得出答案.【解答】解:(1)在Rt△ADF中,cos∠DAF=,∴AF=AD•cos∠DAF=100×cos28°=100×0.88=88(cm),在Rt△AEF中,cos∠EAF=,∴AE===≈91(cm);(2)设DG交AB于M,过点A作AN⊥DG于N,如图所示:∴∠AMN=∠MAG+∠DGA=13°+32°=45°,在Rt△ADF中,DF=AD•sin∠DAC=100×sin28°=100×0.47=47(cm),在Rt△DFG中,tan∠DGA=,∴tan32°=,∴FG==≈75.8(cm),∴AG=AF+FG=88+75.8=163.8(cm),在Rt△AGN中,AN=AG•sin∠DGA=163.8×sin32°=163.8×0.53≈86.8(cm),∵∠AMN=45°,∴△AMN为等腰直角三角形,∴AM=AN≈1.41×86.8≈122.4(cm),∴EM=AM﹣AE≈122.4﹣91≈31.4(cm),当M、H重合时,EH的值最小,∴EH的最小值约为32cm.【点评】本题考查了解直角三角形的应用—坡度坡角问题、等腰直角三角形的判定与性质等知识;熟练掌握锐角三角函数定义,求出AE、AM的长是解题的关键.10.(2021•抚顺)某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C 处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力;模型思想.【分析】(1)通过作辅助线,构造直角三角形,在Rt△ACD中,可求出CD、AD,根据外角的性质可求出∠B的度数,在Rt△BCD中求出BC即可;(2)计算AC+BC和AB的长,计算可得答案.【解答】解:(1)过点C作CD⊥AB于点D,由题意得,∠A=30°,∠BCE=75°,AC=600m,在Rt△ACD中,∠A=30°,AC=600,∴CD=AC=300(m),AD=AC=300(m),∵∠BCE=75°=∠A+∠B,∴∠B=75°﹣∠A=45°,∴CD=BD=300(m),BC=CD=300(m),答:景点B和C处之间的距离为300m;(2)由题意得.AC+BC=(600+300)m,AB=AD+BD=(300+300)m,AC+BC﹣AB=(600+300)﹣(300+300)≈204.6≈205(m),答:大桥修建后,从景点A到景点B比原来少走约205m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是解决问题的前提,构造直角三角形是解决问题的关键.。
2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。
专题26锐角三角函数(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

专题26 锐角三角函数一、锐角三角函数概念【高频考点精讲】在Rt △ABC 中,∠C =90°1、正弦:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sin A ,即sin A ==2、余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cos A ,即cos A =3、正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tan A ,即tan A =4、三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
【热点题型精练】1.(2022•天津中考)tan45°的值等于( )A .2B .1C .√22D .√332.(2022•淮南模拟)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )A .√55B .√105C .2D .12 3.(2022•荆州中考)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,OC :BC =1:2,连接AC ,过点O 作OP ∥AB 交AC 的延长线于P .若P (1,1),则tan ∠OAP 的值是( )A .√33B .√22C .13D .34.(2022•深圳模拟)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B ,C 在坐标轴上,若点A 的坐标为(0,3),tan∠ABO=√3,则菱形ABCD的周长为()A.6B.6√3C.12√3D.8√35.(2022•滨州中考)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为.6.(2022•扬州中考)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为.7.(2022•绥化中考)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=√22×√32+√22×12=√6+√24,则sin15°的值为.8.(2022•湖州中考)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.二、解直角三角形【高频考点精讲】1、解直角三角形常用关系(1)锐角、直角之间的关系:∠A+∠B=90°;(2)三边之间的关系:a2+b2=c2;(3)边角之间的关系sin A=,cos A=,tan A=(a,b,c分别是∠A、∠B、∠C的对边)2、sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;【热点题型精练】9.(2022•乐山中考)如图,在Rt△ABC中,∠C=90°,BC=√5,点D是AC上一点,连结BD.若tan∠A=1 2,tan ∠ABD =13,则CD 的长为( )A .2√5B .3C .√5D .210.(2022•通辽中考)如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos ∠ADC 的值为( )A .2√1313B .3√1313C .23D .√5311.(2022•宜宾中考)如图,在矩形纸片ABCD 中,AB =5,BC =3,将△BCD 沿BD 折叠到△BED 位置,DE 交AB 于点F ,则cos ∠ADF 的值为( )A .817B .715C .1517D .81512.(2022•济宁中考)如图,点A ,C ,D ,B 在⊙O 上,AC =BC ,∠ACB =90°.若CD =a ,tan ∠CBD =13,则AD 的长是 .13.(2022•河池中考)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .14.(2022•张家界中考)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD的面积是100,小正方形EFGH的面积是4,那么tan∠ADF=.三、解直角三角形的应用【高频考点精讲】1、坡度坡角问题(1)坡度是坡面的垂直高度h和水平宽度l的比,常用i表示。
江西省2023年中考备考数学一轮复习 锐角三角函数 练习题(含解析)

