算法分析习题参考答案第五章

合集下载

算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。

参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。

参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。

参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。

参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。

()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。

()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。

()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。

参考答案:O(nlog2n)9.下列代码的时间复杂度是()。

参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。

参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。

参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。

针对该问题的任何算法需要的时间复杂度的下限必为。

( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。

一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。

若给定集合S,则可在时间内找到这条分界线L。

算法分析与设计教程习题解答_秦明

算法分析与设计教程习题解答_秦明

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(--=n n f n② )log *()(n n n f O =6. 解:算法略。

算法分析(第二版)清华大学出版社 部分习题的参考答案

算法分析(第二版)清华大学出版社  部分习题的参考答案
3.主动4.常规密钥
5.中断、篡改、伪造6.公开密钥
7.链路、端到端8.管理信息库、管理信息结构、管理协议
9.公开密钥密码技术10.身份验证、加密、访问控制
二、选择题
1. C2. C3. D4. D5. D
6. C7. B8. D9. D10. C
网桥1转发表网桥2转发表网桥1网桥2站地址端口站地址端口mac11向端口2转发该帧将mac1端口1登记到转发表mac32mac31向端口1转发该帧将mac3端口2登记到转发表向端口2转发该帧将mac3端口1登记到转发表mac42从转发表中查到目的端口是1向端口1转发该帧将mac4端口2登记到转发表mac21将该帧丢弃同时将mac2端口1登记到转发表第5章一填空题1
MAC4
2
从转发表中查到目的端口是1向端口1转发该帧,将(MAC4,端口2)登记到转发表
MAC2
1
将该帧丢弃,同时将(MAC2,端口1)登记到转发表
第5章
一、填空题
1.ARP、IGMP2.128.11、3.11
3.路由、建立虚电路、路由算法4.泛射路由选择、固定路由选择和随机路由选择
5.IP数据报6.ARP
1.应用进程2.客户/服务器

6.字符代码、数字代码
7.www服务器、www浏览器8.ASCII传输模、二进制数字传输模式
9.A记录、CNAME记录、MX记录10.SMTP
二、选择题
1. D2. C3. B4. A5. B
6. C7. C8. B9. A
2.网络的拓扑结构表示网络传输介质和结点的连接形式,通常有总线型、环形、星形和树形。
3.OSI将整个网络通信的功能划分为七个层次,由低到高分别是物理层、链路层、网络层、传输层、会话层、表示层和应用层。

数据结构与算法第5章课后答案

数据结构与算法第5章课后答案

page: 1The Home of jetmambo - 第 5 章树和二叉树第 5 章树和二叉树(1970-01-01) -第 5 章树和二叉树课后习题讲解1. 填空题⑴树是n(n&ge;0)结点的有限集合,在一棵非空树中,有()个根结点,其余的结点分成m (m>0)个()的集合,每个集合都是根结点的子树。

【解答】有且仅有一个,互不相交⑵树中某结点的子树的个数称为该结点的(),子树的根结点称为该结点的(),该结点称为其子树根结点的()。

【解答】度,孩子,双亲⑶一棵二叉树的第i(i&ge;1)层最多有()个结点;一棵有n(n&gt;0)个结点的满二叉树共有()个叶子结点和()个非终端结点。

【解答】2i-1,(n+1)/2,(n-1)/2【分析】设满二叉树中叶子结点的个数为n0,度为2的结点个数为n2,由于满二叉树中不存在度为1的结点,所以n=n0+n2;由二叉树的性质n0=n2+1,得n0=(n+1)/2,n2=(n-1)/2。

