量子力学第二版第六章散射习题复习资料周世勋
量子力学第二版(周世勋)

2µ
2µ
= qBnη = nB ⋅ qη
2µ
2µ
= nBNB ,
其中, M B
=
qη 2µ
是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且
具体到本题,有
∆E = BM B
根据动能与温度的关系式
∆E = 10 × 9 × 10−24 J = 9 × 10−23 J
E = 3 kT 2
以及
1k ⋅ K = 10−3 eV = 1.6 × 10−22 J
∂ ∂r
(1 eikr ) − r
1 eikr r
∂ ∂r
(1 r
e
−ikr
ρ )]r0
=
iη [1 (− 2m r
1 r2
+ ik 1) − 1 (− rr
1 r2
−
ik
1 r
)]ρr0
可见,
ρ J2
=
−
ηk mr 2
ρr0
=
−
ηk mr 3
ρr
与rρ反向。表示向内(即向原点) 传播的球面波。
补充:设ψ (x) = eikx ,粒子的位置几率分布如何?这个波函数能否归一化?
1.3 氦原子的动能是 E = 3 kT (k 为玻耳兹曼常数),求 T=1K 时,氦原子的德布罗意波 2
长。
解 根据
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
知本题的氦原子的动能为
1k ⋅ K = 10−3 eV ,
E = 3 kT = 3 k ⋅ K = 1.5 ×10−3 eV , 22
解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正 负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过 程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到 本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所 对应的波长也就最长,而且,有
周世勋量子力学习题答案(七章全)

−
h2 2μ
d2 ψ dx2
(x)
+ U (x)ψ
(x)
=
Eψ
6.62559 ×10−34 × 2.997925 ×108 1.380546 ×10−23
= 2.898 ×10−3 m ⋅ k
[注]
ρν
根据
=
8πhν 3 c3
1
hν
e kT − 1
可求能量密度最大值的频率:
x = hν
令
kT
ρν
=
Ax3
1 ex −1
(
A
=
8πk 3T c3h2
3
)
dρν dν
球面波。
2.3 一粒子在一维势场
⎧∞ U (x) = ⎪⎨0
⎪⎩∞
x<0 0≤ x≤a x>a
中运动,求粒子的能级和对应的波函数。
[解]:由于势函数U (x) 不随时间变化
体系的状态波函数满足定态 Schrödinger 方程
0
a
− h2 ∇2ψ (x) + U (x)ψ (x) = Eψ (x) 2m
vj = ih [ψ (rv)∇ψ *(rv) −ψ *(rv)∇ψ (rv)] 则有: 2μ 即 vj 仅是空间坐标 (x, y, z) 的函数,与时间无关。
2.2 由下列两定态波函数计算几率流密度。
(1)
ψ1
=
1 r
eikr
ψ
(2)
2
=
1 e−ikr r
从所得结果说明ψ1 表示向外传播的球面波,ψ 2 表示向内(即向原点)传播的球面波。
m
= 2.43 ×10−12 m = 2.43 ×10−2 A°
量子力学+周世勋(课件)

几何学:量子力学的重要数学工具,用于描述量子态的 几何结构和几何相变
量子力学的物理图像
量子力学的基本概念:波函数、概率幅、薛定谔方程等 量子力学的实验基础:双缝干涉实验、电子衍射实验等 量子力学的应用:量子计算、量子通信、量子加密等 量子力学的发展:从经典力学到量子力学的转变,以及量子力学的发 展历程和现状。
周世勋的量子力学课件的局限性及改进方向
内容深度:部分内容过于深奥,不易理解 讲解方式:部分讲解方式较为单一,缺乏互动性 课件设计:部分课件设计不够直观,不易于学生理解 改进方向:增加案例分析,提高互动性,优化课件设计,增加实践操作环节
周世勋的量子力学课件对未来学科发展的影 响
推动了量子力学的普及和发展 激发了学生对量子力学的兴趣和热情 促进了量子力学与其他学科的交叉融合 提高了量子力学在科研和工业领域的应用水平
量子力学的发展历程
1900年,普朗克提出量子概念,量子 力学的萌芽
1913年,玻尔提出玻尔模型,量子力 学的初步建立
1925年,海森堡提出不确定性原理, 量子力学的进一步完善
1926年,薛定谔提出薛定谔方程,量 子力学的成熟
1927年,狄拉克提出狄拉克方程,量 子力学的进一步发展
1935年,爱因斯坦、波多尔斯基和罗森 提出EPR佯谬,量子力学的深入探讨
量子力学+周世 勋全套课件
PPT,a click to unlimited possibilities
汇报人:PPT
目录 /目录
01
量子力学基础
02
周世勋的量子 力学课件介绍
03
周世勋的量子 力学课件详解
04
《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学教程(第二版)周世勋习题解答