江西省2023年中考备考数学一轮复习锐角三角函数练习题一、单选题1.(2022·江西景德镇·统考三模)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长.如图,正十二边形的边长是4,则可求出此十二边形的周长近似代替其外接圆周长,便可估计π的值,下面π的值正确的是()A.π=6sin15︒B.π=12sin15︒C.π=6sin15°D.π=12sin15°2.(2022·江西赣州·B逆时针旋转30°,那么图中阴影部分的面积为()A.3BC.3D.13.(2022·江西九江·统考二模)如图,∠MON=60°.∠以点O为圆心,任意长度为半径画弧,分别交OM、ON于点A,C;∠分别以A,C为圆心,OA长为半径画弧,两弧交于点B;∠连接AB、BC.若OA=8cm,则四边形OABC的面积为()A.2B.224cmC .2D .2二、填空题4.(2022·江西·模拟预测)如图,在Rt ABC 中,∠BAC =90°,AD ∠BC ,垂足为点D ,线段AE 与线段CD 相交于点F ,且AE =AB ,连接DE ,∠E =∠C ,若AD =3DE ,则cos E 的值为________.5.(2022·江西抚州·统考一模)已知O 的半径为2,AB 是O 的弦,点P 在O 上,AB =P 到直线AB 的距离为1,则∠PAB 的度数为______.6.(2022·江西九江·统考三模)如图,矩形ABCD 中,3AB =,AD =E 是BC 的中点,点F 在AB 上,1FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为______.7.(2022·江西萍乡·统考一模)如图,矩形ABCD 中,AB =6,AD =E 是BC 的中点,点F 在AB 上,FB =2,P 是矩形上一动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当∠FPE =30°时,FP 的长为_____.8.(2022·江西赣州·统考二模)平面直角坐标系中,O 交x 轴正负半轴于点A 、B ,点P 为O 外y 轴正半轴上一点,C 为第三象限内O 上一点,PH CB ⊥交CB 延长线于点H ,已知2BPH BPO ∠=∠,15PH =,24CH =,则tan BAC ∠的值为______.9.(2022·江西萍乡·统考一模)如图,在平面直角坐标系中,等边ABC 的边BC 在x 轴上,其中点()()2,0,4,0B C ,将ABC 向左平移,某直线经过点()2,2,()4,3,当点A 落在此直线上时,则平移的距离为_______.10.(2022·江西赣州·统考二模)如图1,邻边长为2和6的矩形分割成∠,∠,∠,∠四块后,拼接成如图2不重叠、无缝隙的正方形ABCD ,则图1中EF 的长为_________.11.(2022·江西景德镇·统考三模)如图,直线y A ,B 两点,在平面直角坐标系内有一点C ,使△ABC 与△ABO 全等,则点C 的坐标为________.12.(2022·江西宜春·统考一模)如图,在Rt ∠ABC 中,∠C =90°,∠B =30°,BC =12,点D 为BC 的中点,点E 为AB 上一点,把∠BDE 沿DE 翻折得到∠FDE ,若FE 与∠ABC 的直角边垂直,则BE 的长为 _____.13.(2022·江西九江·统考一模)如图,在ABC 中,AB AC =,AD 是BC 边上的高,图中线段上一动点E ,若满足AE CE =,4AB =,30BAC ∠=︒,则以AE 为边长的正方形面积是______.14.(2022·江西南昌·统考二模)如图,点E 是矩形ABCD 边AB 上一点,将ADE 沿着DE 翻折得到A DE ',A E '与DC 交于F 点,若AD =3AE =,则EF =_______.三、解答题15.(2022·江西萍乡·统考二模)如图,双曲线(0)k y x x=>经过Rt AOB △斜边的中点P ,交直角边AB 于点Q ,连接OQ ,点A 的坐标为(8,4).(1)求直线OQ 的解析式;(2)求sin QOA ∠的值.16.(2022·江西赣州·统考一模)如图,在△ABC 中,∠ACB =90°,点O 在边BC 上,以点O 为圆心,OB 为半径的∠O 交AB 于点E ,D 为∠O 上一点,点B 是弧DE 中点.(1)如图1,若AE =BE ,求证:四边形ACDE 是平行四边形;(2)如图2,若OB =OC ,BE =2AE ,求tan∠CAD 的值.17.(2022·江西新余·统考一模)(1)计算:(023tan 60--︒+(2)解方程:28124x x x -=+- 18.(2022·江西上饶·统考二模)图,在直角坐标系中,直线1y ax b 与双曲线()20k y k x=≠分别相交于第二、四象限内的(),4A m ,()6,B n 两点,与x 轴相交于C 点,与y 轴相交于D 点.已知3OC =,2tan 3ACO ∠=.(1)点C 坐标是______,点D 坐标是______;(2)求1y ,2y 对应的函数表达式;(3)求AOB 的面积.19.(2022·江西九江·统考二模)如图,在AOB 中,AO BO =,AB 与O 相切于点C ,延长BO 交O 于点P 、Q .连接CP ,CQ .(1)若30A ∠=︒,求CPQ ∠的大小.(2)若1tan 2CPQ ∠=,O 的半径为.求边AB 的长度. 20.(2022·江西宜春·统考一模)计算:(1)012tan602⎛⎫-+︒ ⎪⎝⎭; (2)22411421m m m m m --÷--+-21.(2022·江西赣州·统考一模)(1)计算:()10132sin 603π-⎛⎫-+︒ ⎪⎝⎭(2)化简:211122x x x -⎛⎫-÷ ⎪++⎝⎭ 22.(2022·江西南昌·统考二模)(1)计算:1sin 30|1|2+︒--; (2)化简:22111x x x÷--.23.(2022·江西萍乡·统考二模)计算:)2013π2cos602-⎛⎫-+---︒ ⎪⎝⎭.24.(2022·江西抚州·统考一模)(103tan 60(2)π︒+-;(2)已知:如图,在ABCD 中,点E 、F 分别在AD 、BC 上,且BE 平分ABC ,EF .求证:四边形ABFE是菱形.25.(2022·江西南昌·模拟预测)(1)计算:2112cos 453-⎛⎫-︒+- ⎪⎝⎭. (2)如图,在△ABC 中,∠ACB =90°,角平分线AE 与高CD 交于点F ,求证:CE =CF .26.(2022·江西吉安·统考一模)(1)计算:())020221132sin 30-+-+︒ (2)如图,123l l l ∥∥,5AB =,4DE =,8EF =,求AC 的长.27.(2022·江西赣州·统考二模)如图1,菱形ABCD 中,AB =6.∠B =60°,四边形EFGB 的项点E ,G 分别在边BC 和AB 上,EF ∠CD ,FG ∠AD ,连接FD .(1)若DF 平分∠ADC ,求证:四边形EFGB 为菱形;(2)在(1)中的条件下,当EC =2时,将四边形EFGB 绕点B 顺时针旋转至图2所示的位置,连接AG . ∠猜想AG 与DF 的数量关系,并加以证明;∠当GF 过点C 时,求sin∠GBC 的值.28.(2022·江西·统考中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________;(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N .∠如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由;∠如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),(参考数据:sin15tan152︒=︒=︒= 29.(2022·江西景德镇·统考三模)如图,以△ABC 的一边AB 为直径的半圆O 与边AC ,BC 的交点分别为点 E ,点 D ,且D 是BE 的中点.(1)若∠A =80°,求∠DBE 的度数.(2)求证:AB =AC .(3)若∠O 的半径为5cm ,BC =12cm ,求线段BE 的长.30.(2022·江西赣州·统考一模)图1是小辉家一款家用落地式取暖器,如图2是其竖直放置在水平地面上时的侧面示意图,其中矩形ABCD 是取暖器的主体,四边形BEFC 是底座.已知//BC EF ,30∠=∠=︒BEF CFE ,且BE CF =,烘干架连杆GH 可绕边CD 上一点H 旋转,以调节角度.已知52cm =CD ,8cm BC =,20cm EF =,12cm DH =,16cm =GH .(1)求BE 的长;(精确到0.1cm 1.73≈)(2)当53GHD ∠=︒时,求点G 到地面EF 的距离.(精确到0.1cm ,参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈)31.(2022·江西上饶·统考一模)2020年我国建成5G 基站超60万个,5G 建设跑出“中国速度”.某地有一个5G 信号塔AB ,小敏想用所学的数学知识测量信号塔AB 的高度,她选择用树CD 和楼房来测量.首先在树的底部D 处测得信号塔的顶部A 的仰角为42°;然后她站在楼房上的点E 处恰好看到树的顶端C 、信号塔的顶端A 在一条直线上.测得树与楼房的距离DF =12米,CD =12米,EF =6米,已知点B 、D 、F三点共线,AB ∠BF ,CD ∠BF ,EF ∠BF ,测量示意图如图所示.请根据相关测量信息,求信号塔AB 的高度.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)32.