⑷设高度为h的二叉树上只有度为0和度为2的结点,该二叉树的结点数可能达到的最大值是(),最小值是()。

【解答】2h -1,2h-1【分析】最小结点个数的情况是第1层有1个结点,其他层上都只有2个结点。

⑸深度为k的二叉树中,所含叶子的个数最多为()。

【解答】2k-1【分析】在满二叉树中叶子结点的个数达到最多。

⑹具有100个结点的完全二叉树的叶子结点数为()。

【解答】50【分析】100个结点的完全二叉树中最后一个结点的编号为100,其双亲即最后一个分支结点的编号为50,也就是说,从编号51开始均为叶子。

⑺已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点。

则该树中有()个叶子结点。

【解答】12【分析】根据二叉树性质3的证明过程,有n0=n2+2n3+1(n0、n2、n3分别为叶子结点、度为2的结点和度为3的结点的个数)。

⑻某二叉树的前序遍历序列是ABCDEFG,中序遍历序列是CBDAFGE,则其后序遍历序列是()。

算法分析与设计第二版习题答案-第三章到第五章

算法分析与设计第二版习题答案-第三章到第五章

算法设计与分析(第二版)习题答案主编:吕国英算法设计与分析(第二版)习题答案(第三章)第三章:1.#include<stdlib.h>#include<stdio.h>int main(int argc,char **argv){int n;int i,j,k;int *buf;printf("请输入n的数值:");scanf("%d",&n);buf=(int *)malloc(n*sizeof(int));for(i=0;i<n;i++){buf[i]=2;}for(i=n-2;i>=0;i--){for(j=i;j>=0;j--){buf[j]+=2;}}for(k=0;k<=n-2;k++){if(buf[k]>=10){buf[k+1]+=buf[k]/10;buf[k]%=10;}}for(i=n-1;i>=0;i--)printf("%d",buf[i]);printf("\n");return 0;}2.#include<stdio.h>int main(int argc,char **argv){int buf[6][6];int i,j;printf("任意输入6个数字:");for(i=0;i<6;i++) scanf("%d",&buf[0][i]);for(i=0;i<5;i++){ for(j=0;j<5;j++) { buf[i+1][j+1]=buf[i][j]; } buf[i+1][0]=buf[i][j];}for(i=0;i<6;i++){ for(j=0;j<6;j++) printf("%d ",buf[i][j]); printf("\n");}return 0;}3.#include<stdio.h>#define N 7int main(int argc,char **argv){int buf[N][N];int i,j,k,m,n;int a=0,b=N-1;intcount=1;for(i=0;i<(N/2)+(N%2);i++){ for(j=a;j<=b;j++) { buf[a][j]=count++; } f or(k=a+1;k<=b;k++) { buf[k][b]=count++; } for(m=b-1;m>=a;m--) { buf[b][m]=count++; } for(n=b-1;n>a;n--) { buf[n][a]=count++; } a++; b--;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return 0;}4.#include<stdio.h>#define N 5int main(int argc,char **argv){int buf[N][N];inti,j,k;int count=1;int n=0;for(i=0;i<N;i++){ for(k=0,j=n;j>=0;j--,k++) buf[j][k]=count++; n++;}for(i=0;i<N;i++){ for(j=0;j<N-i;j++) printf("]",buf[i][j]); printf("\n");}return 0;}5.#include<stdio.h>#define N 5int main(int argc,char **argv){int buf[N][N];int i,j;int a=0,b=N-1;intcount=1;for(i=0;i<N/2+N%2;i++){ for(j=a;j<=b;j++) buf[a][j]=count; for(j=a+1;j<= b;j++) buf[j][b]=count; for(j=b-1;j>=a;j--) buf[b][j]=count; for(j=b-1;j>a;j--) buf[j][a]=count; count++; a++; b--;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return 0;}6.#include<stdio.h>#include<stdlib.h>typedef struct s_node s_list;typedef s_list*link;struct s_node{char ch;int flag;link next;};link top;void push(char ch,int flag){link newnode;newnode=(link)malloc(sizeof(s_list));newnode->ch=ch;newnode->flag=flag;newnode->next=NULL;if(top==NULL) { top=newnode; }else { newnode->next=top; top=newnode; }}int pop(){int flag;linkstack;if(top!=NULL) { stack=top; top=top->next; flag=stack->flag; free(stack); }return flag;}int op(char ch){switch(ch) { case '+': return 1; break; case '-': return 2; break; case '*': return 3; break; case'/': return 4; break; default: return 5; }}void nirnava(char *buf,intcount)//count个数,buf数组{int bool=1;int min;int j;int i;int k;int flag;for(i=0;i<count;i++){if(buf[i]=='(')push(buf[i],i);if(buf[i]==')'){flag=pop();if(flag!=0){if((buf[flag-1]=='(')&&(buf[i+1]==')')){buf[flag]='!';buf[i]='!';}}min=op(buf[flag]);for(j=flag+1;j<i;j++){if(buf[j]=='('){push(buf[j],j);bool=0;continue;}elseif(buf[j]==')'){pop();bool=1;continue;}if(bool==1){if(min>op(buf[j]))min=op(buf[j]);}}if(i<count-1){if((buf[i+1]=='+')||(buf[i+1]=='-')){if(flag==0){buf[i]='!';buf[flag]='!';}elseif(op(buf[flag-1])<=min){buf[i]='!';buf[flag]='!';}}elseif((buf[i+1]=='*')||(buf[i+1]=='/')){if(flag==0){buf[i]='!';buf[flag]='!';}elseif((min>=op(buf[i+1])&&op(buf[flag-1])<=min)) {buf[i]='!';buf[flag]='!';}}}elseif(i==count-1){if(flag==0){buf[i]='!';buf[flag]='!';}elseif(op(buf[flag-1])<=min){buf[i]='!';buf[flag]='!';}}}}for(k=0;k<count;k++){if(buf[k]!='!')printf("%c",buf[k]);}printf("\n");}int main(void){char buf[255];int i;for(i=0;i<255;i++){scanf("%c",&buf[i]);if(buf[i]=='\n')break;}buf[i]='\0';nirnava(buf,i);return 0;}7.#include<stdio.h>#include<stdlib.h>int ack(int m,int n);int count=0;int main(int argc,char **argv){intm,n;scanf("%d%d",&m,&n);printf("%d\n",ack(m,n));printf("%d\n",count);return 0;}int ack(int m,int n){count++;if(m==0) return n+1;else if(n==0) return ack(m-1,1); else return ack(m-1,ack(m,n-1));}8.#include<stdio.h>char buf[1024];intis_huiwen(int a,int count){if(a==count/2) { return1; }else if(buf[a]==buf[count-a-1]) return (is_huiwen(a-1,count))&&1; else {return 0; }}int main(void){int count;inti;for(i=0;i<1024;i++) { scanf("%c",&buf[i]); if(buf[i]=='\n')break; }count=i;i--;printf("%d",is_huiwen(i,count));return 0;}9.#include<stdio.h>char buf[100];int pos(int a,int b){if(b-a==1) return 1;else if(b-a==0) return 1; else return pos(a,b-1)+pos(a,b-2);}int main(void){inta,b;scanf("%d%d",&a,&b);printf("%d",pos(a,b));return 0;}10.#include<stdio.h>#define MAX 1024int buf[MAX];int main(void){int m,n;inti;scanf("%d%d",&m,&n);for(i=0;i<MAX;i++) buf[i]=0;i=0;while(buf[i%m]==0) { buf[i%m]=1; i+=n; }for(i=0;i<m;i++) { if(buf[i]==0)printf("%d",i); }return 0;}11.#include<stdio.h>int main(void){int temp,temp1;int count=0;int n;inti;scanf("%d",&n);for(i=1;i<=n;i++) { temp=i; if(temp==5)count++; elseif(te mp==0) { temp1=i; while((temp1)==0) { temp1=temp1/10; count++; } } }printf("%d",count);return 0;}12.#include<stdio.h>int main(void){int count=0;int buf[53];inti,n;for(i=1;i<53;i++) { buf[i]=1; }for(n=2;;n++) { for(i=n;i<53;i+=n){ buf[i ]=1-buf[i]; count++; if(count>=104) break;} if(count>=104)break; }for(i=1;i<53;i ++) { if(buf[i]==1)printf("%d ",i); }printf("\n");return 0;}13.#include<stdio.h>int main(void){inta,b,c,d,e;for(a=1;a<=5;a++) for(b=1;b<=5;b++) if(a!=b)for(c=1;c<=5;c++) if(c!=a &&c!