基础几何光学的实验原理

合集下载

几何光学综合实验报告

几何光学综合实验报告

466.7
4
100.0
650.0
232.8
522.1
5
100.0
700.0
221.1
574.5
6
100.0
750.0
215.1
630.9
凸透镜焦距相关计算如下:
= 像屏位置 − 物屏位置
= 小像,透镜位置 − 大像透镜位置
由 =
2 −2
4
得:
表 2 凹透镜焦距
1 (mm)
97.384
2. 自组望远镜
表 3 望远镜数据表
1
物屏位置
(mm)
准直透镜位置
(mm)
物镜位置
(mm)
目镜位置
(mm)
100.0
200.0
811.9
1000.0
3. 自组望远镜并测量凹透镜焦距
表 4 自组望远镜并测量凹透镜焦距数据记录表
缩小实像位置 a(mm)
L2 位置 b(mm)
1
678.9
629.2
2
648.7
主光轴。其它通过透镜光心的直线皆为透镜的附光轴。
2.薄透镜成像公式:
在近轴光束的条件下,薄透镜成像公式为:
1

1
1


= +
…(1)
其中:
u:物距 v:像距 f:焦距
实物、实像时,u,v 为正;虚物、虚像时 u,v 为负。凸透镜 f 为正;凹透镜 f 为负。
3.位移法测凸透镜焦距:
当物体 AB 与像屏 M 的间距 > 4 时,透镜在 D 区间移动,可在屏上两次成像,一次成清晰放大的实像1 1,
同一高度,且连线(光轴)平行于导轨。

光学 第3章 几何光学的基本原理

光学 第3章 几何光学的基本原理

(1) 偏向角
i1

i2
i2
i2 '
i1'i2
A
'
i1 i1' A
(2) 最小偏向角0
当i1改变时 、i1'均随之而改变,当 i1 i1'时,偏向角取最小 0。
0 2i1 A
A
此时在棱镜内传播的光线平行于底边,有:
i2
i2 '
A 2
,i1
i1'
0
2
A
2. 棱镜的折射率
3、折射定律:(1) 折射线在入射线和法线决定的平面内; (2) 折射线、入射线分居法线两侧; (3) 折射角和入射角满足斯涅尔定律:n1sini1=n2sini2
i1 i1'
n1
n2
i2
7 反射和折射定律光路图
3、光的独立传播定律:几个光源发出的光在空间传播并相遇后, 它们将各自保持自己原有的特性(频率、波长、偏振状态)沿原来 的方向继续传播,互不影响。 4、光路可逆原理:当光线的方向反转时,它将逆着同一路径传 播,称为光路可逆原理。
i2 i2
A2 x2,0
i1 i1
B2 n2
x
n1
晰,像的深度由上式确定,y‘ 叫做像似深度 ,y是物的实际深度。
20
(3)像散现象:当i1≠0,即入射光束倾斜入射时,折射光线会发生像散现象。如沿 着倾斜的角度观察水中的物体时,像的清晰度由于像散而被破坏。
例1: 使一束向P点会聚的光在到达P点之前通过一平行玻璃板。如果将玻璃板 垂直于光束的轴竖放,问会聚点将朝哪个方向移动?移动的距离为多少?
A1 A2
P
P'
M

第三章 几何光学的基本原理

第三章  几何光学的基本原理

第三章几何光学的基本原理干涉和衍射现象揭示了光的波动性。

光既然具有波动性,那么,所有光学现象都应该能用波动概念来解释,包括光的直线传播现象在内。

但是直线传播,尤其是反射,折射成像等问题,如果不用波长、相位等波动的概念,而代之以光线和波面等概念,并用几何学方法来研究将更为方便。

这就是几何光学的研究内容。

由于这只有在波面线度远比波长大时才适用,因此本章所讲述的内容仅以成像的一级近似理论为限,因为这种近似有很大的实用意义。

3.1 光线的概念3.1.1 光线与波面“光线”只能表示光的传播方向,不可以误认为是从实际光束中借助于有孔光阑分出的一个狭窄部分,那么,在极限情况下,选用任意小的孔,就能得到像几何线那样的所谓“光线”,但是由于衍射作用,实际上要分出任意窄的光束是不可能的。

