抽水蓄能的基本概念及十三陵抽水蓄能电站介绍

合集下载

抽水蓄能电站演示课件

抽水蓄能电站演示课件
抽水蓄能电站演示 课件
• 抽水蓄能电站概述 • 抽水蓄能电站的关键技术 • 抽水蓄能电站的运行与维护 • 抽水蓄能电站的发展前景与挑战
CATALOGUE
抽水蓄能电站概述
抽水蓄能电站的定义与工作原理
定义
工作原理
在电力负荷低谷期,利用多余电能将 下水库的水抽到上水库储存;在电力 负荷高峰期,将上水库的水放下,通 过发电机组转换成电能输出。
提高能源储存和调度能力。
技术创新
新的技术不断涌现,如变速抽水 蓄能、高效水泵和涡轮机等,将 提高抽水蓄能电站的效率和灵活
性。
多元化应用
抽水蓄能电站不仅用于电力系统 调峰填谷,还可应用于可再生能 源并网、电网调频等领域,发挥
其多元化的优势。
抽水蓄能电站面临的挑战
资源限制
1
环境影响
2
市场竞争
3
抽水蓄能电站的未来展望
抽水蓄能电站的设备维护
水轮发电机组的维护 泵站的维护 电气设备的维护
抽水蓄能电站的安全管理
安全制度建设

安全检查与隐患排查
应急预案与演练 安全培训与宣传
CATALOGUE
抽水蓄能电站的发展前景与挑战
抽水蓄能电站的发展趋势
规模化发展
随着能源需求的增长和可再生能 源的大规模开发,抽水蓄能电站 正朝着更大规模的方向发展,以
抽水蓄能电站的运行与维护
抽水蓄能电站的运行模式
常规运行模式
抽水蓄能电站在常规运行模式下,利用电力系统的低谷电能将下水库的水抽到上 水库储存,待电力系统高峰时段再放水发电,以满足高峰时段的电力需求。
调度运行模式
在调度运行模式下,抽水蓄能电站根据电力系统的实时调度需求,灵活调整抽水 和发电的时段及功率,以优化电力系统的运行稳定性和经济性。

十三陵抽水蓄能电站

十三陵抽水蓄能电站

上水库的运行
上水库主坝于1992年3月开始填筑,1993年9月填筑完成。1995年8月3日上水库开始初期蓄水,水位上升速度 控制在1m/d以内,1996年2月水位上升至550m高程,满足第1台机组运行,1996年12月水位上升至572m高程,满 足1、2号2台机运行。1997年6月12日上水库水位升至设计正常高水位566m。
混凝土面板缝间位移变形监测来自周边缝位移 变形面板分缝位 移变形
上水库周边缝位移变形采用三向测缝计,监测面板与连接板之间的开合度 (X方向),沿缝向的剪切位移 (Y 方向)和垂直面板方向的相对沉降 (Z方向)。监测结果表明,主坝缝间开度在坝中部位最大达到13mm,其剪切位移 最大为63mm,相对沉降变形最大为35mm ;靠近坝肩部位缝间开度最大为88mm,剪切位移最大为52mm,其相对沉 降变形与坝中部位一致;岩坡部位的位移变形均较小,最大开度约5mm,剪切和沉降变形小于3mm。其变形特征呈 一定的规律性:在靠近大气环境影响部位,缝间开合度随气温有明显的变化;主坝区域周边缝的位移变形明显大 于岩坡部位,在坝体中间位置的位移变形最大,靠近两坝肩次之,岩坡部位最小,与面板和连接板基础的相对位 移变形是一致的;周边缝的位移变形与库水位没有明显的相关性,但受气温的影响较大。上水库蓄水后,周边缝 的开度有所减小,一方面受水荷载作用面板基础变形增大,另一方面,库水的防护作用对减小面板的温度应力和 变形有利。上水库蓄水正常运行后,对周边缝的剪切位移和沉降变形影响较小。
上水库西侧山体存在倾向库外的断层,影响边坡的稳定,且断层在西坡库盆内侧出露。若该区域面板渗漏, 渗水将影响西坡的水文地质条件,进而对上水库工程的安全运行不利。根据上述情况,在上水库西坡库盆内坡采 用新构造,岩坡基础和副坝上游面垫层表面设置复合防渗层,选用新材料氯丁胶乳沥青与聚酯纤维无纺布组成的 防渗膜,其上面为无砂混凝土排水层和混凝土面板防渗层,满足了减少渗漏损失和山体稳定的要求。同时,又可 减弱面板基础的约束,有利于防止面板的裂缝,提高面板混凝土的耐久性。