(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)
⑤
④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)
②
12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)
③
由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2
周世勋量子力学习题及解答

周世勋量子力学习题及解答1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长?m与温度t成反比,即;? MT=B(常数)并近似计算b的数值,准确到二位有效数字。
该解决方案基于普朗克黑体辐射公式8?hv3?vdv?3?c1ehvktdv,?1(1)五、C以及(2)vdvvd,(3)有dvd??c?dv(?)d??(?)?v?c?????8.hc?5.1ehc?kt,?1在这里??物理意义是黑体中的波长介于λ和λ+dλ之间,辐射能量密度介于。
本题关注的是λ取何值时,??取得极大值,因此,就得要求??对λ的一阶导数为零,由此可求得相应的λ的值,记作?m。
但要注意的是,还需要验证??对λ的二阶导数在?m处的取值是否小于零,如果小于零,那么前面求得的?m就是要求的,具体如下:hc1 6.hc?5.0hc kt Ekt?1.1.Ekt??5.hc?1hc?0kt1?e?kt8?hc15(1?e?hc?kt)?hc?kt1如果你做x=hc?kt,则上述方程为5(1?e?x)?十、这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有hc?mt?xk把x以及三个物理常量代入到上式便知mt?2.9? 10? 3m?K这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射能量分布的峰值向较短的波长移动,这将根据热物体(如遥远的恒星)的发光颜色确定温度。
1.2在0k附近,钠的价电子能量约为3ev,求其德布罗意波长。
根据德布罗意波粒二象性之间的关系,可以看出e=hv,惠普?如果所考虑的粒子是非相对论性的电子(e动ec2),那么p2e?2.E如果我们考察的是相对性的光子,那么e=pc注意到本题所考虑的钠的价电子的动能仅为3ev,远远小于电子的质量与光速平方的乘积,即0.51?106ev,因此利用非相对论性的电子的能量――动量关系式,这样,便有Hp二h2?eehc2?ec2e1.24?10?662?0.51?10?3?0.71?10?9m?0.71nmm在这里,利用hc?1.24?10?6ev?m以及ec20.51106ev最后,是的hc2?ece2从上面的公式可以看出,当粒子的质量较大时,粒子的波长较短,因此粒子的涨落较弱,粒子的性质较强;同样,粒子的动能越大,粒子的波长越短。
量子力学教程习题答案周世勋

解:
= 1
= 0
*
= 0
同理可证其它的正交归一关系。
*
1
综合两方面,两电子组成体系的波函数应是反对称波函数,即
2
独态:
*
三重态:
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
*
解:电子波函数的空间部分满足定态S-方程
*
*
两电子的空间波函数能够组成一个对称波函数和一个反对称波函数,其形式为
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为
式中
02
为归一化因子,即
03
求线性谐振子哈密顿量在动量表象中的矩阵元。
01
解:
02
*
第五章 微扰理论
*
运营计划简约通用模板
《量子力学教程》 习题解答
单击此处添加副标题
《量子力学教程》 习题解答说明 为了满足量子力学教学和学生自学的需要,完善精品课程建设,我们编写了周世勋先生编写的《量子力学教程》的课后习题解答。本解答共分七章,其中第六章为选学内容。 第一章 第二章 第三章 第四章 第五章 第六章 第七章
*
01
第一章 绪论
第七章 自旋和全同粒子
03
第三章 力学量的算符表示
单击此处添加正文
05
第五章 微扰理论
单击此处添加正文
02
第二章 波函数和薛定谔方程
单击此处添加正文
04
第四章 态和力学量的表象
单击此处添加正文
周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第4章 态和力学量的表象——第6章