=b) for(d=1;d<=5;d++) if(d!=a&&d!=b&&d!=c) { e=15-a-b-c-d; if(e!=a&&e!=b&&e!=c&&e!=d) if(((b==3)+(c==5)==1)&&((d==2)+(e==4)==1 )&&((b==1)+(e==4)==1)&&((c==1)+(b==2)==1)&&((d==2)+(a==3)==1)) printf(" a=%d,b=%d,c=%d,d=%d,e=%d",a,b,c,d,e); }return 0;}14.#include<stdio.h>int main(void){int buf[3];int i;int mul;inttemp;for(i=10;i<=31;i++) { mul=i*i; temp=mul; buf[0]=temp; temp=temp /10; buf[1]=temp; temp=temp/10; buf[2]=temp; if((buf[0]==buf[1])||(buf[0] ==buf[2])||(buf[1]==buf[2])){ printf("%d^2=%d\n",i,mul);} }return0;}15.#include<stdio.h>int main(void){inta,b,c;for(a=1;a<=3;a++) for(b=1;b<=3;b++) if(a!=b){ c=6-a-b; if(c!=a&&c!=b) if((a!=1)&&((c!=1)&&(c!=3))==1) printf("a=%d,b=%d,c=% d",a,b,c);}return 0;}16.#include<stdio.h>int main(void){int k;intn;scanf("%d",&n);k=(n%4==0)+(n%7==0)*2+(n%9==0)*4;switch(k) { case7: printf("all"); break; case 6: printf("7 and 9"); break; case5: printf("4 and 9"); break; case 4: printf("9"); break; case 3: printf("4 and 7"); break; case 2: printf("7"); break; case1: printf("4"); break; case 0: printf("none"); break; }return0;}17.#include<stdio.h>int main(void){int a,b,c,d;printf("please think of a number between 1 and 100.\n");printf("your number divided by 3 has a remainder of");scanf("%d",&a);printf("your number divided by 4 has a remainder of");scanf("%d",&b);printf("your number divided by 7 has a remainder of");scanf("%d",&c);printf("let me think amoment...\n");d=36*c+28*a+21*b;while(d>84) d=d-84;printf("your numberwas %d\n",d);return 0;}18.#include<stdio.h>int main(void){int buf[10];int i,j;int mul;int temp1,temp2;intbool;for(i=5000;i<=9999;i++) { bool=0; for(j=0;j<10;j++)buf[j]=0; temp1=i; while(temp1>0){ if((++buf[temp1])>1) { bool=1; break; } temp1/=10; } if(bool==1)continue; mul=i*2; temp2=mul; while(temp2>0){ if((++buf[t emp2])>1) { bool=1; break; } temp2/=10;} if(bool==1)continue; pri ntf("2*%d=%d\n",i,mul); }return 0;}19.#include<stdio.h>#include<stdlib.h>int ppow(int a,int b){int mul=1;int i;for(i=0;i<b;i++) { mul=a*mul; }return mul;}int main(void){int t;char buf[10];int i,j,k;intsum=0;for(i=0;i<10;i++) { scanf("%c",&buf[i]); if(buf[i]=='\n')break; }buf[i]= '\0';for(j=0;j<i;j++) { if((buf[j]>='0')&&(buf[j]<='9'))buf[j]=buf[j]-48; elseif((buf[j]>='A')&&(buf[j]<='F')) buf[j]=buf[j]-55;else exit(1); }k=0;for(j=i-1;j>=0;j--) { t=ppow(16,k); sum=sum+t*(int)buf[j]; k++; }printf("%d\n",sum);return 0;}20.#include<stdio.h>int main(void){int a;int b;int c;int i;intbuf[10];for(a=10;a<=99;a++) { for(i=0;i<10;i++)buf[i]=0; if((++buf[a]>1)||(++b uf[a/10]>1))continue; for(b=100;b<=999;b++){ for(i=0;i<10;i++) { if((i!=a)& &i!=a/10) buf[i]=0; } if((++buf[b]>1)||(++buf[b/10]>1)||(++buf[b/100]>1)) conti nue; c=a*b; if(c<10000&&c>999) { if((++buf[c]>1)||(++buf[c/10]>1)||(++buf[c /100]>1)||(++buf[c/1000]>1)) continue; else printf("%d*%d=%d\n",a,b,c); }} }return 0;}21.#include<stdio.h>int main(void){int a;int b;int i;int t;int buf[10];int bool;for(a=317;a<1000;a++) { bool=0; for(i=0;i<10;i++)buf[i]=0; if((++buf[ a]>1)||(++buf[a/10]>1)||(++buf[a/100]>1))continue; b=a*a; t=b; for(i=0;i<6;i++ ){ if(++buf[t]>1) { bool=1; break; } t=t/10;} if(bool==1)continue; p rintf("%d^2=%d\n",a,b); }return 0;}22.#include<stdio.h>int main(void){intbuf[100];int i;int n;int max;inttemp;for(i=1;i<100;i++) { scanf("%d",&buf[i]); if(buf[i]==0)break; }n=i;max =buf[1]+buf[2]+buf[3]+buf[4];for(i=2;i!=1;i++) { temp=buf[i]+buf[(i+1)]+buf[(i+2 )]+buf[(i+3)]; if(temp>max)max=temp; }printf("max=%d\n",max);return0;}23.#include<stdio.h>void nirnava(int n){if(n<10) printf("%d",n);else { nirnava(n/10); printf("%d ",n); }}int main(void){int count=0;int n;int i;int t;scanf("%d",&n);t=n;while(t>0) { printf("%d",t); t=t/10; count++; }printf("\n");nirnava(n);printf("\n%d位数\n",count);}24.#include<stdio.h>int main(void){int buf[4]={2,3,5,7};int i,j,k,temp,m;int bool;int mul;for(i=0;i<4;i++)for(j=0;j<4;j++)for(k=0;k<4;k++)for(m=0;m<4;m++){bool=0;mul=(buf[i]+buf[j]*10+buf[k]*100)*buf[m];if(mul<1000)continue;temp=mul;while(temp>0){if((temp==2)||(temp==3)||(temp==5)||(temp==7)){}else{bool=1;break;}temp/=10;}if(bool==0){printf("%d%d%d * %d = %d\n",buf[k],buf[j],buf[i],buf[m],mul); }}return 0;}25.#include<stdio.h>int main(void){int buf[4]={2,3,5,7};int i,j,k,m,n;int bool;int mul,mul1,mul2;int temp,temp1,temp2;for(i=0;i<4;i++)for(j=0;j<4;j++)for(k=0;k<4;k++)for(m=0;m<4;m++)for(n=0;n<4;n++){bool=0;mul=(buf[i]+buf[j]*10+buf[k]*100)*(buf[m]+buf[n]*10);mul1=(buf[i]+buf[j]*10+buf[k]*100)*buf[m];mul2=(mul-mul1)/10;if((mul<10000)||(mul1<1000)||(mul2<1000))continue;temp=mul;temp1=mul1;temp2=mul2;while(temp>0){if((temp==2)||(temp==3)||(temp==5)||(temp==7)){}else{bool=1;break;}temp/=10;}if(bool==0){while(temp1>0){if((temp1==2)||(temp1==3)||(temp1==5)||(temp1==7)){}else{bool=1;break;}temp1/=10;}}if(bool==0)while(temp2>0){if((temp2==2)||(temp2==3)||(temp2==5)||(temp2==7)){}else{bool=1;break;}temp2/=10;}if(bool==0){printf("第一行: %d%d%d\n第二行: %d%d\n第三行: %d\n第四行: %d\n第五行: %d\n\n\n\n\n",buf[i],buf[j],buf[k],buf[m],buf[n],mul1,mul2,mul);}}return 0;}26.#include<stdio.h>//从a到b是不是循环节int is_xunhuan(int *buf,int a,int b) {int i;if(a==b){for(i=1;i<10;i++){if(buf[a]==buf[a+i]){}elsereturn 0;}}elsefor(i=a;i<=b;i++){if(buf[i]==buf[i+b-a+1]){}else{return 0;}}return 1;}int main(void){int buf[1024];int yushu;int m,n;int i,j,k;scanf("%d%d",&m,&n);yushu=m;buf[0]=0;i=1;while(yushu!=0){yushu=yushu*10;buf[i]=yushu/n;yushu=yushu%n;i++;if(i==1024)break;}if(i<1024){printf("有限小数\n");printf("%d.",buf[0]);for(j=1;j<i;j++)printf("%d",buf[j]);printf("\n");}else{printf("循环小数\n");for(i=1;i<100;i++)for(j=i;j<200;j++){if(is_xunhuan(buf,i,j)){printf("%d.",buf[0]);if(i>1){for(k=1;k<i;k++)printf("%d",buf[k]);}printf("(");for(k=i;k<=j;k++)printf("%d",buf[k]);printf(")");printf("\n");return 0;}}}return 0;}27.