通过半径为R的圆孔的实际光束,其传播范围不可比避免的要扩大,其角宽度由衍射角θ∝λ/R决定[见(2-23)?的情况下,由衍射引起的扩大已不显著,光的传播过程才不用以次波叠式]。

只有在R l加的原理来分析,而只用光线来表示光的传播方向。

我们说“光束由无数光线构成”,不过是说明光沿着无数不同的方向传播罢了。

光波在介质中沿着光线传播时,相位不断地改变,但是同一波面上所有点的相位是相同的。

在各向同性介质中,光的传播方向总是和波面的法向方向相重合。

在许多实际情况中,人们经常考虑的只是光的传播方向问题,而不去考虑相位。

这时波面就只是垂直于光线的几何平面或曲面。

在这种极限情况下,实际上是把光线和波面都看做是抽像的数学概念。

对许多实际问题,特别是光学技术成像和照明工程等问题,借助于上述光线(有时用波面)的概念,并应用某些基本实验定律及几何定律,就可以进行所有必要的计算而不必涉及光的本性问题。

这部分以几何定律和某些基本实验定律为基础的光学称为几何光学(或光线光学)。

反映光的波动性的那部分光学称为波动光学。

在第1、2章波动光学中主要考虑的是波长、振幅和相位;这一章几何光学所考虑的主要将是光线和波面。

几何光学的原理与应用

几何光学的原理与应用

几何光学的原理与应用几何光学是光学中的一个重要分支,它研究光的传播和反射、折射等现象,以及光线在透明介质中的传播规律。

几何光学的研究对象是光线,它将光线看作是一条直线,忽略了光的波动性质。

几何光学的原理和应用广泛存在于日常生活和各个领域中,如光学仪器、成像系统、眼镜、显微镜等。

本文将介绍几何光学的基本原理和一些常见的应用。

几何光学的基本原理光的传播根据几何光学的假设,光在均匀介质中沿直线传播。

当光线从一种介质进入另一种介质时,会发生折射现象。

根据斯涅尔定律,入射角和折射角之间满足折射定律:,其中和分别是两种介质的折射率,和分别是入射角和折射角。

光的反射当光线从一种介质射向另一种介质的界面时,会发生反射现象。

根据反射定律,入射角和反射角相等。

这是因为光线在界面上的传播速度发生改变,而根据费马原理,光线总是沿着路径用时最短的方向传播。

光的成像几何光学研究光的成像规律。

当光线通过透镜或反射镜等光学元件时,会发生折射或反射,并形成一个像。

根据几何光学的原理,可以通过追踪光线的路径来确定像的位置和性质。

几何光学的应用光学仪器几何光学在光学仪器中有广泛的应用。

例如,望远镜利用透镜或反射镜将远处物体的光线聚焦到观察者的眼睛中,使得物体看起来更大更清晰。

显微镜利用透镜放大微小物体,使得人眼能够观察到细微结构。

投影仪利用透镜将图像放大并投射到屏幕上,实现图像的放映。

成像系统几何光学在成像系统中起着重要的作用。

相机、手机摄像头等成像设备都是基于几何光学的原理设计的。

它们利用透镜将光线聚焦到感光元件上,形成图像。

通过调整透镜的位置和焦距,可以改变图像的清晰度和放大倍数。

眼镜眼镜是几何光学应用的另一个重要领域。

近视眼和远视眼都是由于眼球的折射能力不正常导致的。

通过使用适当的凸透镜或凹透镜,可以调整光线的折射,使得光线能够正确地聚焦在视网膜上,从而矫正视力问题。

光纤通信光纤通信是一种利用光传输信息的技术。

光纤是一种细长的玻璃或塑料材料,可以将光信号沿着其内部传输。

几何光学基本原理

几何光学基本原理

几何光学基本原理几何光学是光学中的一支研究领域,主要研究光在几何层面上的传播和反射特性。