(2022·江西·统考中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB CD FG ∥∥,A ,D ,H ,G 四点在同一直线上,测得72.9, 1.6m, 6.2m FEC A AD EF ∠=∠=︒==.(结果保留小数点后一位)(1)求证:四边形DEFG 为平行四边形;(2)求雕塑的高(即点G 到AB 的距离).(参考数据:sin72.90.96,cos72.90.29,tan72.9 3.25︒≈︒≈︒≈)33.(2022·江西吉安·统考一模)首钢滑雪大跳台是世界上首个永久性的单板大跳台,其优美的造型,独特的设计给全球观众留下深刻的印象,大跳台场地分为助滑区、起跳台、着陆坡和终点区域4个部分.现将大跳台抽象成右边的简图,FC 表示运送运动员上跳台的自动扶梯,CD 表示助滑区,Rt DEH △表示起跳台,EB 表示着陆坡.已知60CFA ∠=︒,30EBF ∠=︒,在助滑区D 处观察到顶点C 处的仰角是30°,且自动扶梯的速度是2m /s ,运送运动员到达跳台顶端C 点处需要30秒,24m BE =,DE BF ∥,CA 、DG 、EH 都垂直于BF .(1)求大跳台AC 的高度是多少米(结果精确到0.1m );(2)首钢滑雪大跳台主体结构采用装配式钢结构体系和预制构件,“助滑区”和“着陆坡”赛道面宽35米,面7850kg/m,求铺装“助滑区”和“着陆坡”赛道的耐候钢总重量是多少吨(结板采用10mm耐候钢,密度为3果精确到1吨). 1.41 1.73≈)参考答案:1.D【分析】连接半径OE 、OF ,过O 作OH ∠EF 于H ,求出3601230EOF ∠=︒÷=︒,根据等腰三角形三线合一的性质得到∠FOH =15°,EH =FH =2,利用三角函数求出OF ,根据正十二边形的周长近似代替其外接圆周长,列得22418sin15π⋅=⨯︒,即可求出答案. 【详解】解:如图,连接半径OE 、OF ,过O 作OH ∠EF 于H ,∠3601230EOF ∠=︒÷=︒,OE =OF ,∠∠FOH =15°,EH =FH =2,∠OF =2sin sin15FH FOH =∠︒, ∠正十二边形的周长近似代替其外接圆周长, ∠22418sin15π⋅=⨯︒, 解得π=12sin15°,故选:D .【点睛】此题考查了正多边形与圆的关系,锐角三角函数,等腰三角形的三线合一的性质,综合应用各知识点是解题的关键.2.C【分析】根据已知条件可证Rt ∠ABM ∠Rt ∠C 'BM ,只需算出三角形ABM 的面积,用正方形面积减去2倍的∠ABM 的面积,即可算出阴影部分面积.【详解】解:如图所示,连接BM ,由旋转可知,∠四边形ABCD 为正方形,∠AB =CB ´,∠BAM =∠BC ´M =90°,又∠BM =BM ,所以在Rt ∠ABM 与Rt ∠C ´BM 中,BM BM A BB C =⎧⎨=⎩' 所以Rt ∠ABM ∠Rt ∠C 'BM (HL ),∠∠ABA '=∠C 'BC =30°,∠∠ABM =∠C 'BM =30°,∠AM =AB ·tan30°=1,∠112ABM S =△, ∠四边形ABC 'MABCD ,∠阴影部分面积为:3,故选:C .【点睛】本题考查割补法求面积,全等三角形,以及三角函数的应用,能够熟练利用割补法求面积是解决本题的关键.3.D【分析】先确定OB 是∠MON 的角平分线,得出∠BON =30°,作BD ∠ON 于D ,根据等腰三角形的性质得出∠BCN =60°,解直角三角形求得BD ,然后根据三角形面积公式求得∠BOC 的面积,进而求得四边形OABC 的面积.【详解】解:由题意可知OB 是∠MON 的角平分线,∠∠MON =60°,∠∠BON =30°,作BD ∠ON 于D ,∠OC =BC =8cm ,∠∠BOC =∠OBC =30°,∠∠BCD =60°,∠BD∠S 四边形OABC =OC ×BD故选:D .【点睛】本题考查作图-复杂作图,等腰三角形的性质以及三角形的面积,解直角三角形求得BD 是解题的关键.4【分析】在AD 取点G 使AD =3AG ,连接BG ,证明∠ABG ∠∠EAD (SAS ),得出BG =AD =3DE =3AG ,由勾股定理得出BD,AB,再由三角函数定义即可得出答案.【详解】解:取AD 上的点G 使AD =3AG ,连接BG ,如图所示:,∠AD =3DE ,∠DE =AG ,∠∠BAC =90°,AD ∠BC ,∠∠ABC +∠C =∠ABC +∠BAG =90°,∠∠C =∠BAG ,∠∠C =∠E ,∠∠BAG =∠E ,在△ABG 和△EAD 中,AB EA BAG E AG ED =⎧⎪∠=∠⎨⎪=⎩,∠∠ABG ∠∠EAD (SAS ),∠BG =AD =3DE 3AG =,2,DG AG =∠BD=,∠AB,∠cos∠BAD =AD AB【点睛】本题考查的知识点有全等三角形的性质,勾股定理的性质,三角函数,解题的关键是构造出全等三角形,再结合勾股定理和三角函数确定各边之间的关系求解.5.15︒,30︒或105︒【分析】分三种情况:当PC∠AB交AB延长线上时,当AB垂直平分OP时,当点C在BA延长线上时,利用三角函数,平行四边形的性质分别求出∠PAB的度数.【详解】如图1,当PC∠AB交AB延长线上时,过点O作OE∠AB于E,∠AB=∠OA=2,∠cos∠OAE=AE=OA∠∠OAE=30°,∠OE=1,∠PC=1,OE∠AB,PC∠AB,∠PC=OE,PC∠OE,∠四边形PCEO是平行四边形,∠OP∠AC,∠∠OPA=∠PAB,∠OA=OP,∠∠OAP=∠OPA=∠PAB,∠∠PAB=15°;如图2,当AB垂直平分OP时,∠OP=2,∠PC=1,∠OA=2,OC=1,∠∠BAO=30°,∠∠AOC=60°,∠OA=OP,∠∠OAP=∠OPA=60°,∠AC∠OP,∠∠PAB=30°;如图3,当点C在BA延长线上时,可知四边形POEC是平行四边形,∠OP∠AB,∠∠AOP=∠OAB=30°,∠OA=OP,∠∠PAO=75°,∠∠PAB=∠PAO+∠OAB=105°,故答案为:15︒,30︒或105︒.【点睛】此题考查圆的垂径定理,平行四边形的判定及性质,等边三角形的判定及性质,等腰三角形的性质,锐角三角函数.6.2或4或【分析】如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心OF为半径画∠O交CD于P3.只要证明∠EP1F=∠FP2F=∠FP3E=30°,即可推出FP1=2,FP2=4,FP3=【详解】如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心OF为半径画∠O交CD 于P3.∠四边形ABCD是矩形,∠∠BAD=∠B=90°,AF=2,AD=∠BF=1,BE∠tan∠FEB=tan∠ADF∠∠ADF=∠FEB=30°,EF 2=,OF=OD=2,∠∠OEF是等边三角形,∠∠EP1F=∠FP2F=∠FP3E=30°,∠FP1=2,FP2=4,FP3=故答案为:2或4或【点睛】本题考查了矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.7.4或8或【分析】如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心画∠O交CD于P3.只F=∠FP2F=∠FP3E=30°,即可推出FP1=4,FP2=8,FP3=要证明∠EP【详解】如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心画∠O交CD于P3.∠四边形ABCD是矩形,∠∠BAD=∠B=90°,∠BF=2,BE=AF=4,AD=∠tan∠FEB=tan∠ADF∠∠ADF=∠FEB=30°,易知EF=OF=OD=4,∠∠OEF是等边三角形,∠∠EP1F=∠FP2F=∠FP3E=30°,∠FP1=4,FP2=8,FP3=故答案为4或8或【点睛】本题考查了矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.8.2 11【分析】要求tan∠BAC的值,可先求AC、BC,通过做辅助线,利用圆的对称性、相似三角形、全等三角形的性质求出相应的边长即可.