(完整版)大学物理02牛顿定律习题解答
大学物理习题答案解析第二章

第二章牛顿定律2 -1如图(a)所示,质量为m的物体用平行于斜面的细线联络置于圆滑的斜面上,若斜面向左方作加速运动 ,当物体刚离开斜面时,它的加快度的大小为()(A) gsin θ(B) gcos θ(C) gtan θ(D) gcot θ剖析与解当物体走开斜面瞬时 ,斜面对物体的支持力消逝为零,物体在绳索拉力 F T (其方向仍可认为平行于斜面 )和重力作用下产平生行水平面向左的加快度a,如图 (b) 所示 ,由其可解得合外力为 mgcot θ,应选 (D).求解的重点是正确剖析物体刚走开斜面瞬时的物体受力状况和状态特点.2 -2 用水平力 F N把一个物体压着靠在粗拙的竖直墙面上保持静止.当 F N渐渐增大时 ,物体所受的静摩擦力 F f的大小 ()(A)不为零 ,但保持不变(B)随 F N成正比地增大(C)开始随 F N增大 ,达到某一最大值后 ,就保持不变(D)没法确立剖析与解与滑动摩擦力不一样的是 ,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加 ,但详细大小则取决于被作用物体的运动状态.由题意知 ,物体向来保持静止状态 ,故静摩擦力与重力大小相等 ,方向相反 ,并保持不变 ,应选 (A) .2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A)不得小于(C)不得大于μgR (B) 一定等于μgRμgR (D) 还应由汽车的质量m 决定剖析与解由题意知 ,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只好由路面与轮胎间的静摩擦力供给,能够供给的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为 v=μRg.所以只需汽车转弯时的实质速率不大于此值,均能保证不侧向打滑.应选 (C) .2 -4 一物体沿固定圆弧形圆滑轨道由静止下滑,在下滑过程中 ,则 ( )(A)它的加快度方向永久指向圆心,其速率保持不变(B)它遇到的轨道的作使劲的大小不停增加(C)它遇到的合外力大小变化 ,方向永久指向圆心(D)它遇到的合外力大小不变 ,其速率不停增加剖析与解 由图可知 ,物体在下滑过程中遇到大小和方向不变的重力以实时辰指向圆轨道中心的轨 道支持力 F N 作用 ,其合外力方向并不是指向圆心 ,其大小和方向均与物体所在地点有关.重力的切向分 量 (m g cos θ) 使物体的速率将会不停增加 ( 由机械能守恒亦可判断 ),则物体作圆周运动的向心力 (又称法向力 )将不停增大 ,由轨道法向方向上的动力学方程F Nmgsin θ mv 2可判断 ,随 θ 角的不停增R大过程 ,轨道支持力 F N 也将不停增大 ,因而可知应选 (B) .2 -5 图 (a)示系统置于以 a = 1/4 g 的加快度上涨的起落机内 ,A 、B 两物体质量相同均为 m,A 所在的桌面是水平的 ,绳索和定滑轮质量均不计 ,若忽视滑轮轴上和桌面上的摩擦,其实不计空气阻力 ,则绳中张力为 ( )(A) 58 mg (B) 12 mg (C) mg (D) 2 mg剖析与解此题可考虑对 A 、B 两物体加上惯性力后 ,以电梯这个非惯性参照系进行求解. 此时 A 、B两物体受力状况如图 (b)所示 ,图中 a ′为 A 、B 两物体相对电梯的加快度 ,ma ′为惯性力. 对 A 、B 两物体 应用牛顿第二定律 ,可解得 F = 5/8 mg .应选 (A) .T议论 关于习题 2 -5 这种种类的物理问题 ,常常从非惯性参照系 (此题为电梯 )察看到的运动图像较为 明确 ,但因为牛顿定律只合用于惯性参照系,故从非惯性参照系求解力学识题时,一定对物体加上一个虚构的惯性力.如以地面为惯性参照系求解,则两物体的加快度 a A 和a B 均应付地而言 ,此题中 a A 和 a 的大小与方向均不相同.此中 aA 应斜向上.对 a A 、a 、a 和a ′之间还要用到相对运动规律 ,求解BB过程较繁.有兴趣的读者不如自己试试试看.2 -6 图示一斜面 ,倾角为 α,底边 AB 长为 l = 2.1 m,质量为 m 的物体从题 2 -6 图斜面顶端由静止开始向下滑动 ,斜面的摩擦因数为 μ= 0.14 .试问 ,当 α为何值时 ,物体在斜面上下滑的时间最短? 其数值为多少?剖析动力学识题一般分为两类:(1) 已知物体受力争其运动状况;(2) 已知物体的运动状况来剖析其所受的力.自然,在一个详细题目中,这两类问题并没有截然的界线,且都是以加快度作为中介,把动力学方程和运动学规律联系起来.