它建立在几何学和光学学科的基础上,通过几何方法来描述光的传播路径和光的像的形成规律。

它的基本原理包括光的传播直线原理、光的反射平面原理、光的折射原理和光学成像原理等。

首先,光的传播直线原理是几何光学的基本原理之一、它指的是当光通过各种介质时,光线的传播路径是沿直线传播的。

这意味着光线在各个介质之间的传播路径是直线,且保持方向不变。

根据这个原理,我们可以利用光线追迹法来分析光的传播和反射现象。

其次,光的反射平面原理也是几何光学的基本原理之一、它指的是发生反射时,入射光线、反射光线和法线所在的平面是同一个平面。

根据这个原理,我们可以利用反射定律来分析光线的反射角度和入射角度之间的关系,从而推导出反射光的传播路径和入射角度与反射角度的关系。

第三,光的折射原理也是几何光学的基本原理之一、它指的是当光从一种介质射入另一种介质中时,光线的传播路径会发生偏折。

这个原理可以通过折射定律来描述,即入射角、折射角和两种介质的折射率之间的关系。

根据这个原理,我们可以分析光线在折射界面上的传播路径和入射角、折射角之间的关系。

最后,光学成像原理也是几何光学的基本原理之一、它指的是光通过透镜或反射镜时,能够形成像。

透镜成像和反射镜成像都可以利用光线追迹法来分析光的传播路径和像的形成情况。

透镜成像原理包括薄透镜成像公式和透镜成像规律,可用于计算物体的像的位置和大小等。

反射镜成像原理包括焦距公式和反射镜成像规律,可用于分析和计算反射镜成像的特性。

综上所述,几何光学的基本原理包括光的传播直线原理、光的反射平面原理、光的折射原理和光学成像原理。

这些原理为几何光学提供了分析光的传播和反射现象的基础,可以用于描述光线的传播路径、入射角与反射角、入射角与折射角的关系,以及透镜和反射镜成像的原理和规律。

几何光学的研究对于理解光的传播特性、光的成像规律和光学仪器的设计具有重要意义。

几何光学PDF版

几何光学PDF版

同理可以证明反射定律

3. 物像之间的等光程性
物点 Q 与像点 Q‘ 之间的光程总是恒定的,即不管光 线经何路径,凡是由Q通过同样的光学系统到达 Q’的光 线,都是等光程的。
Q
Q’
由费马原理知:物点Q和象点Q’之间所有光线的光程 都应取极值,而不可能有多个极大或极小,因而只有 都相等是可能的。
五、成像的基本概念 1、光束:
四、费马原理
1、光程
B
B
s
A
A
ds
AB ns
均匀介质
AB nds
A
B
非均匀介质
2、费马原理
条件: 在固定的两点之间 结论: 光沿着光程为极值的 “实际路径”传播。 数学表达:
ds A n
B
说明: ●所谓“极值”不一定是极小值,也包括极大值和恒定值 ●极值指的是“实际路径” 的极值 × '× A B
P
P’
虚 像
单心光束通过光学系统后生成点像
实物成实像
实物成虚像
虚物成实像
虚物成虚像
说明: ●从干涉的角度—像是各光线等光程相干相长位置 ●从衍射角度—像是衍射花样中的中央极大值位置 ●物像具有相对性:
实 像
P
P‘
实 物
实像可以作为虚物,虚像可以作为实物。 ●像点作为物点与实际发光物点有差别 ●实像可呈现在观察屏上,但虚像不可以。 ●实像、虚像人眼均可以看到。(放大镜成的像为虚像)
L AB 为极小值

dL 0
L const
A
B
因此光在均匀介质中沿直线传播。
2.折射定律:(在均匀介质中)
Y
建立如图所示坐标系:

第一章 几何光学

第一章 几何光学
第一章 几何光学
以光线概念为基础研究光的 传播和成像规律
§1.1 光线传播的基本定律
一.几何光学的实验定律
1.光的直线传播定律。(各向同性介质中)
共面
2.反射定律和折射定律:
分于法线两侧 角度关系
3.光的独立传播定律和光路可逆原理(各向同性介质中)
几何光学中常用的器件-----棱镜
作用:改变光路 色散分光
s
2 2 2
n (s r)
n
s
/2
/2
0
/ 2
(s r )
1 n (s r )
2
n
1
/2
0
(s r)
/
求出上两式联立方程的解,可得一对特殊的共轭点, 称为球面折射的齐明点或不晕点 对一对齐明点,宽光束经球面折射仍能成像。
(二)把光束限制在傍轴区,即
则有:
2
cos 1
共轴球面系统的基点基面
(1) 焦点与焦平面
焦平面的普遍意义:顶点位于焦平面上的光束,其共轭光束为平行光束; 顶点位于焦点上的光束,其共轭光束与主光轴平行。 物(像)方焦点F( F'):与无限远处像(物)点共轭的轴上物(像)点。 物(像)方焦平面:过物(像)方焦点F( F' )的垂轴平面。
2
在傍轴区d<<s,s/,|r|;略去二阶以上无穷小量得
d (r s) PM s 1 2 s
d (r s' ) M P s ' 1 2 s'
因此,光程
d (r s) d (r s' ) [ PMP ' ] ns 1 2 2 ns ' 1 s s'

几何光学综合实验

几何光学综合实验

几何光学实验一、实验目的:1、了解透镜的成像规律。

2、学习调节光学系统共轴。

3、掌握利用焦距仪测量薄透镜焦距的方法。

二、实验原理:透镜两折射面在其光轴上的间隔称为透镜的厚度d ,若d 很小则称为薄透镜。

对于薄透镜,其物距s 、像距s ′和焦距f 都是物、像、焦点到透镜中心的距离。

(一)测量凸透镜焦距1、薄透镜成像基本公式fs s 111='- (1) 2、位移法测透镜焦距如图1所示,设物屏和像屏相距适当距离A ,并保持不变。

移动透镜,会有两个位置使物体成像在屏上,其中一个位置s 1′得到放大的实像,另一个位置s 2′得到一个缩小的实像。

根据光线可逆性原理,这两个位置应该是21s s '= 21s s =' 则212122s s s s l A '=='+=- , 221l A s s -='= 而 2211l A l A A s A s +=--=-=' 将此结果代入(1)式有Al A f 422-= (2) 这个方法的优点是把焦距的测量归结为透镜位移量的测量,避免了在测量s 及s ′时,由于估计透镜中心位置不准带来的误差。

3、自准直法图2 如图2所示,当物处在凸透镜前焦面时,它发出的光线通过透镜L 后成不同方向的平行光束,若用垂直于光轴的平面反射镜将此光束发射回去,反射光再次通过透镜会聚,将在物平面(即透镜前焦面上)上得到与原物大小相同的倒立实像,分别读出物与透镜的位置x0及xL,即得待测透镜的焦距:xxfL-=(二)负透镜焦距的测量1、物距、像距法图3如图3所示,物A经凸透镜L1成像于D点,在D点和L1之间的适当位置放入待测凹透镜L2,就L2而言D是虚物,它成像于D′点,分别测出s和s′,由公式(1)可算出f值来(应用公式(1)时,s、s′是代数值,要注意+ 、-号)。

2、自准直法测凹透镜焦距在图3中,凹透镜的后边放置一垂直系统光轴的平面反射镜,改变凹透镜L2的位置,就会在原物屏上出现一倒立对称的实像,测量凹透镜与虚物之间的距离,即为待测凹透镜的焦距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础几何光学的实验原理
基础几何光学实验的原理是基于光的传播直线性质和光的反射、折射、色散等基本规律。

1. 光的传播直线性质:光在均匀介质中作直线传播。

利用这一原理可以进行光线传播的测量和定向。

2. 光的反射规律:光线在光滑表面上的入射角等于反射角。

利用这一原理可以进行反射实验,如反射定向、反射成像等。

3. 光的折射规律:光线从一个介质进入另一个介质时,入射角、折射角和两个介质的折射率之间满足斯涅耳定律。

利用这一原理可以进行折射实验,如折射定向、折射成像等。

4. 薄透镜成像规律:利用透镜的成像原理可以研究光的成像性质。

当物体远离透镜时,通过透镜形成实像;当物体靠近透镜时,通过透镜形成虚像。

利用透镜成像的规律可以进行透镜成像实验。

5. 多个光学器件组合实验:通过组合不同的光学器件,如透镜、凸面镜等,可以进行光路调节和光学仪器的设计。

通过以上的实验原理,可以进行基础几何光学实验,探索光的传播、反射、折射
以及成像等光学现象。

相关文档
最新文档