【详解】设PB交∠O于点N,连接P A,延长PB、AC交于点M,如图所示,∠AB是直径,PH∠CB,∠∠ANP =90°=∠ACB =∠H ,∠MC PH ∥,由圆的对称性可得,PB =P A ,∠BPO =∠APO =12∠APB ,∠∠BPH =2∠BPO ,∠∠BPH =∠APB ,∠PHB PNA AAS ≅()△△, ∠PN =PH =15,由MC PH ∥得:∠HPB =∠M =∠APM ,∠AM =AP =PB ,∠AN ∠PM ,∠PM =2PN =30,由PHB MCB ~△△, ∠MC BC MB PH HB PB ==, 设MC =a ,BC =b ,MB =c , ∠152430a b c b c ==--,即有:45b c =, ∠4sin sin 5b M HPB c ===∠,即有3cos 5HPB ∠=, 在Rt ∠PHB 中,PH =15, ∠25cos PH PB HPB==∠,sin 20HB HPB PB =∠⨯=,∠BC =24-20=4,MB =30-25=5,则MC 3,在Rt ∠ABC 中,BC =4,AC =AM -MC =25-3=22, ∠42tan 2211BC BAC AC ∠===, 故答案为:211. 【点睛】考查圆、相似三角形的判定和性质、全等三角形的性质以及直角三角形的边角关系等知识,综合应用知识是解答本题的关键.9.5--【分析】过点A 作AD 垂直x 轴于点D ,则∠ADB =90°,根据等边三角形的性质和锐角三角函数可得AD 的长,利用待定系数法求出经过点()2,2,()4,3的直线l ,过点A 作AE x 轴交直线l 于点E ,求出点E 的坐标,求出AE ,即可得到平移的距离.【详解】解:如图,过点A 作AD 垂直x 轴于点D ,则∠ADB =90°,∠ABC 是等边三角形,且点()()2,0,4,0B C∠BC =AB =AC =2,∠ABC =60°∠AD =AB sin 60°=设直线l :y =kx +b 经过点()2,2,()4,3,得到2234k b k b =+⎧⎨=+⎩解得121k b ⎧=⎪⎨⎪=⎩ ∠y =12x +1 过点A 作AE x 轴交直线l 于点E ,∠当yx =2∠点E 的坐标是(2∠点A 的坐标是(3∠AE =3-(2)=5-∠平移的距离是5-故答案为:5-【点睛】本题考查了等边三角形的性质、锐角三角函数、待定系数法求函数解析式、平移等知识,待定系数法求一次函数解析式是解此题的关键.10.6-【分析】由面积不变,求出正方形的边长DG 和GH 的长,进而求出EF .【详解】解:∠矩形的邻边长为2和6∠矩形的面积为2×6=12∠正方形ABCD 由∠∠∠∠拼成,且不重叠、无缝隙∠正方形的面积=矩形面积=12∠CD∠DG∠sin∠3=DG CD ∠∠1+∠2=90°∠2+∠3=90°∠∠1=∠3∠sin∠1=DC DH ∠DH∠GH =DH -DG∠EF =6-【点睛】本题考查矩形和正方形的性质,勾股定理以及锐角三角函数,解决本题的关键是利用三角函数求边长.11.(3或(32)或(32,【分析】先求得A (0,B (3,0),再利用特殊角的三角函数值求得∠ABO =30°,再分类讨论即可求解.【详解】解:令x =0,则y y =0,则x =3,∠A (0,B (3,0),∠OA OB =3,∠tan∠ABO =AO BO∠∠ABO =30°,∠BAO =60°,当△OAB ∠△C 1BA 时,∠C 1B =OA C 1A = OB =3,∠C 1 (3;当△OAB ∠△C 2AB 时,∠C 2B = OB =3,C 2A =OA∠∠C 2AD =180°-60°-60°=60°,则∠DC 2A =30°,∠AD =12C 2A DC 2=32,∠C 2 (32); 当△OAB ∠△C 3BA 时,同理得C 3 (32,;综上,点C 的坐标为(3或(32)或(32,.故答案为:(3或(32)或(32,. 【点睛】本题考查了一次函数与坐标轴的交点坐标,特殊角的三角函数值,勾股定理,全等三角形的判定和性质,分类讨论是解题的关键.12.6【分析】分三种情况:∠当FE ∠BC ,如图1设射线FE 交BC 于点G ,由∠BDE 沿DE 翻折得到∠FDE ,可得∠B =∠F =30°,∠BDE =∠FDE =12∠BDF ,再由EF ∠BC 得∠BDE =∠B =30°,于是可求出BG =DG =3,从而可求出BE 的长;∠当EF ∠BC 时,可得BE =2GE∠当EF ∠AC 时,可得BE =BD =6.【详解】解:∠当FE ∠BC ,设射线FE 交BC 于点G ,如图1,∠B =30°,∠BDE 沿DE 翻折得到∠FDE ,∴∠B =∠F =30°,∠BDE =∠FDE =12∠BDFEF ∠BC ,∴∠BDF =90°-30°=60°∴∠BDE =∠FDE =12∠BDF =30°,∴∠BDE =∠B =30°,FE ∠BC ,∴ BG =DG =111222BD BC =⨯=3,在Rt BEG △中,∠B =30°,BG =3,∴BE =cos 330BG=︒∠当EF ∠BC 时,如图2,∠B =30°,EF ∠BC ,∴∠BEG =60°,∠BDE 沿DE 翻折得到∠FDE ,∴∠BED =∠FED =12∠BEG =30°,∴∠BED =∠B =30°,∴ BE =BD =12BC =6,在Rt DEG 中,∠DEG =30°,DG =12DE =3,∴GE=在Rt∠BEG中,∠B=30°,∴BE=2GE=6√3;∠当EF∠AC时,如图3,EF∠AC,∠C=90°,∴EF// BC,∴∠AEF=∠B=30° ,∠BDE沿DE翻折得到∠FDE,∴∠BED=∠FED=12∠BEF=75°,∴∠BDE=180°-∠BED-∠B=75°,∴∠BDE=∠BED,∴BE=BD=12BC=6,综上所述BE的长为6,故答案为:6.【点睛】本题考查直角三角形中的翻折问题,解题的关键是熟练运用含30°角的直角三角形三边关系.13.163或32-4【分析】由题可知,点E在AC的垂直平分线上,由此可确定出点E的具体位置,即符合条件的点E有3个,利用三角函数与勾股定理进行求解即可.【详解】解:AE CE=,∴点E在AC的垂直平分线上.作AC的垂直平分线,交AB于1E,交AD于2E,交AC于3E,则1E,2E,3E都是符合题意的点E,且3112 22AE AC AB===,312cos cos30AEAEBAC====∠︒1311 sin sin302E E AE BAC=∠=︒==过点2E作2E F AB⊥于F,AB AC=,AD BC⊥,∴AD平分BAC∠,又2E F AB⊥,23E E AC⊥,∴223E F E E=.设223E F E E x==,则121323E E E E E E x=-=,13E E AC⊥,30BAC∠=︒,∴1360AE E∠=︒,∴21312sinE FAE EE E∠=2xx=,解得4x=-2234E F E E==-∴2AE综上,AE2.∴以AE为边长的正方形的面积为163或32-4.【点睛】本题考查了垂直平分线的判定,角平分线的性质定理,等腰三角形的三线合一,三角函数的应用,勾股定理解直角三角形,解决本题的关键是找到所有符合条件的点E的位置.14.2【分析】根据矩形的性质和AD=3AE=,可得∠CDE=∠AED=30°,再由折叠的性质可得60,A DE ADE A D AD ''∠=∠=︒==3A E AE '==,从而得到30A DF '∠=︒,进而得到1A F '=,即可求解.【详解】解:在矩形ABCD 中,∠A =90°,CD ∠AB ,∠∠CDE =∠AED ,∠AD =3AE =,∠tan AD AED AE ∠==, ∠∠CDE =∠AED =30°,∠∠ADE =60°,根据题意得:60,A DE ADE A D AD ''∠=∠=︒==3A E AE '==,∠30A DF '∠=︒,∠30FDE DEF ∠=∠=︒,∠DF =EF ,∠tan 1A F A D A DF '''=⋅∠=, ∠DF =2,∠EF =2.故答案为:2【点睛】本题主要考查了矩形和折叠,解直角三角形,熟练掌握矩形的性质,折叠的性质是解题的关键. 15.(1)2y x = (2)35【分析】(1)先求点A 的坐标为(8,4),将点P 坐标代入到双曲线(0)k y x x =>中,即可求出k ,得到8y x =,再求出(2,4)Q ,代入设直线OQ 的解析式为y ax =,即可求解.(2)过点Q 作QD OA ⊥于点D ,求出QD ,OQ 的长,即可求得3sin 5QD QOA OQ ∠==. (1)解:∠OA 的中点是P ,点A 的坐标为(8,4),∠(4,2)P .∠双曲线(0)k y x x=>经过点P ;∠428k =⨯=,∠8y x=. ∠AOB 为直角三角形,∠//AB x 轴,∠A ,Q 两点的纵坐标相等,均为4,∠(2,4)Q .