n
中,以 Sn 为矩阵元的矩阵 S 称为变换矩阵。设态 在 A,B 表象中的矩阵表示分别为 a,
b,S 为两表象之间的幺正变换,则态在两表象之间的变换为
b S 1a ,算符在两表象之间的变换为 F ' S 1FS 。
1
(2) 2
动量本征函数,则
C( p,t) 即为该态在动量表象中的波函数。 C( p,t) 的物理意义为: C( p.t) 2 dp 表示在该态
中,测量粒子的动量所得结果在 p 到 p+dp 范围内的几率。
二、幺正变换
1.变换矩阵
满足 S S 1 的矩阵称为幺正矩阵,幺正矩阵不是厄米矩阵。由幺正矩阵所表示的变
1 / 50
圣才电子书 十万种考研考证电子书、题库视频学习平台
a1
(t
)
a2 (t) 函数,则 (x,t) 在力学量 Q 表象中矩阵表示可写为: 。
a
n (t
)
aq (t)
3.算符 F 在 Q 表象中的矩阵表示.
算符 F 在 Q 表象中对应一个矩阵(方阵),矩阵元是 Fnm un* Fumdx ,平均值公式是
3.其他常用关系式
(1)粒子数算符本征方程 N | n n | n ;
(2)哈密顿量本征方程
H
p ( x)
1
i px
1e
(2 ) 2
本征方程
p p'
p ' p'
C( p,t) ( p' p) p ( p p' ) p' ( p p' )
5.一个典型的例子分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 散射1.粒子受到势能为2)(r ar U =的场的散射,求S 分波的微分散射截面。
[解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。
注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在∞→r 时的位相差。
因此要找出相角位移,必须从矢径的波动方程出发。
矢径的波动方程是:0))1()((12222=+--+⎪⎭⎫ ⎝⎛l lR r l l r V k drdR r dr d r其中l R 是波函数的径向部分,而E k r U r V 2222),(2)(ηημμ==令r r x R l l )(=,不难把矢径波动方程化为02)1(2222=⎪⎭⎫ ⎝⎛-+-+''l l x r r l l k x ημα再作变换 )(r f r x l =,得0)(221)(1)(2222=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-+'+''r f r e k r f r r f ημα这是一个贝塞尔方程,它的解是)()()(kr BN kr AJ r f p p +=其中222221ημα+⎪⎭⎫ ⎝⎛+=l p 注意到)(kr N p 在0→r 时发散,因而当0→r 时波函数∞→=rN R p l ,不符合波函数的标准条件。
所以必须有0=B故)(1kr J r AR p l =现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求得相角位移l δ,由于:)2sin(1)42sin(1)(l lkr r p kr r r R δπππ+-=+-→∞→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=++-=∴21221224222l d l l p l ημππππδ当l δ很小时,即α较小时,把上式展开,略去高次项得到⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-=2122l l ημαπδ又因l i i e l δδ212=- 故 ∑∞=-+=02)(cos )1)(12(21)(l l i P e l ik f l θθδ∑∞=⎪⎪⎪⎪⎭⎫ ⎝⎛+-+=02)(cos 122)12(21l l P l i l ik θμαπη∑∞=-=02)(cos l l P k θπμαη注意到 ⎪⎪⎩⎪⎪⎨⎧≤⎪⎪⎭⎫⎝⎛≥⎪⎪⎭⎫ ⎝⎛=-+=∑∑∞=∞=02121202112121222112)(cos 1)(cos 1cos 211l l l l l lr r P r r r r r P r r r r r r r r 当当θθθρ如果取单位半径的球面上的两点来看 则 121==r r ,即有∑∞===-02sin21)(cos )cos 1(21l l P θθθ故2sin21)(2θπμαθηk f -=微分散射截面为θθαμπθθαμπθθd Ed k d f 2csc 82sin41)(2222242222ηη==由此可见,粒子能量E 愈小,则θ较小的波对微分散射截面的贡献愈大;势能常数α愈大,微分散射截面也愈大。
2.慢速粒子受到势能为⎩⎨⎧><=a r a r U r U 当当,0,)(0的场的散射,若0,00><U U E ,求散射截面。
[解] 慢速粒子的德布罗意波长很长,所以只需要考虑S 分波。
在a r >处,方程为2210l l l(l )x k x r +⎡⎤''+-=⎢⎥⎣⎦其中222ηE k μ=在a r <处,则有2210l l l(l )x k x r +⎡⎤'''-+=⎢⎥⎣⎦其中202)(2ηE U k -='μ 而波函数是r x R l l =在a >>λ的情况下,只故虑S 分波,即0=l 的情况,上面两个方程变为0020=+''>x k x ar0020=-''<x k x ar其解分别为当a r >时, )sin(00δ+=kr B x 当a r <时,0x Ashk r A c hk r '''=+由于在0→r 时,r x R 00=有限,但1cos 0−−→−'→r r k 当η故 0='A 即)(0a r rk Ash x <'=在a r =处,波函数0R 及其微商必须连续,因此得出)sin(0δ+='ka B a k Ash)sin()cot(0202δδ+-+='-''ka a Bka k a B a k sh a A a k ch k a A用前式除后式可得)cot(coth 0δ+=''ka k a k k即)(0δ+'='ka tg k k a k tg ηka a k tg k k tg -⎪⎭⎫⎝⎛''=∴-η10δ因此S 分波的辐射截面是⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛''==-ka a k tg k k tg k k Q η1220220sin 4sin 4πδπ当速度较小时,0→k ,可以近似地认为2002ηU k k μ=='这时有0tghka tghk a =000ktghk a ka k δ∴=-20022020144⎪⎪⎭⎫ ⎝⎛-==a k a k tg a k Q ηπδπ假如∞→0U ,相当于在受到球形无限深势阱散射的情况,这时由于121)(100022020200−−−→−⎥⎦⎤⎢⎣⎡-+=⎪⎪⎭⎫ ⎝⎛-∞→k a k a k tg a k a k tg a k a k tg 当ηηη204Q a π∴=3.