此题重点在列出动力学和运动学方程后,解出倾角与时间的函数关系α= f(t),而后运用对 t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点 O 位于斜面极点,则由牛顿第二定律有mgsin α mgμcosαma(1) 又物体在斜面上作匀变速直线运动,故有l 1 at2 1g sin α μcosαt 2cosα 2 2则t2l(2) gcosαsin α μcosα为使下滑的时间最短,可令dt0 ,由式(2)有dα则可得此时sin αsin α μcosαcosαcosα μsin α0 tan 2α 1 , 49oμt 2l 0.99 sgcosαsin α μcosα2 -7 工地上有一吊车 ,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为 m 2 k g,乙块= 2.00 10×1质量为 m2= 1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种状况下,钢丝绳所受的张力以及乙块对甲块的作使劲:(1) 两物块以 10.0 m ·s-2的加快度上涨; (2) 两物块以 1.0 m s·-2的加快度上涨.从此题的结果,你能领会到起吊重物时一定迟缓加快的道理吗?剖析预制板、吊车框架、钢丝等可视为一组物体.办理动力学识题往常采纳“隔绝体”的方法物体所受的各样作使劲 ,在所选定的惯性系中列出它们各自的动力学方程.依据连结体中物体的多少可列出相应数量的方程式.联合各物体之间的互相作用和联系 ,可解决物体的运动或互相作使劲.,剖析解按题意 ,可分别取吊车(含甲、乙 )和乙作为隔绝体,画示力争 ,并取竖直向上为Oy 轴正方向 (如图所示 ).当框架以加快度 a 上涨时 ,有FT-(m1 + m )g =(m + m )a (1)2 1 2FN2- m g = m a (2)2 2解上述方程 ,得F = 1 2 (3)TFN2 =m (g + a) (4) 2(1)当整个装置以加快度 a = 10 m ·s-2上涨时 ,由式 (3) 可得绳所受张力的值为FT=10×3 N乙对甲的作使劲为N2 N2 2(g + a) =3F′=-F = -m 10× N(2)当整个装置以加快度 a = 1 m·s-2上涨时 ,得绳张力的值为FT=10×3 N此时 ,乙对甲的作使劲则为F′ N2=103× N由上述计算可见,在起吊相同重量的物体时,因为起吊加快度不一样 ,绳中所受张力也不一样,加快度大 ,绳中张力也大.所以,起吊重物时一定迟缓加快,以保证起吊过程的安全.2 -8 如图 (a)所示 ,已知两物体 A、 B 的质量均为 m = 3.0kg 物体 A 以加快度 a = 1.0 m ·s-2 运动 ,求物体 B 与桌面间的摩擦力. (滑轮与连结绳的质量不计)剖析该题为连结体问题 ,相同可用隔绝体法求解.剖析时应注意到绳中张力大小到处相等是有条件的 ,即一定在绳的质量和伸长可忽视、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不一样的.解分别对物体和滑轮作受力剖析[图(b)].由牛顿定律分别对物体 A 、B 及滑轮列动力学方程,有m A g -F T=m A a (1)F′1 -Ff= m B a′(2)TF′ -2FT1= 0 (3)T考虑到 mTTT1 T,a ′= 2a,可联立解得物体与桌面的摩擦力A =mB =m, F =F′ ,F = F′1F f mg m 4m a7.2 N2议论动力学识题的一般解题步骤可分为:(1) 剖析题意 ,确立研究对象,剖析受力 ,选定坐标; (2) 根据物理的定理和定律列出原始方程组; (3) 解方程组 ,得出文字结果; (4) 查对量纲 ,再代入数据 ,计算出结果来.2 -9 质量为m′的长平板 A 以速度v′在圆滑平面上作直线运动,现将质量为m 的木块 B 轻轻安稳地放在长平板上 ,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板获得共同速度?剖析当木块 B 安稳地轻轻放至运动着的平板 A 上时 ,木块的初速度可视为零,因为它与平板之间速度的差别而存在滑动摩擦力,该力将改变它们的运动状态.依据牛顿定律可获得它们各自相对地面的加快度.换以平板为参照系来剖析,此时 ,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动 ,其加快度为相对加快度,按运动学公式即可解得.该题也可应用第三章所叙述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变成木块和平板一同运动的动能,而它们的共同速度可依据动量定理求得.又因为系统内只有摩擦力作功,依据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板挪动的距离即可求出.解 1 以地面为参照系 ,在摩擦力 Ff=μmg的作用下 ,依据牛顿定律分别对木块、平板列出动力学方程F f=μ mg=ma1F ′f=-F f= m′a2a1和 a2分别是木块和木板相对地面参照系的加快度.