设直线OQ 的解析式为y ax =,∠42a =,解得2a =.∠直线OQ 的解析式为2y x =.(2)如图,过点Q 作QD OA ⊥于点D , ∠sin QD OB A AQ OA ==,∠6QD =,解得QD =, ∠在Rt OQD中,3sin 5QD QOA OQ ∠==.【点睛】本题考查待定系数法求一次函数、反比例函数的解析式,以及构造直角三角形求三角比,解决本题的关键是明确反比例函数图象上点的坐标特征.16.(1)证明见详解;(2)2tan 5CAD . 【分析】(1)连接CE ,则CE BE =,证明//AE CD ,AE CD =即可.(2)连接DE ,设2AE =,4BE =,则22612AE AE AB ,求出CF ,AC 即可解决问题.【详解】解:(1)连接CE ,则CEBE =,ECB B ,点B 是弧DE 中点∠BD BE ,∴BCD ECB ∠=∠,BCD B ∴∠=∠,//AB CD ∴,又CD CE AE ,//AE CD ,∴四边形ACDE 是平行四边形;(2)连接DE ,设2AE =,4BE =,则22612AE AE AB ,∴=AC BC ∴=设DE 交BC 于点H ,AD 交BC 于点F ,由(1)知DE BC ⊥,DH EH =, 又23EHBH BE AC BC AB ,463BH , 263CH , EH DH ,∴23DHFH AC CF ,3326265535CF CH , 25tan 523CFCAD AC .【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识添加辅助线,灵活运用所学知识解决问题,是解题的关键.17.(1)3(2)无解,2x =-是分式方程的增根【分析】(1)先计算绝对值、正切、零指数幂,二次根式的化简,然后进行加减运算即可; (2)先去分母、去括号,然后移项合并、系数化为1,最后检验即可.(1)解:(023tan 60--︒+231=-+3=(2)解:28124x x x -=+- 去分母得:()()2248x x x ---=去括号得:22248x x x --+=移项合并得:24x -=系数化为1得:2x =-将2x =-代入原式检验得,2x =-不是原分式方程的解,是原分式方程的增根.【点睛】本题考查了绝对值,正切,零指数幂,二次根式的化简,解分式方程.解题的关键在于正确的计算. 18.(1)()3,0,()0,2 (2)1223y x =-+,212y x=- (3)9【分析】(1)根据3OC =,2tan 3ACO ∠=即可分别求得; (2) 首先把C 、D 点的坐标分别代入()10y ax b a =+≠,利用待定系数法即可求得直线1y 的表达式;再把A ,B 的坐标分别代入1y ,即可求得()3,4A -,()6,2B -,据此即可求得反比例函数的表达式;(3)由AOB AOC BOC S S S =+△△△即可求得.(1)解:3OC =,∴点C 坐标是()3,0,2tan 3OD ACO OC ∠== =2OD ∴,∴点D 坐标是()0,2;(2)解:把C 、D 点的坐标分别代入()10y ax b a =+≠,得则302a b b +=⎧⎨=⎩,解得232a b ⎧=-⎪⎨⎪=⎩, ∠直线1y 的表达式为223y x =-+, 把A ,B 的坐标分别代入1223y x =-+,得3m =-,2n =-, ∠()3,4A -,()6,2B -,∠3412k =-⨯=-,∠反比例函数的表达式为212y x=-; (3) 解:113432922AOB AOC BOC S S S =+=⨯⨯+⨯⨯=△△△. 【点睛】本题考查了正切函数的定义,利用待定系数法求一次函数及反比例函数的解析式,求不规则图形的面积,采用数形结合的思想是解决此类题的关键.19.(1)30°(2)【分析】(1)根据切线的性质求出60COB ∠=︒,再根据圆周角定理求CPQ ∠的大小即可;(2)证明BQC BCP △∽△结合1tan 2CPQ ∠=即可求出BQ 的长度,再由相似得到的比例即可求出BC 的长度,最后根据AB =2BC 求值即可.(1)如图,连接CO .∠AB 与O 相切于点C ,∠CO AB ⊥.∠,30AO BO A =∠=︒,∠30,60B A COB ∠=∠=︒∠=︒, ∠1302CPQ COB ∠=∠=︒.(2)∠PQ 是O 的直径,∠90PCQ ∠=︒. ∠1tan 2CPQ ∠=, ∠12CQ CP =∠90PCQ OCB ∠=∠=︒, OC OP =,∠OPC OCP BCQ ∠=∠=∠.∠B B ∠=∠,∠BQC BCP △∽△, ∠12BQ BC CQ BC BP CO ===,∠2,2BP BC BC BQ ==,∠4BP BQ BQ ==+BQ =∠BC =∠AB =【点睛】本题综合考查切线的性质、圆周角定理、正切、相似三角形的性质与判定、等腰三角形的性质,考查的知识点比较多,但是都比较简单,正确的作出辅助线是解题的关键.20.(1)3;(2)11m - 【分析】(1)先代入特殊角的三角函数值,根据零次幂和绝对值的法则求出结果,即可求出答案;(2)先计算分式的除法,再计算同分母分式的加法即可求出结果.【详解】解:(1)012tan602⎛⎫-+︒ ⎪⎝⎭,=12+, =3;(2)22411421m m m m m --÷--+-, ()()()2221=2211m m m m m m -+⨯--+--, 21=11m m ---, 1=1m - 【点睛】本题主要考查了特殊角的三角函数、零次幂和绝对值以及分式的混合运算,能将分式的分子分母因式分解及熟记特殊角的三角函数是解题的关键.21.(1)4(2)11x --【分析】(1)任意非零数的零次幂为1,113-⎛⎫ ⎪⎝⎭表示13sin60°的值,计算即可得到答案;(2)按照分式的混合运算法则进行计算即可.【详解】解:(1)原式=132+- =4(2)原式=1(2)2×2(1)(1)x x x x x -++++- =12×2(1)(1)x x x x x --+++- =11x -- 【点睛】本题考查实数的计算及分式的混合运算,计算过程中需注意符号问题.22.(1)0;(2)1x x + 【分析】(1)直接根据特殊角的三角函数值和绝对值的意义先求出各自的值,再加减;(2)先把除法转化成乘法,并把分子父母进行分解因式,再约分即可.【详解】解:(1)原式111022=+-= (2)原式1(1)(1)(1)1x x x x x x =⋅-=+⋅-+ 【点睛】本题考查了特殊角的三角函数值、绝对值的意义,分式的化简,掌握特殊角的三角函数值和分式除法法则、约分方法是解题的关键.23.-1【分析】先将原式中的每一项分别按照绝对值的意义、零指数幂法则、负整数指数幂法则、特殊角的三角函数值计算,然后再进行加减运算即可得解.【详解】原式()21312244112=+---⨯=--=-. 故答案是:1-【点睛】本题考查了绝对值的意义、零指数幂法则、负整数指数幂法则、特殊角的三角函数值以及实数的加减运算,熟练掌握相关知识点是解决问题的关键.24.(1)1;(2)见解析【分析】(1)原式利用零指数幂、二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)先证四边形ABFE 是平行四边形,由平行线的性质和角平分线的性质可得AB =AE .可得结论.【详解】解(103tan 60(2)π︒+-=31=1(2)证明:∠四边形ABCD 是平行四边形,∠AD ∠BC ,又∠EF ∠AB ,∠四边形ABFE 是平行四边形,∠BE 平分∠ABC ,∠∠ABE =∠FBE ,∠AD ∠BC ,∠∠AEB =∠EBF ,∠∠ABE =∠AEB ,∠AB =AE ,∠平行四边形ABFE 是菱形.【点睛】此题考查了实数的运算,菱形的判定,平行四边形的性质,角平分线的性质等知识,证明AB =AE 是解题的关键.25.(1)8;(2)见解析【分析】(1)计算绝对值、特殊角的三角函数值、负整数指数幂,再合并即可;(2)根据直角三角形两锐角互余求得∠B =∠ACD ,然后根据三角形外角的性质求得∠CEF =∠CFE ,根据等角对等边求得CE =CF .【详解】(1)解:2112cos 453-⎛⎫-︒+- ⎪⎝⎭129=-19==8;(2)证明:∠在△ABC 中,∠ACB =90°,∠∠B +∠BAC =90°,∠CD 是AB 边上的高,∠∠ACD +∠BAC =90°,∠∠B =∠ACD ,∠AE 是∠BAC 的角平分线,∠∠BAE =∠EAC ,∠∠B +∠BAE =∠ACD +∠EAC ,即∠CEF =∠CFE ,∠CE =CF .