只考虑S 分波,求慢速粒子受到势能4)(r r U α=的场散射时的散射截面。
[解] 当只考虑0=l ,即S 分波时,令r R α=,则x 满足的方程是:0242=-''r xx ημα为了解此方程,作如下代换,令)()(r f r r x =,由于)(121)(r f r r f r x +'='23)(41)()(-⋅-'+''=''r r f r r f r f r x可将原方程化为0411223272=⎪⎪⎭⎫⎝⎛+-'+''r r d f r f f r ημ即04112242=⎪⎭⎫ ⎝⎛+-'+''r r d f r f f ημ为了化简方程,再作变换,令ξμα12ηi r =注意到22212ξμαξμαξξξηηd df i r i d df dr d d df dr df =-==drd d df i d f d i dr d d df i d d dr f d ξξμαξξμαξξμαξξ222222222ηηη+=⎪⎪⎭⎫ ⎝⎛=232222222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=μαξξξμαξηηi d df i d f d方程可以化为04111222=⎪⎪⎭⎫⎝⎛-++ξξξξd df d f d这是21阶的贝塞尔方程,它的解是⎪⎪⎭⎫ ⎝⎛=r i H r f 12)()1(21ημα式中)1(H表示第一类汉克尔函数,按定义为[])()(sin )()1(ξξπξπp p ip p J J ep iH ---=当1<<ξ时,)1(2)(+=p J p pP Γξξ当0,→∞→ξr 时⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-−−→−--∞→2122322sin )(21212121)1(21ΓξΓξπξi i H r 当 而πΓΓπΓ21212123,21=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==∴r x i H r r f r x ημ2)()1(21当r 很大时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=41241222ηημαμαr x 常数 ⎥⎦⎤⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==r c C r r r x R 21412412212)(常数常数ηημαμα另一方面r kr r kr C kr kr C R )sin()0cos()0sin(021δ-=-+-=常数当1<<kr 时⎪⎭⎫ ⎝⎛+≅r C C R 21常数 其中412241212,2⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=ηημαμαC C01202δμαδ===∴k k C C tg η散射截面222208424k k Q ηηπμαπμαπδ⎪⎪⎭⎫ ⎝⎛==上述解的条件是,1<<kr 即112<<=r i ημαξ亦即要求 k r 12<<<<ημα4.用玻恩近似法求粒子在势能220)(r eU r U α-=场中散射时的散射截面。
[解] 按玻恩近似法计算微分散射截面的公式2)()(θθf q = 而⎰∞--=0222sin 2)(drkre r K f rαμθη [见教材(55-23)式]其中2sin 4222θk K =,θ为入射粒子方向和散射粒子方向之间的夹角。
在本题中220)(re U r U α-=⎰∞--=∴02022sin 2)(drKre r K U f r αμθη⎰∞--+--=02)(2222dre e r K U iiKrr iKrr ααμη⎰⎰∞∞⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛----=2422422222222222drree K U i dr ree K U i iK r K iK r K ααααααμμηη注意到⎰⎰⎰∞∞∞⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=0222222222222222dreiK dr e iK r dr reiK r iK r iK r αααααααα⎰∞-+=+=03224212222απααπααiK iK dx xe x又⎰⎰⎰∞∞∞⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+-=-0002222222222222222dr eiK dr e iK r dr reiK r iK r iK r αααααααα32421απαiK +-=2222432034222)(αααπμαπμθK K e U iK e K U i f ---=⋅=∴ηη而2sin 4222θK K =2226420224)()(ααπμθθK eU f q -==∴η5.利用玻恩近似法求粒子在势能20s Ze r,r a U(r )r b,r a ⎧-<⎪=⎨⎪>⎩场中散射的微分散射截面,式中22sa b Ze =[解] 由势能)(r U 的形状容易看出,计算)(θf 时只需计算由a →0的积分即可。