#include<stdio.h>int main(void){int n;char eng[12][10]={"一月","二月","三月","四月","五月","六月","七月","八月","九月","十月","十一月","十二月"};scanf("%d",&n);printf("%s\n",eng[n-1]);return 0;}第四章1.#include<stdio.h>int main(void){int buf[100];int n;int i,j,k;scanf("%d",&n);for(i=0;i<n;i++)buf[i]=2;for(i=0;i<n-1;i++){for(j=0;j<n-i-1;j++) {buf[j]+=2;}}for(j=0;j<n;j++){if(buf[j]>=10) {buf[j+1]+=buf[j]/10; buf[j]=buf[j];}}for(i=n-1;i>=0;i--)printf("%d",buf[i]); printf("\n");return 0;}2.#include<stdio.h>int main(void){int n=2;int i;for(i=1;i<=9;i++){n=(n+2)*2;}printf("%d\n",n);return 0;}3.#include<stdio.h>int main(void){int a=54;int n;int m;printf("计算机先拿3张牌\n");a=a-3;while(a>=0){printf("还剩%d张牌\n",a);printf("你拿几张?请输入:");scanf("%d",&n);if(n>4||n<1||n>a){printf("错误!重新拿牌\n");continue;}a=a-n;printf("还剩%d张牌\n",a);if(a==0)break;m=5-n;printf("计算机拿%d\n",m);a=a-m;}return 0;}4.#include<stdio.h>int d;int a1,a2;int fun(int n);int main(void){int n;printf("n=?,d=?,a1=?,a2=?");scanf("%d%d%d%d\n",&n,&d,&a1,&a2); printf("%d\n",fun(n));return 0;}int fun(int n){if(n==1)return a1;if(n==2)return a2;return fun(n-2)-(fun(n-1)-d)*2;}5.#include<stdio.h>char chess[8][8];int is_safe(int row,int col);int queen(int row,int col,int n);int main(void){int i,j;for(i=0;i<8;i++)for(j=0;j<8;j++)chess[i][j]='X';queen(0,0,0);for(i=0;i<8;i++){for(j=0;j<8;j++)printf("%c ",chess[i][j]);printf("\n");}return 0;}int is_safe(int row,int col){int i,j;for(i=0;i<8;i++) { if(chess[row][i]=='Q')return 0; if(chess[i][col]=='Q')return 0; }i=row;j=col;while(i!=-1&&j!=-1) { if(chess[i--][j--]=='Q')return 0; }i=row;j=col;while(i!=-1&&j!=8) { if(chess[i--][j++]=='Q')return 0; }i=row;j=col;while(i!=8&&j!=-1) { if(chess[i++][j--]=='Q')return0; }i=row;j=col;while(i!=8&&j!=8) { if(chess[i++][j++]=='Q')return 0; }return 1;}int queen(int row,int col,int n){int i,j;int result=0;if(n==8) return1;else if(is_safe(row,col)) {chess[row][col]='Q';for(i=0;i<8;i++) for(j=0;j<8;j++) { result+=queen(i,j,n+1); if(result>0) break; }if(result>0) return1;else { chess[row][col]='X'; return 0; } } else return0;}6.#include<stdio.h>int main(void){inti,j,k;for(i=1;i<=33;i++) for(j=1;j<=50;j++) {k=100-i-j;if(k%2==0) { if(3*i+2*j+k/2==100) printf("大马%d\n中马%d\n小马%d\n\n\n",i,j,k);}}return 0;}7.#include<stdio.h>int main(void){int i;for(i=1;i<=10000;i++){if(i%2==1&&i%3==2&&i%5==4&&i%6==5&&i%7==0) printf("%d\n",i);}return 0;}8.#include<stdio.h>int main(void){int i;int sum;int a1,a2,a3,a4;for(i=1000;i<=9999;i++){a1=i;a2=i/10;if(a1!=a2){a3=i/100;if(a1!=a3&&a2!=a3){a4=i/1000;if(a1!=a4&&a2!=a4&&a3!=a4){sum=(a1+a2+a3+a4)*(a1+a2+a3+a4);if(i%sum==0)printf("%d\n",i);}}}}return 0;}9.#include<stdio.h>#define N 10void max_min(int *a,int m,int n,int *min1,int *min2,int *max1,int *max2);int main(void){int a[N]={2,3,4,5,34,7,9,6,43,21};int min1,min2;int max1,max2;max_min(a,0,N-1,&min1,&min2,&max1,&max2);printf("min1=%d\nmin2=%d\nmax1=%d\nmax2=%d\n",min1,min2,max1,max2); return 0;}void max_min(int *a,int m,int n,int *min1,int *min2,int *max1,int *max2){int lmin1,lmin2,lmax1,lmax2;int rmin1,rmin2,rmax1,rmax2;int mid;if(m==n){*min1=*min2=*max1=*max2=a[m];}elseif(m==n-1){if(a[m]<a[n]){*min1=a[m];*min2=a[n];*max1=a[n];*max2=a[m];}else{*min1=a[n];*min2=a[m];*max1=a[m];*max2=a[n];}}else{mid=(m+n)/2;max_min(a,m,mid,&lmin1,&lmin2,&lmax1,&lmax2);max_min(a,mid+1,n,&rmin1,&rmin2,&rmax1,&rmax2);if(lmin1<rmin1){if(lmin2<rmin1){*min1=lmin1;*min2=lmin2;}else{*min1=lmin1;*min2=rmin1;}}elseif(rmin2<lmin1) {*min1=rmin1; *min2=rmin2; }else{*min1=rmin1; *min2=lmin1; }if(lmax1>rmax1){if(lmax2>rmax1) {*max1=lmax1;*max2=lmax2;}else{*max1=lmax1;*max2=rmax1;}}elseif(rmax2>lmax1) {*max1=rmax1; *max2=rmax2; }else{*max1=rmax1; *max2=lmax1; }}}10.#include<stdio.h>int add(int *a,int flag,int right);int main(void){int a[10]={1,2,3,4,5,6,7,8,9,10};int sum=add(a,0,9);printf("%d\n",sum);return 0;}int add(int *a,int flag,int right){int mid;if(flag==right){return a[flag];}elseif(flag==right-1){return a[flag]+a[right];}else{mid=(flag+right)/2;return add(a,flag,mid)+add(a,mid+1,right); }}11.#include<stdio.h>int main(void){int a[5][3]={{-50,17,-42},{-47,-19,-3},{36,-34,-43},{-30,-43,34},{-23,-8,-45}};int i,j;int max,n;int sum=0;for(i=0;i<5;i++){max=a[i][0];n=0;for(j=1;j<3;j++){if(a[i][j]>max){max=a[i][j];n=j;}}sum+=max;printf("a[%d][%d]=%d\n",i,n,max);}printf("%d\n",sum);return 0;}12.#include<stdio.h>#include<stdlib.h>#define N 4void matrix_mul(int *mul1,int*mul2,int *mul3,int length);void matrix_add_sub(int * A,int * B,int * C,int m,char ch);void update_half_value(int * A,int * B,int m);void get_half_value(int * A,int * B,int m);int main(void){int i,j;int mul1[N*N]={1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6};intmul2[N*N]={7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2};intmul3[N*N];matrix_mul(mul1,mul2,mul3,N);for(i=0;i<N*N;i++) { printf("]",mul3[ i]); if((i+1)%N==0) printf("\n"); }return 0;}void matrix_add_sub(int * A,int * B,int * C,int m,char ch){ inti; for(i=0;i<m*m;i++) { if(ch=='+') C[i]=A[i]+B[i]; else C[i]= A[i]-B[i]; }}void update_half_value(int * A,int * B,int m){ inti,j; for(i=0;i<m/2;i++) { for(j=0;j<m/2;j++) { B[i*m+j]=A[i*m/2+j]; } }}void get_half_value(int * A,int * B,int m){ inti,j; for(i=0;i<m/2;i++) { for(j=0;j<m/2;j++) { A[i*m/2+j]=B[i*m+j]; } }}void matrix_mul(int *A,int *B,int *C,int m){if(m==2) { intD,E,F,G,H,I,J; D=A[0]*(B[1]-B[3]); E=A[3]*(B[2]-B[0]); F=(A[2]+A[3])*B[0]; G=(A[0]+A[1])*B[3]; H=(A[2]-A[0])*(B[0]+B[1]); I=(A[1]-A[3])*(B[2]+B[3]); J=(A[0]+A[3])*(B[0]+B[3]); C[0]=E+I+J-G; C[1]=D+G; C[2]=E+F; C[3]=D+H+J-F; return ; }else { intA1[m*m/4],A2[m*m/4],A3[m*m/4],A4[m*m/4]; intB1[m*m/4],B2[m*m/4],B3[m*m/4],B4[m*m/4]; intC1[m*m/4],C2[m*m/4],C3[m*m/4],C4[m*m/4]; intD[m*m/4],E[m*m/4],F[m*m/4],G[m*m/4],H[m*m/4],I[m*m/4],J[m*m/4]; int temp1[m*m/4],temp2[m*m/4]; get_half_value(A1,&A[0],m); get_half_value(A2, &A[m/2],m); get_half_value(A3,&A[m*m/2],m); get_half_value(A4,&A[m*m/2 +m/2],m); get_half_value(B1,&B[0],m); get_half_value(B2,&B[m/2],m); get_ half_value(B3,&B[m*m/2],m); get_half_value(B4,&B[m*m/2+m/2],m); matrix_a dd_sub(B2,B4,temp1,m/2,'-'); matrix_mul(A1,temp1,D,m/2); matrix_add_sub(B3,B1,temp1,m/2,'-'); matrix_mul(A4,temp1,E,m/2); matrix_add_sub(A3,A4,temp1,m/2,'+'); matri x_mul(temp1,B1,F,m/2); matrix_add_sub(A1,A2,temp1,m/2,'+'); matrix_mul(temp1,B4,G,m/2); matrix_add_sub(A3,A1,temp1,m/2,'-'); matrix_add_sub(B1,B2,temp2,m/2,'+'); matrix_mul(temp1,temp2,H,m/2); m atrix_add_sub(A2,A4,temp1,m/2,'-'); matrix_add_sub(B3,B4,temp2,m/2,'+'); matrix_mul(temp1,temp2,I,m/2); ma trix_add_sub(A1,A4,temp1,m/2,'+'); matrix_add_sub(B1,B4,temp2,m/2,'+'); matri x_mul(temp1,temp2,J,m/2); matrix_add_sub(E,I,temp1,m/2,'+'); matrix_add_sub(J ,G,temp2,m/2,'-'); matrix_add_sub(temp1,temp2,C1,m/2,'+'); matrix_add_sub(D,G,C2,m/2,'+'); matrix_add_sub(E,F,C3,m/2,'+'); matrix_add_sub(D,H,temp1,m/2,'+'); matrix_add _sub(J,F,temp2,m/2,'-'); matrix_add_sub(temp1,temp2,C4,m/2,'+'); update_half_value(C1,&C[0],m); update_half_value(C2,&C[m/2],m); update_half_value(C3,&C[m*m/2],m); updat e_half_value(C4,&C[m*m/2+m/2],m); return ; }}13.#include<stdio.h>intmain(void){int a[6][7]={ {16,4,3,12,6,0,3}, {4,-5,6,7,0,0,2}, {6,0,-1,-2,3,6,8}, {5,3,4,0,0,-2,7}, {-1,7,4,0,7,-5,6}, {0,-1,3,4,12,4,2}};intb[6][7],c[6][7];int i,j,k;int max;int flag;inttemp;for(i=0;i<6;i++) for(j=0;j<7;j++) {b[i][j]=a[i][j];c[i][j]=-1; }for(i=1;i<5;i++) { for(j=0;j<7;j++){ max=0; for(k=j-2;k<=j+2;k++) { if(k<0) continue; else if(k>6) break; else { if(b[i][j ]+b[i-1][k]>max) { max=b[i][j]+b[i-1][k]; flag=k; } } } b[i][j]=max; c[i][j]=flag;} }for(j=1;j<=5;j++) { max=0; for(k=j-2;k<=j+2;k++){ if(k<0) continue; else if(k>6) break; else { if(b[i][j]+ b[i-1][k]>max) { max=b[i][j]+b[i-1][k]; flag=k; } }} b[i][j]=max; c[i][j]=flag; }max=0;for(j=1;j<=5;j++) { if(b[i][j]>max){ max=b[i][j]; flag=j;} }printf("%d\n",max);temp=c[i][flag];pri ntf("]",a[i][temp]);for(j=i;j>0;j--) { temp=c[j][temp]; printf("]",a[j-1][temp]); }printf("\n");return 0;}14.#include<stdio.h>int main(void){intA[6]={0,3,7,9,12,13};int B[6]={0,5,10,11,11,11};int C[6]={0,4,6,11,12,12};intAB[6][6];int temp[6];int abc[6];int max;int flag;inti,j,k;for(i=0;i<=5;i++) { max=0; for(j=0;j<=i;j++){ AB[i][j]=A[i-j]+B[j]; if(AB[i][j]>max) max=AB[i][j];} temp[i]=max; }max=0;for(i=0;i<=5;i ++) { abc[i]=temp[i]+C[5-i]; if(abc[i]>max){ max=abc[i]; flag=i;} }printf("max=%d\n",max);printf("c=%d \n",5-flag);max=max-C[5-flag];for(i=0;i<=flag;i++) { if(AB[flag][i]==max){ printf("b=%d\n",i); printf("a= %d\n",flag-i); break;} }return 0;}16.#include<stdio.h>#define N 100int search(int*a,int left,int right);int sum_buf(int *a,int left,int right);int main(void){int a[N];int i;int s;for(i=0;i<N;i++) a[i]=1;a[24]=2;s=search(a,0,N-1);printf("%d\n",s);return 0;}int sum_buf(int *a,int left,int right){int i;intsum=0;for(i=left;i<=right;i++) sum+=a[i];return sum;}int search(int *a,int left,int right){int mid=(left+right)/2;if(left==right-1) { if(a[left]<a[right])returnright; elsereturn left; }if(mid*2!=(right+left-1)) { if(sum_buf(a,left,mid-1)>sum_buf(a,mid+1,right)){ return search(a,left,mid-1);} elseif(sum_buf(a,left,mid-1)<sum_buf(a,mid+1,right)) { returnsearch(a,mid+1,right); }else returnmid; }else { if(sum_buf(a,left,mid)>sum_buf(a,mid+1,right))returnsearch(a,left,mid); elsereturn search(a,mid+1,right); }}17.#include<stdio.h>int job[6][2]={{3,8},{12,10},{5,9},{2,6},{9.3},{11,1}};intx[6],bestx[6],f1=0,bestf,f2[7]={0};void try(int i);void swap(int a,int b);intmain(void){inti,j;bestf=32767;for(i=0;i<6;i++) x[i]=i;try(0);for(i=0;i<6;i++) printf("%d",bestx[i]);printf("\nbestf=%d\n",bestf);return 0;}void try(int i){intj;if(i==6) { for(j=0;j<6;j++)bestx[j]=x[j]; bestf=f2[i]; }else { for(j=i;j<6;j ++){ f1=f1+job[x[j]][0]; if(f2[i]>f1) f2[i+1]=f2[i]+job[x[j]][1]; else f2[i+1]=f1 +job[x[j]][1]; if(f2[i+1]<bestf) { swap(i,j); try(i+1); swap(i,j); } f1=f1 -job[x[j]][0];} }}void swap(int i,int j){inttemp;temp=x[i];x[i]=x[j];x[j]=temp;}18.#include<stdio.h>#define N 5 //N个数字#define M 2 //M个加号char buf[N];int a[N];char b[M+1][N];int c[M+1];int try(int t);void swap(int t1,int t2);int add();void output();int min=99999;int main(){int i;for(i=0;i<N;i++){scanf("%c",&buf[i]);}a[0]=0;for(i=1;i<=M;i++){a[i]=1;}for(;i<N;i++){a[i]=0;}try(1);output();printf("%d\n",min);return 0;}int try(int t){int j;int i;int sum;if(t>=N){sum=add();if(sum<min){min=sum;for(i=0;i<M+1;i++) {c[i]=atoi(b[i]);}}}else{for(j=t;j<N;j++) {//if(a[t]!=a[j]){swap(t,j);try(t+1);swap(t,j);}//else//try(t+1);}}}void swap(int t1,int t2) {int t;t=a[t1];a[t1]=a[t2];a[t2]=t;}int add(){int sum=0;int i=0;int j;int k=0;int h=0;for(i=0;i<M+1;i++)for(j=0;j<N;j++)b[i][j]='Q';i=0;j=0;h=0;k=0;for(j=0;j<N;j++){if(a[j]==1){h=0;i++;b[i][h]=buf[j];//printf("%d ",atoi(b[i]));//printf("%d %d %c \n",i,h,b[i][h]);h++;}else{b[i][h]=buf[j];//printf("%d %d %c \n",i,h,b[i][h]);//printf("%d ",atoi(b[i]));h++;}}for(i=0;i<M+1;i++){sum+=atoi(b[i]);}return sum;}void output(){int i;for(i=0;i<M+1;i++){printf("%d",atoi(b[i]));if(i!=M)printf("+");}printf("=");}19.#include<stdio.h>int main(void){int buf[100];int m,n;inti,j;buf[0]=1;buf[1]=1;scanf("%d%d",&n,&m);for(i=1;i<n;i++) { buf[i+1]=buf[i];。