抽水蓄能电站的工作原理

抽水蓄能电站的工作原理

抽水蓄能电站的工作原理抽水蓄能电站是一种利用水的高低水位差进行能量转换的电站。

它不仅可以提供清洁、可再生的电力,还能在电网负荷不稳定的情况下进行能量调峰。

本文将介绍抽水蓄能电站的工作原理以及其在电力系统中的应用。

一、工作原理抽水蓄能电站由上层水库、下层水库和中间的压力差装置组成。

当电力系统负荷较低时,电站会利用超低负荷时段的电力将下层水库的水抽到上层水库中,形成高位水库和低位水库之间的水头差。

当负荷高峰到来时,电站停止抽水,而是开启水轮机,利用高水头驱动水轮机发电。

在电站运行阶段,上层水库的水经过进口管道进入压力差装置,而下层水库的水则通过出口管道流回下层水库。

压力差装置通常采用调节阀,它的作用是调节水流的流量和水头,以匹配电网负荷需求。

二、运行过程1. 抽水阶段:在低负荷时段,电站通过启动抽水泵,将下层水库的水抽到上层水库中。

抽水过程中要保持一定的流量和水头,以满足后续发电时的需求。

2. 发电阶段:当负荷高峰到来时,电站停止抽水并启动水轮机发电。

水从上层水库通过压力差装置进入水轮机,水轮机转动带动发电机产生电能。

之后,水从水轮机出口流回下层水库,完成一次发电周期。

3. 调峰阶段:在电网负荷波动剧烈或需要调节电力供应时,抽水蓄能电站能够快速响应,并通过调整抽水和发电的比例来实现能量调峰。

当电网负荷较高时,电站增加发电量;当电网负荷较低时,电站增加抽水量。

这种能量调峰的机制能够保证电力系统的平稳供应,并提高电网的可靠性。

三、应用及优势抽水蓄能电站在电力系统中具有重要的应用价值和广阔的发展前景。

它的主要优势包括以下几个方面:1. 能量调峰:抽水蓄能电站可以根据电网负荷需求进行快速调节,满足电力系统的负荷波动,保持电网的稳定运行。

2. 能源储备:电站利用低峰时段的电力将下层水库的水抽到上层水库中,形成能量储备,以备高峰时段使用。

这种储能方式可以提高能源利用率,减少能源浪费。

3. 清洁环保:抽水蓄能电站主要利用水力能进行发电,不会产生二氧化碳和其他污染物,不会对环境造成污染,具有良好的环境效益。

抽水蓄能电站的工作原理

抽水蓄能电站的工作原理

抽水蓄能电站的工作原理抽水蓄能电站是一种利用水能进行能量转换的发电方式。

它可以将水在不同水位之间来回转移,使得能量得以储存和释放。

本文将介绍抽水蓄能电站的基本原理、工作过程以及其在能源领域的重要性。

1. 基本原理抽水蓄能电站利用高地势和低地势之间的高度差来储存和释放能量。

当能源需求较低时,电站将利用电力驱动水泵,将低地势的水抽到高地势的储水池中。

而当能源需求增加时,电站将放空高地势的水,通过下坠驱动涡轮发电机,将机械能转化为电能。

通过这种方式,电站能够根据实际需求调节能量的存储和释放,实现电能的平衡供给。

2. 工作过程抽水蓄能电站的工作过程可以分为储能过程和释能过程两个阶段。

2.1 储能过程在储能过程中,电站利用电力将水从低地势抽到高地势。

具体步骤如下:(1)当电网需求较低时,水泵开始运转,将水从下游输送至储水池;(2)水泵将低地势的水加压输送至高地势的储水池;(3)水泵的工作使得储水池的水位逐渐上升,同时将电站消耗的电能转化为水位能。

2.2 释能过程在释能过程中,电站将储存的水能转化为电能,供给电网需要。

具体步骤如下:(1)当电网需求增加时,电站开始放空储水池的水;(2)水从高地势的储水池流向下游,驱动涡轮发电机旋转;(3)涡轮发电机将机械能转化为电能,通过电网传输供给电力用户。