【点睛】本题考查了特殊角的三角函数值,负整数指数幂,直角三角形的性质,三角形外角的性质,等腰三角形的判定等,熟练掌握性质定理是解题的关键.26.(1(2)15【分析】(1)分别利用乘方、绝对值的性质、求特殊角的三角形函数值及零指数幂的运算法则进行化简计算,再合并即可得出结果;(2)利用平行线分线段成比例定理,列式计算求解即可.【详解】解:(1)())020221132sin 30-+-+︒1-1+2×121-1+1(2)∠123l l l ∥∥,,5AB =,4DE =,8EF =, ∠AB DE BC EF=,即548BC =, ∠BC =10,∠AC =AB +BC =5+10=15.【点睛】本题考查了实数的运算,平行线分线段成比例定理,熟记特殊角的三角形函数值,掌握平行线分线段成比例定理是解题的关键.27.(1)见详解;(2)∠DF =;∠sin GBC ∠= 【分析】(1)连接BD ,由题意易得点F 在BD 上,然后再根据菱形的性质进行求证即可;(2)∠连接BD 、BF ,由题意易得BD 、BF ,再根据相似三角形的对应边成比例得到AG 和DF 的关系即可;∠根据正切的定义得到CH 和HC 之间的关系,然后利用勾股定理列方程即可求出HC ,进而问题可求解.【详解】(1)证明:连接BD ,如图所示:∠四边形ABCD 是菱形,∠BD 平分∠ADC ,∠ABD =∠CBD ,∠DF 也平分∠ADC ,∠点F 在线段BD 上,∠GF ∠AD ∠BC ,∠∠GFB =∠CBD =∠ABD ,∠GF =GB ,∠EF ∠CD ∠AB ,FG ∠BC ,∠四边形EFGB 是菱形;(2)解:∠DF ,理由如下:连接BD 、BF 、AC ,如图所示:∠30ABD CBD ∠=∠=︒,AC ∠BD ,由(1)可得60GBE ABC ∠=∠=︒,则有30GBF EBF ∠=∠=︒,由旋转的性质可得ABG DBF ∠=∠,∠6,60,2AB ABC EC =∠=︒=,∠4,26cos30BG BD ==⨯⨯︒=同理可得24cos30BF =⨯⨯︒=∠AB BG BD BF ===,即AB BG BD BF =, ∠ABG DBF ∽,∠AB AG BD DF ==∠DF ;∠作CH ∠BG ,交BG 的延长线于点H ,如图所示:∠//GF BE ,∠60HGC GBE ∠=∠=︒,∠tan HC HGC GH=∠=∠GH =, ∠222BH HC BC +=,∠22436HC ⎛⎫+= ⎪ ⎪⎝⎭,解得:HC =∠sin HC GBC BC ∠== 【点睛】本题主要考查菱形的性质、旋转的性质、相似三角形的性质与判定及三角函数,熟练掌握菱形的性质、旋转的性质、相似三角形的性质与判定及三角函数是解题的关键.28.(1)1,1,114S S =(2)∠OMN 是等边三角形,理由见解析;1 (3)tan,1tan 4522αα⎛⎫-︒- ⎪⎝⎭【分析】(1)如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,OE 与OC 重合,此时重叠部分的面积=∠OBC 的面积=14正方形ABCD 的面积=1;当OF 与BC 垂直时,OE ∠BC ,重叠部分的面积=14正方形ABCD 的面积=1;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积S 1与S 的关系为S 1=14S .利用全等三角形的性质证明即可; (2)∠结论:∠OMN 是等边三角形.证明OM =ON ,可得结论;∠如图3中,连接OC ,过点O 作OJ ∠BC 于点J .证明∠OCM ∠∠OCN (SAS ),推出∠COM =∠CON =30°,解直角三角形求出OJ ,即可解决问题;(3)如图4-1中,过点O 作OQ ∠BC 于点Q ,当BM =CN 时,∠OMN 的面积最小,即S 2最小.如图4-2中,当CM =CN 时,S 2最大.分别求解即可.(1)如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,OE 与OC 重合,此时重叠部分的面积=∠OBC 的面积=14正方形ABCD 的面积=1; 当OF 与BC 垂直时,OE ∠BC ,重叠部分的面积=14正方形ABCD 的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=14 S.理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM∠AB于点M,ON∠BC于点N.∠O是正方形ABCD的中心,∠OM=ON,∠∠OMB=∠ONB=∠B=90°,∠四边形OMBN是矩形,∠OM=ON,∠四边形OMBN是正方形,∠∠MON=∠EOF=90°,∠∠MOJ=∠NOK,∠∠OMJ=∠ONK=90°,∠∠OMJ∠∠ONK(AAS),∠S△PMJ=S△ONK,∠S四边形OKBJ=S正方形OMBN=14S正方形ABCD,∠S1=14 S.故答案为:1,1,S1=14 S.(2)∠如图2中,结论:∠OMN是等边三角形.理由:过点O作OT∠BC,∠O是正方形ABCD的中心,∠BT=CT,∠BM=CN,∠MT=TN,∠OT∠MN,∠OM=ON,∠∠MON=60°,∠∠MON是等边三角形;∠如图3中,连接OC,过点O作OJ∠BC于点J.∠CM=CN,∠OCM=∠OCN,OC=OC,∠∠OCM∠∠OCN(SAS),∠∠COM=∠CON=30°,∠∠OMJ=∠COM+∠OCM=75°,∠OJ∠CB,∠∠JOM=90°-75°=15°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023年中考数学一轮专题练习 ——锐角三角函数一、单选题(本大题共10小题)1. (天津市2022年)tan 45︒的值等于( )A .2B .1C D 2. (陕西省2022年(A 卷))如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .3. (吉林省长春市2022年)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin ABBCα=B .sin BCABα=C .sin ABACα=D .sin ACABα=4. (湖北省荆州市2022年)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B .C .13D .35. (四川省广元市2022年)如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( )A B .C .25D 6. (湖北省江汉油田、潜江、天门、仙桃2022年)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 7. (贵州省黔东南州2022年)如图,PA 、PB 分别与O 相切于点A 、B ,连接PO 并延长与O 交于点C 、D ,若12CD =,8PA =,则sin ADB ∠的值为( )A .45 B .35C .34D .438. (云南省2022年)如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .13129. (湖南省湘潭市2022年)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 10. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共12小题) 11. (广东省2022年)sin30°的值为 .12. (山东省滨州市2022年)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sin A = . 13. (江苏省扬州市2022年)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为 .14. (湖南省益阳市2022年)如图,在Rt △ABC 中,∠C =90°,若sin A =45,则cos B =_____.15. (江苏省常州市2022年)如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠= .16. (四川省凉山州2022年)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ⊥CD 于点C ,BD ⊥CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为 .17. (黑龙江省绥化市2022年)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为 . 