算法设计与分析第五章

算法设计与分析第五章

第五章作业答案1、伪代码:假设查找范围是有序的,a<b1. low=1;high=n;//设置初始查找区间2. 测试查找区间[low,high]是否存在,若不存在,则查找失败;否则3. 取中间点mid=(low+high)/2; 比较a,b与r[mid],有以下三种情况:3.1 若a>r[mid],则high=mid-1;查找在左半区进行,转2;3.2 若b<r[mid],则low=mid+1;查找在右半区进行,转2;3.3 若a<r[mid]并且b>r[mid],则在左半区对a用折半查找找到对应的r[i]>=a&&r[i-1]<a,在右半区对b用折半查找r[j]<=b&&r[j+1]>b;4. r[i]到r[j]之间的元素即为问题的解参考代码:#include<iostream.h>int i=0;int j=0;//存储a-b的所有元素的起始下标和终止下标int finda(int s[],int begin,int end,int a)//查找边界为a的元素{if(begin==end)return begin;else{int m=(begin+end)/2;if(s[m]==a)return m;else if(s[m]>a)return finda(s,begin,m,a);else return finda(s,m+1,end,a);}}int findb(int s[],int begin,int end,int b)//查找边界为b的元素{if(begin==end){if(s[begin]>b) return begin-1;else return begin;}else{int m=(begin+end)/2;if(s[m]==b)return m;else if(s[m]<b)return findb(s,m+1,end,b);else return findb(s,begin,m,b);}}void find(int s[],int begin,int end,int a,int b)//缩小a-b的查找范围{if(begin==end){if(s[begin]>=a)i=begin;else if(s[begin]<=b)j=begin;}else{int m=(begin+end)/2;if(s[m]<a) find(s,m+1,end,a,b);else if(s[m]>b)find(s,begin,m,a,b);else {i=finda(s,begin,m,a);j=findb(s,m+1,end,b);}}}void main(){int s[]={1,2,5,8,11,24,31,40};int a=2;int b=30;find(s,0,7,a,b);cout<<i<<ends<<j<<endl;}4、参考代码:根据程序运行结果显示使用两种方法生成的堆序列不一定一样#include<iostream.h>const int N=8;void SiftHeap(int r[],int k,int n){int i=k,j=2*i;int temp;while(j<=n){if(j<n&&r[j]<r[j+1])j++;if(r[i]>r[j])break;else{temp=r[i];r[i]=r[j];r[j]=temp;i=j;j=2*i;}}}void InsertHeap(int r[],int k) {int i=k,j;int temp;while(i!=1){j=i/2;if(r[i]<r[j])break;else{temp=r[i];r[i]=r[j];r[j]=temp;i=j;}}}void main(){int s[N+1],s1[N+1];//输入s和s1for(int i=1;i<=N;i++){cin>>s[i];s1[i]=s[i];} //利用筛选法生成堆for(i=N;i>=1;i--)SiftHeap(s,i,N);//利用插入法生成堆for(i=1;i<=N;i++)InsertHeap(s1,i);//输出s和s1for(i=1;i<=N;i++)cout<<s[i]<<ends<<s1[i]<<endl;}。

中南大学数据结构与算法第5章数组和广义表课后作业答案

中南大学数据结构与算法第5章数组和广义表课后作业答案

第5章数组与广义表习题练习答案5.1请按行及按列优先顺序列出四维数组A2*3*2*3的所有元素在内存中的存储次序,开始结点为a0000。

解:按行优先的顺序排列时,先变化右边的下标,也就是右到左依次变化,这个四维数组的排列是这样的:(将这个排列分行写出以便与阅读,只要按从左到右的顺序存放就是在内存中的排列位置) a0000a0001a0002a0010a0011a0012a0100a0101a0102a0110a0111a0112a0200a0201a0202a0210a0211a0212a1000a1001a1002a1010a1011a1012a1100a1101a1102a1110a1111a1112a1200a1201a1202a1210a1211a1212按列优先的顺序排列恰恰相反,变化最快的是左边的下标,然后向右变化,所以这个四维数组的排列将是这样的,(这里为了便于阅读,也将其书写为分行形式):a0000a1000a0100a1100a0200a1200a0010a1010a0110a1110a0210a1210a0001a1001a0101a1101a0201a1201a0011a1011a0111a1111a0211a1211a0002a1002a0102a1102a0202a1202a0012a1012a0112a1112a0212a02125.2 给出C语言的三维数组地址计算公式。