3. 能源领域的重要性抽水蓄能电站在能源领域具有重要的作用,主要体现在以下几个方面:3.1 能量储存与调节抽水蓄能电站可以储存大量的能量,将剩余电能在低负荷时储存,高负荷时释放,实现电网供需平衡。

这样可以避免电力浪费和供电紧张情况的发生,提高能源利用效率。

3.2 调峰填谷抽水蓄能电站能够迅速响应电网负荷需求的变化,可以在用电高峰期释放能量来满足需求,并在用电低谷期储存能量以供日后使用。

这样可以平衡电网负荷,提高电力系统的稳定性和可靠性。

3.3 可再生能源的发展抽水蓄能电站为可再生能源的发展提供了有力支持。

当太阳能光伏和风力发电等可再生能源产生过剩电量时,可以利用抽水蓄能电站将其转化为储能,以备不时之需,减少能源浪费。

抽水蓄能电站及地下厂房概述

抽水蓄能电站及地下厂房概述

抽水蓄能电站及地下厂房概述抽水蓄能电站是一种利用地势高差差异储存和释放能量的电力储能系统。

其基本原理是将能源转化为电能,通过抽水将低处的水储存起来,待需要释放能量时,将储存的水释放下来,通过水力发电机转化为电能。

地下厂房则是指将抽水蓄能电站的发电设备和相关设备安置在地下,使其更加隐蔽安全。

抽水蓄能电站通常由上水池、下水池和发电机组三部分组成。

上水池位于较高的地方,下水池位于较低的地方。

当电网需求电能较低时,电站利用多余的电能将下水池里的水提升到上水池中,储存起来;当电网需要电能较高时,电站则将上水池中的水放下来,通过水流驱动水轮发电机发电。

与传统的抽水蓄能电站相比,地下厂房有诸多优势。

首先,它们通过将设备安置在地下,使之相对于地面厂房更加安全。

地下厂房可以有效地防范自然灾害,如地震、洪水等,降低设备损坏的风险。

其次,地下厂房对环境的影响较小。

地下厂房无须占用地面空间,减少了对生态环境的破坏。

此外,地下厂房的工作温度更加稳定,有利于设备的运行和维护。

最后,地下厂房具备隐蔽性,做到对外界的观察和威胁最小化,增加了电站的安全性。

然而,地下厂房也面临一些挑战。

首先,地下厂房的建设成本较高。

由于地下厂房需要采用特殊的工程技术和材料,使得建设成本较传统的地面厂房要高。

其次,地下厂房的建设周期较长。

由于地下厂房需要进行较为复杂的施工工艺,建设周期相对较长,增加了工程的难度和时间成本。

此外,地下厂房的日常运维也相对较为困难,需要增加设备运行的定期检修和维护的难度。

在应对这些挑战的同时,地下厂房仍具有广阔的发展前景。

随着能源需求的增加和环境保护的要求不断提高,抽水蓄能电站作为一种环保、可再生的能源储存和利用方式,其发展前景广阔。

地下厂房作为抽水蓄能电站的一种新型形式,可以进一步提高电站的安全性和环境友好性,有望成为未来能源储备和发电的重要选择。

总之,抽水蓄能电站及地下厂房作为一种可再生的能源储存和利用方式,具有很高的应用前景。

抽水蓄能简介演示

抽水蓄能简介演示

抽水蓄能电站可以在电 网负荷低谷时,通过抽 水将下游的水抽到上游 ,以储存能量。在电网 负荷高峰时,放水发电 ,补充电力系统的不足 。
抽水蓄能电站的运行相 对稳定,可以提供可靠 的电力供应,有助于减 少电网的波动。
相比传统的火力发电站 ,抽水蓄能电站的能源 转换效率高,能够减少 能源的消耗。
作为一种可再生的能源 ,抽水蓄能电站的运行 不会产生污染物,对环 境友好。
抽水蓄能技术的应用场景
抽水蓄能技术在电力系统峰谷调节、调 频、调相以及备用等应用场景中具有重 要地位。
在备用方面,抽水蓄能电站可以作为应 急电源,保障重要负荷的供电可靠性。
在调相方面,抽水蓄能电站可以补偿系 统无功功率,改善电能质量。
在峰谷调节方面,抽水蓄能电站可以在 电力需求高峰时释放储存的电能,缓解 电力供需矛盾,提高电网运行效率。
国内典型抽水蓄能电站介绍
广州抽水蓄能电站
作为我国华南地区最大的抽水蓄能电站,广州抽水蓄能电 站位于广州市从化区,总装机容量2400兆瓦,具有调峰填 谷、调频调相、事故备用、黑启动等功能。
浙江天荒坪抽水蓄能电站
位于浙江省安吉县,总装机容量1800兆瓦,是国内首座大 型抽水蓄能电站,也是世界上已建成的单体最大的抽水蓄 能电站。
02
它包括抽水蓄能发电和抽水蓄能 泵站两种类型,分别在电力需求 峰谷调节和区域水资源调配方面 发挥重要作用。
抽水蓄能技术原理
抽水蓄能技术原理基于能量守恒定律 ,通过将水从低处抽到高处储存势能 ,然后利用重力势能将水放出,驱动 水轮机发电。
在抽水蓄能电站中,上水库和下水库 之间的高度差决定了储能容量,而下 水库则通过放水发电将势能转化为电 能。
,实现电力系统的平衡。
抽水蓄能电站的能量转换过程

抽水蓄能电站的工作原理

抽水蓄能电站的工作原理

抽水蓄能电站的工作原理抽水蓄能电站(Pumped-storage hydroelectricity,简称PSH)是一种利用水的重力势能来储存和释放能量的电力站。

它在能源储备和调度方面具有重要地位,被广泛应用于电力系统。

本文将介绍抽水蓄能电站的工作原理。

一、概述抽水蓄能电站主要由上下两个水库、上游水池与下游水池之间的高差落差以及水轮机等核心设备组成。

在低电负荷或夜间电力需求较低时,利用额外的电力将水从下游水库抽到上游水库,实现能量储存;而在高电负荷或能源需求增加时,将积蓄的上游水库水通过水轮机释放,以发电供应给电力系统。