18. (江苏省连云港市2022年)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A = .19. (山东省泰安市肥城市汶阳镇初级中学2021-2022学年)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠= .20. (广西河池市2022年)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .21. (四川省凉山州2022年)如图,在边长为1的正方形网格中,⊙O 是△ABC 的外接圆,点A ,B ,O 在格点上,则cos ∠ACB 的值是 .22. (湖南省湘西州2022年中考数学试卷)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍. 用公式可描述为:a 2=b 2+c 2﹣2bc cos A b 2=a 2+c 2﹣2ac cos B c 2=a 2+b 2﹣2ab cos C现已知在△ABC 中,AB =3,AC =4,∠A =60°,则BC =_____. 三、解答题(本大题共9小题)23. (湖南省湘西州20222tan45°+|﹣3|+(π﹣2022)0.24. (2022年西藏中考数学真题试卷)计算:01|()tan 452+︒.25. (湖南省岳阳市2022年)计算:2022032tan 45(1))π--︒+--.26. (湖南省株洲市2022年)计算:()202212sin 30-︒.27. (2022年四川省乐山市中考数学真题)1sin 302-︒28. (湖南省常德市2022年中考数学试题)计算:213sin 30452-︒︒⎛⎫- ⎪⎝⎭29. (浙江省湖州市2022年)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.30. (黑龙江省哈尔滨市2022年)先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.31. (黑龙江省哈尔滨市2021年)先化简,再求代数式2323111a a a a a +⎛⎫-÷⎪---⎝⎭的值,其中2sin 451a =︒-.参考答案1. 【答案】B 【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC , ∴根据正切定义,tan 1BCA AC∠==, ∵∠A =45°, ∴tan 451︒=, 故选 B . 2. 【答案】D 【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 【详解】解:∵26BD CD ==, ∴3CD =,∵直角ADC 中,tan 2C ∠=, ∴tan 326AD CD C =⋅∠=⨯=,∴直角ABD △中,由勾股定理可得,AB === 故选D . 3. 【答案】D 【分析】根据正弦三角函数的定义判断即可. 【详解】∵BC ⊥AC ,∴△ABC 是直角三角形, ∵∠ABC =α, ∴sin ACABα=, 故选:D . 4. 【答案】C 【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解. 【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°, 又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形, ∴OA =OB ,设OC =x ,则OB =2OC =2x , 则OB =OA =3x , ∴tan 133OC x OAP OA x ∠===. 5. 【答案】B 【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案. 【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∥AB , ∴∠APC =∠EDC .在△DCE 中,有EC DC 5DE ==, ∴22252025EC DC DE +=+==, ∴DCE ∆是直角三角形,且90DCE ∠=︒,∴cos ∠APC =cos ∠EDC=DC DE =故选:B . 6. 【答案】C 【分析】证明四边形ADBC 为菱形,求得∠ABC =30°,利用特殊角的三角函数值即可求解. 【详解】解:连接AD ,如图:∵网格是有一个角60°为菱形,∴△AOD 、△BCE 、△BCD 、△ACD 都是等边三角形, ∴AD = BD = BC = AC ,∴四边形ADBC 为菱形,且∠DBC =60°, ∴∠ABD =∠ABC =30°, ∴tan ∠ABC = tan30°= 故选:C . 7. 【答案】A 【分析】连结OA ,根据切线长的性质得出PA =PB ,OP 平分∠APB ,OP ⊥AP ,再证△APD ≌△BPD (SAS ),然后证明∠AOP =∠ADP +∠OAD =∠ADP +∠BDP =∠ADB , 利用勾股定理求出OP=10=,最后利用三角函数定义计算即可. 【详解】 解:连结OA∵PA 、PB 分别与O 相切于点A 、B , ∴PA =PB ,OP 平分∠APB ,OP ⊥AP , ∴∠APD =∠BPD , 在△APD 和△BPD 中, AP BPAPD BPD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△BPD(SAS)∴∠ADP=∠BDP,∵OA=OD=6,∴∠OAD=∠ADP=∠BDP,∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,在Rt△AOP中,OP10=,∴sin∠ADB=84105 APOP==.故选A.8. 【答案】B 【分析】先根据垂径定理求出12CE CD=,再根据余弦的定义进行解答即可.【详解】解:∵AB是⊙O的直径,AB⟂CD.∴112,902CE CD OEC==∠=︒,OC=12AB=13,∴12 cos13CEOCEOC∠==.故选:B.9. 【答案】A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a,则较长的直角边为a+1,再接着利用勾股定理得到关于a的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tanα的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a,则较长的直角边为a+1,其中a>0,∴a2+(a+1)2=5,其中a>0,解得:a1=1,a2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .10. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明()DOF COE ASA ≌得到EC =FD ,再证明()EAC FBD SAS ≌得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即AE BF ⊥;②通过等弦对等角可证明45OPA OBA ∠=∠=︒;③通过正切定义得tan BE BP BAE AB AP ∠==,利用合比性质变形得到CE BP AP BP BE ⋅-=,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE ⋅-=∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒∴AOP AEC ∽ ∴OP AO CE AE= ∴OP AE CE AO⋅= ∴OP AE BP AP BP AO BE⋅⋅-=⋅ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC==设正方形边长为5a ,则BC =5a ,OB =OC , 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅== ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF∴S 四边形OECF = S △DOF +S △COF = S △COD∵S △COD =14ABCD S 正方形∴S 四边形OECF =14ABCD S 正方形所以⑤正确;综上,①②③⑤正确,④错误,故选 B11. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 故答案为:1212. 【答案】1213 【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∵∠C =90°,AC =5,BC =12,∴AB=13,∴sin A =1213BC AB =.故答案为:1213.13. 【详解】 解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c⎛⎫+= ⎪⎝⎭,求出a c =或a c =∴在Rt ABC 中:in s a c A ==,故答案为: 14. 【答案】45 【分析】根据三角函数的定义即可得到cos B =sin A =45. 【详解】解:在Rt △ABC 中,∠C =90°,∵sin A =BC AB =45, ∴cos B =BC AB =45. 故答案为:45. 【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.15. 【分析】 过点D 作BC 的垂线交于E ,证明出四边形ABED 为矩形,BCD △为等腰三角形,由勾股定理算出DE BD =【详解】解:过点D 作BC 的垂线交于E ,90DEB ∴∠=︒90A ABC ∠=∠=︒,∴四边形ABED 为矩形,//,1DE AB AD BE ∴==,ABD BDE ∴∠=∠, BD 平分ADC ∠,ADB CDB ∴∠=∠,//AD BE ,ADB CBD ∴∠=∠,∴∠CDB =∠CBD3CD CB ∴==,1AD BE ==,2CE =∴,DE ∴BD ∴sinBE BDE BD ∴∠==,sin ABD ∴∠=故答案为:16. 【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.17. 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos45sin30︒︒︒︒-=12==故答案为: 18. 【答案】45 【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC =, ∴4sin =5CE A AC =, 故答案为:45.19. 【答案】725【分析】根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt △EGF ~Rt △EAG ,求得253EA =,再利用勾股定理得到DE 的长,即可求解. 【详解】矩形ABCD 中,GC=4,CE =3,∠C=90︒,∴5==,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90︒,∴BG=GF=GC=4,∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt△EGF~Rt△EAG,∴EG EFEA EG=,即535EA=,∴253 EA=,∴73 =,∴773sin DAE25253DEAE∠===,故答案为:725.20. 【答案】58##0.625【分析】先判断出四边形ABEF是正方形,进而判断出△ABG≌△BEH,得出∠BAG=∠EBH,进而求出∠AOB=90°,再判断出△AOB~△ABG,求出OA OB=△OBM~△OAN,求出BM=1,即可求出答案.【详解】解:∵点E,F分别是BC,AD的中点,∴11,22AF AD BE BC==,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,AD=BC,∴12AF BE AD==,∴四边形ABEF是矩形,由题意知,AD=2AB,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG ≌△BEH (SAS ),∴∠BAG =∠EBH ,∴∠BAG +∠ABO =∠EBH +∠ABO =∠ABG =90°, ∴∠AOB =90°,∵BG =EH =25BE =2, ∴BE =5,∴AF =5,∴AG =∵∠OAB =∠BAG ,∠AOB =∠ABG , ∴△AOB ∽△ABG , ∴OA OB AB AB BG AG ==,即52OA OB ==∴OA OB ==, ∵OM ⊥ON ,∴∠MON =90°=∠AOB ,∴∠BOM =∠AON ,∵∠BAG +∠FAG =90°,∠ABO +∠EBH =90°,∠BAG =∠EBH , ∴∠OBM =∠OAN ,∴△OBM ~△OAN , ∴OB BM OA AN=, ∵点N 是AF 的中点, ∴1522AN AF ==,∴52BM =,解得:BM =1, ∴AM =AB -BM =4, ∴552tan 48AN AMN AM ∠===. 故答案为:5821. 【分析】 取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ⊥AB ,则OB ==cos ∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∴OD ⊥AB ,∴∠ODB =90°,∴OB ==cos ∠DOB =13OD OB ==, ∵OA =OB ,∴∠BOD =12∠AOB ,∵∠ACB =12∠AOB ,∴∠ACB =∠DOB ,∴cos ∠ACB = cos ∠DOB =故答案为:22. 【分析】从阅读可得:BC 2=AB 2+AC 2﹣2AB AC cos A ,将数值代入求得结果.【详解】解:由题意可得,BC 2=AB 2+AC 2﹣2AB •AC •cos A=32+42﹣2×3×4cos60°=13,∴BC故答案为:【点睛】本题考查了阅读理解能力,特殊角锐角三角函数值等知识,解决问题的关键是公式的具体情景运用.23. 【答案】6【分析】先计算算术平方根、绝对值、零指数幂、特殊角三角函数值,再合并即可.【详解】解:原式=4﹣2×1+3+1=4﹣2+3+1=6【点睛】此题考查的是算术平方根、绝对值、零指数幂、特殊角三角函数值,掌握其运算法则是解决此题的关键.24. 【答案】2【分析】根据绝对值的意义,零指数幂的定义,数的开方法则以及特殊角的三角函数的值代入计算即可.【详解】解:01|()tan 452+︒11-2=【点睛】此题考查了实数的运算,熟练掌握运算法则和方法是解本题的关键. 25. 【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.26. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()2022112sin 3013213132-︒=+-⨯=+-=. 27. 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】 解:原式113322=+-=. 28. 【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.29. 【答案】AC =4,sin A =35 【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =90°,AB =5,BC =3,∴4AC .3sin 5BC A AB ==.30. 【答案】11x -,2【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】 解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅-11x =-∵2112x =⨯+=∴原式==31. 【答案】11a +,【分析】先算分式的减法,再把除法化为乘法进行约分化简,最后代入求值,即可求解.【详解】解:原式=223(1)23111a a a a a a ++-⎛⎫-⋅ ⎪--⎝⎭=33231(1)(1)a a a a a a +---⋅+- =1(1)(1)a a a a a -⋅+- =11a +,当2sin 451a =︒-=21=1时,原时。