解:因为C语言的数组下标下界是0,所以Loc(A mnp)=Loc(A000)+((i*n*p)+k)*d其中Amnp表示三维数组。

Loc(A000)表示数组起始位置。

i、j、k表示当前元素的下标,d表示每个元素所占单元数。

5.3设有三对角矩阵A n*n,将其三条对角线上的元素逐行地存储到向量B[0...3n-3]中,使得B[k]=a ij,求:(1)用i , j 表示k的下标变换公式。

(2)用k 表示i,j 的下标变换公式。

2020年算法分析设计习题答案

2020年算法分析设计习题答案

第3章 动态规划
2. 石子合并问题 问题描述: 在一个圆形操场的四周摆放着n堆石子. 现在要将石子有次序地合并 成一堆. 规定每次只能选相邻的2堆石子合并成一堆, 并将新的一堆石子数记为 该次合并的得分. 试设计一个算法, 计算出将n堆石子合并成一堆的最小得分和 最大得分. 算法设计: 对于给定n堆石子, 计算合并成一堆的最小得分和最大得分. 数据输入: 由文件input.txt提供输入数据. 文件的第1行是正整数n, 1n100, 表 示有n堆石子. 第2行有n个数, 分别表示n堆石子的个数. 结果输出: 将计算结果输出到文件output.txt, 文件第1行是最小得分, 第2行是最 大得分.
第五章 回溯
运动员最佳配对问题
问题描述: 羽毛球队有男女运动员各n人. 给定2个nn矩阵P和Q. P[i][j]是男运 动员i与女运动员j配混合双打的男运动员竞赛优势; Q[i][j]是女运动员i与男运 动员j配混合双打的女运动员竞赛优势. 由于技术配合和心理状态等各种因素 影响, P[i][j]不一定等于Q[j][i]. 男运动员i和女运动员j配对的竞赛优势是 P[i][j]*Q[j][i]. 设计一个算法, 计算男女运动员最佳配对法, 使得各组男女双方 竞赛优势的总和达到最大.
8.
若m[i,j]>t, 则m[i,j]=t; s[i,j]=k;
第3章 动态规划
再讨论圆周上的石子合并问题, 子结构[i:j]稍作修改 • 定义m[i][len]为合并第i堆到第i+len-1堆石子能得到的最少分数 • 当i+len-1>n时, 指跨过第n堆到第(i+len-1)%n堆,
仅sum函数需要修改
第2章 分治
2-8 设n个不同的整数排好序后存于T[1:n]中. 若存在一个下标i, 1 i n, 使得T[i]=i. 设计一个有效算法找到这个下标. 要求算 法在最坏情况下的计算时间O(log n).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.最大子段和问题:给定整数序列 n a a a ,,,21 ,求该序列形如∑=jik k a 的子段和的最大值: ⎭⎬⎫⎩⎨⎧∑=≤≤≤ji k k n j i a 1max ,0max1) 已知一个简单算法如下:int Maxsum(int n,int a,int& best i,int& bestj){ int sum = 0;for (int i=1;i<=n;i++){ int suma = 0;for (int j=i;j<=n;j++){ suma + = a[j]; if (suma > sum){ sum = suma; besti = i; bestj = j; } }}return sum;}试分析该算法的时间复杂性。

2) 试用分治算法解最大子段和问题,并分析算法的时间复杂性。

3) 试说明最大子段和问题具有最优子结构性质,并设计一个动态规划算法解最大子段和问题。

分析算法的时间复杂度。

(提示:令1()max,1,2,,jk i j nk ib j a j n ≤≤≤===∑)解:1)分析按照第一章,列出步数统计表,计算可得)(2n O2)分治算法:将所给的序列a[1:n]分为两段a [1:n/2]、a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有三种可能: ①a[1:n]的最大子段和与a[1:n/2]的最大子段和相同; ②a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同; ③a[1:n]的最大子段和为两部分的字段和组成,即j n jil n i ja a a a a+++++=+⎥⎦⎥⎢⎣⎢=⎥⎦⎥⎢⎣⎢∑ 122;intMaxSubSum ( int *a, int left , int right){int sum =0;if( left==right)sum = a[left] > 0? a[ left]:0 ;else{int center = ( left + right) /2;int leftsum =MaxSubSum ( a, left , center) ;int rightsum =MaxSubSum ( a, center +1, right) ;int s_1 =0;int left_sum =0;for ( int i = center ; i >= left; i--){left_sum + = a [ i ];if( left_sum > s1)s1 = left_sum;}int s2 =0;int right_sum =0;for ( int i = center +1; i <= right ; i++){right_sum + = a[ i];if( right_sum > s2)s2 = right_sum;}sum = s1 + s2;if ( sum < leftsum)sum = leftsum;if ( sum < rightsum)sum = rightsum;}return sum;}int MaxSum2 (int n){int a;returnMaxSubSum ( a, 1, n) ;} 该算法所需的计算时间T(n)满足典型的分治算法递归分式T(n)=2T(n/2)+O(n),分治算法的时间复杂度为O(nlogn)3)设}{max )(1∑=≤≤=j ik k ji a j b ,则最大子段和为).(max max max max max 11111j b a a nj jik k ji n j j ik k nj n i ≤≤=≤≤≤≤=≤≤≤≤==∑∑},,,,max {)(11211j j j j j j j a a a a a a a a a j b +++++=---最大子段和实际就是)}(,),2(),1(max{n b b b .要说明最大子段和具有最优子结构性质,只要找到其前后步骤的迭代关系即可。

},)1(max {},}{max max {},}{max {}{max )(1111111j j j j j ik k j i j j i j j i k k ji k k j i a a j b a a a a a a a j b +-=+=+==∑∑∑-=-≤≤-≤≤-==≤≤若0)1(>-j b , j a j b j b +-=)1()(;若0)1(≤-j b ,j a j b =)(。

因此,计算)(j b 的动态规划的公式为:.1},,)1(max {)(n j a a j b j b j j ≤≤+-=intMaxSum (int* a ,int n ) {int sum = 0, b = 0,j=0; for( int i=1;i<=n;i++) { if( b >0)b = b + a [i];elseb = a [i];end{if} if( b > sum)sum = b;j=i ; end{if}}return sum; }自行推导,答案:时间复杂度为O (n )。

2.动态规划算法的时间复杂度为O (n )(双机调度问题)用两台处理机A 和B 处理n 个作业。

设第i 个作业交给机器A 处理时所需要的时间是i a ,若由机器B 来处理,则所需要的时间是i b 。

现在要求每个作业只能由一台机器处理,每台机器都不能同时处理两个作业。

设计一个动态规划算法,使得这两台机器处理完这n 个作业的时间最短(从任何一台机器开工到最后一台机器停工的总的时间)。

以下面的例子说明你的算法:)4,3,11,4,8,3(),,,,,(),2,5,10,7,5,2(),,,,,(,6654321654321===b b b b b b a a a a a a n解:(思路一)删除(思路二)在完成前k 个作业时,设机器A 工作了x 时间,则机器B 最小的工作时间是x 的一个函数。