二、储能过程1. 上下水库:抽水蓄能电站需要具备两个相对高度差较大的水库,上游水库和下游水库。

这两个水库之间通过一条简捷的通道连接,例如水管或隧道等。

上游水库处于高位,下游水库则处于低位。

2. 水泵:位于下游水库,通过电力供应将水从下游水库抽入上游水库。

水泵将电能转化为水动能,并将水输送至高位水库。

3. 电力供应:电力系统将超过需求的电能输入给抽水蓄能电站,以便将水从下游水库抽到上游水库。

当系统电力需求较低时,多余的电能用于抽水作业,将水储存在上游水库中。

三、发电过程1. 水轮机:位于上游水库与下游水库之间的抽水蓄能电站的坝体内。

当电力系统需要额外能源时,上游水库的水通过受控释放,流入下游水库。

水轮机将水的重力势能转化为机械能,并与发电机相连,进而将机械能转化为电能。

2. 发电机:水轮机驱动发电机旋转,将机械能转化为电能,并通过电力系统将电能传输给用户。

四、优势与应用1. 能源储备:抽水蓄能电站能在电力需求低谷时将过剩电能转化为能量储备,能够有效平衡电力系统的供需差异。

2. 调峰削峰:抽水蓄能电站可以根据电力系统的需求,及时释放储存的水能以满足能源需求的高峰期,也可以在低峰期进行抽水储能,以平滑电力负荷曲线。

3. 拉动电力市场:抽水蓄能电站通过能量的储存与释放,可以参与电力市场的调度交易,提高电力系统的经济效益。

抽水蓄能电站ppt课件

抽水蓄能电站ppt课件

提高能源利用效率
增加就业机会
抽水蓄能电站的建设和运营需要大量 的人力资源,可以提供就业机会,缓 解当地的就业压力。
抽水蓄能电站利用水的势能进行发电 ,相比于传统的火电和核电,能源利 用效率更高,能够减少能源浪费。
环境效益
减少环境污染
抽水蓄能电站是一种清洁能源, 相比于传统的火电和核电,能够 减少二氧化碳、氮氧化物等污染
运营成本高
由于抽水蓄能电站的运行需要大量的水资源,因此水费和维护费用 相对较高,增加了运营成本。
市场需求波动
市场需求的变化对抽水蓄能电站的经济效益产生影响,需要充分考 虑市场需求和变化趋势。
政策支持与市场前景
政策支持
政府对可再生能源的支持政策对抽水蓄能电站的发展具有重要影响 ,如补贴、税收优惠等政策可以降低投资和运营成本。
抽水蓄能电站PPT课 件
目录
CONTENTS
• 抽水蓄能电站概述 • 抽水蓄能电站的建设与运营 • 抽水蓄能电站的效益与影响 • 抽水蓄能电站的挑战与前景 • 抽水蓄能电站的案例分析 • 抽水蓄能电站的发展趋势与展望
01 抽水蓄能电站概述
定义与特点
定义
抽水蓄能电站是一种利用上下水 库位差进行能量储存和释放的电 站,主要用于调节电网负荷和提 供备用能源。

设备维护
定期对电站设备进行检查和维 护,确保设备安全稳定运行。
安全管理
制定并执行安全管理措施,确 保电站运营安全。
经济效益评估
对电站的运营经济效益进行评 估,为后续的运营管理提供决
策依据。
维护与管理
日常巡检
定期对电站设施进行巡检,及 时发现并处理潜在问题。
设备更新与改造
根据设备运行状况和新技术发 展,对电站设备进行更新和改 造。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决方案 为使电力与负荷相平衡, 需要调节能力很强的设 备!!!
电力系统中理想的调节设备 ——抽水蓄能电站
工作原理:利用可以兼做水泵和水轮机的 机组,在负荷低估时作抽水运行(用电); 在负荷高峰时作发电运行(发电)
两种类型的蓄能电站
混合蓄能(常蓄结合),兼有电网调节与 径流发电作用;(投资计算上蓄能机组费 用低. 库水位变化大,因机组适应水位变 化的能力差,运转效益差,距负荷中心远) 纯抽水蓄能:专为电网调节修建,与径流 无关(天然或人工水库,接近负荷中心, 按日调节或周调节运行,水位变幅小,效 率高)
西电东送???
十三陵抽水蓄能电站 总体布置图
主要参数
坝顶高程 568 正常蓄水位:566 总库容:445万立方米 引水洞径:5.2米 主管内径5.2~3.8米 最优效率扬程:450米 单机容量:20.4
十三陵水库纪念碑
碧水蓝天
蓄能电站的基本组成
上池(上库) 下池(下库) 压力管道 尾水洞 电站厂房
十三陵抽水蓄能电站 纵剖面图
抽水蓄能的 主要功效及经济效益
功效:调峰、调频、事故备用、吸收多余 电能 主要经济效益:1在能源利用方面 a)降低 燃料消耗;b)改变能源结构c)提高火电设 备利用率。2提高水电的效益。3本身所具 有的优点a)调节能力是装机的两倍b)快速c) 利于环保
煤电不可以大力发展
我国煤炭拥有总量:1390亿吨 目前的年开采量17亿吨 10年后的年开采量30亿吨 燃煤产生SO2,NO2 水电理论蕴藏量:6.94亿kw;技术可开发容量: 5.42亿kw;经济可开发容量:4.02亿kw;年发电量: 1.75亿kw.h;按100年计算,相当于600亿吨标准 煤,占我国常规能源的40%,仅次于煤为我国第 二大能源(2004.12水力发电)
抽水蓄能的基本概念 及十三陵抽水蓄能电站介绍
马吉明 (用于认识实习)
问题:负荷的变化与
供电的关系???
电力系统日负荷图
电力系统日负荷图
电力系统周负荷图
时刻变化的电力负荷
巨型的热力机组因结构原因不适合负荷大 的变化; 由于最小出力的限制,不能在低负荷区运 行; 核电站的要求更为严格
抽水蓄能的比例
电网中需10% 现在全国在建的抽水蓄能电站总装机容量 达到11376MW,装机容量是已建的2倍 到2010年,装机比例2.5%
中国的抽水蓄能电站
岗南:1.1万kW 水头:64m 广蓄:240万kW , 水头: 536m 十三陵:80万kW , 水头: 477m 密云:2.6万kW , 水头: 64m 潘家口:27万kW, 水头: 86m 天荒坪:180万kW, 水头: 667m 羊湖:12万kW ,水头816m; 明湖(台):100.8万kW ,316.5m;明潭 (台)80万kW ,401m
谢谢大家
相关文档
最新文档