设F[k][x]表示完成前k 个作业时,机器B 最小的工作时间,则)}](1[,)](1[m in{)]([k k a x k F b x k F x k F --+-=其中k b x k F +-)](1[对应第k 个作业由机器B 来处理(完成k-1个作业时机器A 工作时间仍是x ,则B 在k-1阶段用时为)](1[x k F -);而)](1[k a x k F --对应第k 个作业由机器A 处理(完成k-1个作业,机器A 工作时间是x-a[k],而B 完成k 阶段与完成k-1阶段用时相同为)](1[k a x k F --)。

则完成前k 个作业所需的时间为)}]([,max{x k F x 1)当处理第一个作业时,a[1]=2,b[1]=3;机器A 所花费时间的所有可能值范围:0 ≤x ≤a[0]. x<0时,设F[0][x]= ∞,则max(x, ∞)= ∞; 0≤x<2时,F[1][x]=3,则Max(0,3)=3, x ≥2时, F[1][x]= 0,则Max(2,0)=2;2)处理第二个作业时:x 的取值范围是:0 <= x <= (a[0] + a[1]), 当x<0时,记F[2][x] = ∞;以此类推下去(思路三)假定n 个作业的集合为{}n S n ,,2,1 =。

设J 为n S 的子集,若安排J 中的作业在机器A 上处理,其余作业在机器B 上处理,此时所用时间为⎪⎪⎭⎫⎝⎛=∑∑∈∈J S j j Jj j b a J T \,max )(, 则双机处理作业问题相当于确定n S 的子集J ,使得安排是最省时的。

即转化为求J 使得)}({min J T nS J ⊆。

若记{}1,,2,11-=-n S n ,则有如下递推关系:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑∑∈∈⊆∈∈⊆∈∈⊆J S j j n J j j S J J S j j J j j n S J I S j j I j j S I b b a b a a b a n n n \\\,max min ,,max min min ,max min 11--(思路四)此问题等价于求(x 1,……x n ),使得它是下面的问题最优解。

min max{x 1a 1+……x n a n ,(1-x 1)b 1+……+(1-x n )b n } x i =0或1,i=1~n基于动态规划算法的思想,对每个任务i ,依次计算集合S (i)。

其中每个集合中元素都是一个3元组(F 1,F 2,x )。

这个3元组的每个分量定义为 F 1:处理机A 的完成时间 F 2:处理机B 的完成时间 x :任务分配变量。

当x i =1时表示将任务i 分配给处理机A ,当x i =0时表示分配给处理机B 。

初始时,S (0)={(0,0,0)}令F=按处理时间少的原则来分配任务的方案所需的完成时间。

例如,当(a 1,a 2,a 3,a 4,a 5,a 6)=(2,5,7,10,5,2),(b 1,b 2,b 3,b 4,b 5,b 6)=(3,8,4,11,3,4)时,按处理时间少的原则分配任务的方案为(x 1,x 2,x 3,x 4,x 5,x 6)=(1,1,0,1,0,1) 因此,F=max{2+5+10+2,7+5}=19。

然后,依次考虑任务i ,i=1~n 。

在分配任务i 时,只有2种情形,x i =1或x i =0。

此时,令S(i)={S(i-1)+(a i,0,2i)}U{S(i-1)+(0,b i,0)}在做上述集合并集的计算时,遵循下面的原则:①当(a,b,c),(d,e,f)ЄS(i)且a=d,b<=e时,仅保留(a,b,c);②仅当max{a,b}<=F时,(a,b,c)ЄS(i)最后在S(n)中找出使max{F1,F2}达到最小的元素,相应的x即为所求的最优解,其最优值为max{F1,F2}。

当(a1,a2,a3,a4,a5,a6)=(2,5,7,10,5,2),(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)时, 按处理时间少的原则分配任务的方案为(x1,x2,x3,x4,x5,x6)=(1,1,0,1,0,1)因此,F=max{2+5+10+2,7+5}=19。

S(0)={(0,0,0)};S(1)={(2,0,2),(0,3,0)}S(2)={(7,0,6),(5,3,4),(2,8,2),(0,11,0)}S(3)={(14,0,14),(12,3,12),(9,8,10), (7,4,6), (5,7,4),(2,12,2),(0,15,0)}S(4)={(19,8,26), (17,4,22),(15,7,20),(12,12,18),(14,11,14),(9,19,10),(7,15,6),(5,18,4)}S(5)={ (19,11,46), (12,15,38), (19,11,26), (17,7,22), (15,10,20),(12,15,18),(14,14,14),(7,18,6)}S(6)={ (14,15,102),(19,7,86),(17,10,84),(14,15,82), (9,18,70),(12,19,38), (15,14,20),(12,19,18)} max(F1,F2)最小的元组为(14,15,102), (14,15,82), (15,14,20)所以,完成所有作业最短时间是15,安排有三种:(1,1,0,0,1,1),(1,0,0,1,0,1),(0,1,0,1,0,0)(思路五)C++ 源代码如下:#include<iostream>using namespace std;const int MAXS = 70;const int MAXN = 10;bool p[MAXS][MAXS][MAXS];int a[MAXS],b[MAXS];int schduleDyn(int * a,int * b,int n,int mn){ int i,j,k;//===========数组初始化===================for(i = 0; i <= mn; i++)for(j = 0; j <= mn; j++){ p[i][j][0] = true;for(k = 1 ; k <= n; k++)p[i][j][k] = false;}//===========动态递归=============for(k = 1; k <= n; k ++)for(i = 0; i <= mn; i++)for(j = 0; j <= mn; j++){ if( (i - a[k-1]) >= 0)p[i][j][k] = p[i - a[k-1]][j][k-1];if( (j - b[k-1]) >= 0)p[i][j][k] = (p[i][j][k] | p[i][j-b[k-1]][k-1]);}//================求结果=====================int rs = mn;int temp = 0;for(i = 0; i <= mn; i++)for(j = 0; j <= mn ; j++){if(p[i][j][n]){ temp = i > j ? i : j;if(temp < rs)rs = temp;}}return rs;}void main(){int i,n,m = 0,mn = 0;//=============初始化========================cin >> n;for(i = 0; i < n; i++){ cin >> a[i];if(a[i] > m)m = a[i];}for(i = 0; i < n; i++){cin >> b[i];if(b[i] > m)m = b[i];}mn = m * n;//=========动态规划求解=================cout << schduleDyn(a,b,n,mn) << endl;system("pause");}对于例子: n = 6 ;(a1,….,a6) = (2 5 7 10 5 2),(b,1…,b6) = (3 8 4 11 3 4); 由于求解过程比较繁锁,这里只说个大概算法执行过程,首先,用p[i][j][k],记录下对于第k 个作业,能否在对于a机器是i时间以内,对于b机器是j时间以内完成,如果能,则把p[i][j][k]设为true.经过了设置后,求对于n个作业的所有可能的值为p[i][j][n],对min(max(i,j)),结果为15.即为所得到的结果.3.考虑下面特殊的整数线性规划问题ni x b xa x c i ni ii ni ii ≤≤∈≤∑∑==1},2,1,0{,max 11试设计一个解此问题的动态规划算法,并分析算法的时间复杂度。

相关文档
最新文档