若以木板为参照系,木块相对平板的加快度 a = a1+ a2 ,木块相对平板以初速度- v ′作匀减速运动直至最后停止.由运动学规律有2- v′= 2as由上述各式可得木块有关于平板所挪动的距离为sm v 22 μg m m解 2 以木块和平板为系统 ,它们之间一对摩擦力作的总功为W =F f(s +l ) -F fl=μ mgs式中 l 为平板相对地面挪动的距离.因为系统在水平方向上不受外力,当木块放至平板上时,依据动量守恒定律,有m′v′= (m′+ m) v″由系统的动能定理 ,有μmgs 1 m v 2 1 m m v 22 2由上述各式可得sm v 22 μg m m2 -10 如图 (a)所示 ,在一只半径为 R 的半球形碗内 ,有一粒质量为 m 的小钢球 ,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时 ,它距碗底有多高?剖析保持钢球在水平面内作匀角速度转动时,一定使钢球遇到一与向心加快度相对应的力(向心力 ), 而该力是由碗内壁对球的支持力 F N的分力来供给的 ,因为支持力 F N一直垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示 Oxy 坐标 ,列出动力学方程 ,即可求解钢球距碗底的高度.解取钢球为隔绝体 ,其受力剖析如图 (b) 所示.在图示坐标中列动力学方程F N sin θ ma n mRω2sin θ(1)F N cosθ mg (2)且有由上述各式可解得钢球距碗底的高度为R h cos θ(3)Rgh Rω2可见 ,h 随 ω的变化而变化.2 -11 火车转弯时需要较大的向心力,假如两条铁轨都在同一水平面内 (内轨、外轨等高 ),这个向心力只好由外轨供给 ,也就是说外轨会遇到车轮对它很大的向外侧压力 ,这是很危险的.所以 ,对应于火车的速率及转弯处的曲率半径,一定使外轨适合地超出内轨,称为外轨超高.现有一质量为m 的火车 ,以速率 v 沿半径为 R 的圆弧轨道转弯 ,已知路面倾角为 θ,试求: (1) 在此条件下 ,火车速率 v 0 为多大时 ,才能使车轮对铁轨内外轨的侧压力均为零?(2) 假如火车的速率 v ≠v 0 ,则车轮对铁轨的侧压力为多少?剖析如题所述 ,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平重量F N sin θ 提供 (式中 θ角为路面倾角 ).从而不会对内外轨产生挤压. 与其对应的是火车转弯时一定以规定的速率v 0行驶.当火车行驶速率 v ≠v 0 时,则会产生两种状况: 如下图 ,如 v > v 0 时 ,外轨将会对车轮产生斜向 内的侧压力 F 1 ,以赔偿原向心力的不足,如 v < v 0时 ,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消剩余的向心力 ,不论哪一种状况火车都将对外轨或内轨产生挤压. 由此可知 ,铁路部门为何会在每个铁轨的转弯处规准时速 ,从而保证行车安全.解 (1) 以火车为研究对象 ,成立如下图坐标系.据剖析 ,由牛顿定律有F N sin θ mv 2(1)RF N cos θ mg 0(2)解 (1)(2) 两式可得火车转弯时规定速率为v 0gRtan θ(2) 当 v > v 0 时 ,依据剖析有F N sin θ F 1cos θ m v2(3)RF N cos θ F 1sin θ mg 0(4)解 (3)(4) 两式 ,可得外轨侧压力为F 1 m v 2cos θ gsin θR当 v < v 0 时,依据剖析有2F N sin θ F 2cos θ mv(5)RF N cos θ F 2sin θ mg(6)解 (5)(6) 两式 ,可得内轨侧压力为F 2 m gsin θ v 2cos θR2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为 m,圆筒半径为 R,演员骑摩托车在直壁上以速率 v 作匀速圆周螺旋运动 ,每绕一周上涨距离为 h,如下图.求壁对演员和摩托车的作使劲.剖析 杂技演员 (连同摩托车 )的运动能够当作一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹睁开后,相当于如图 (b)所示的斜面. 把演员的运动速度分解为图示的 v 1 和 v 2 两个重量 ,明显 v 1是竖直向上作匀速直线运动的分速度 ,而 v 2则是绕圆筒壁作水平圆周运动的分速度,此中向心力由筒壁对演员的支持力F N 的水平重量 F N2 供给 ,而竖直重量 F N1则与重力相均衡.如图 (c) 所示 ,此中 φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力 的大小和方向解 设杂技演员连同摩托车整体为研究对象 ,据 (b)(c)两图应有FN1mg 0(1) F N 2m v 2(2)Rv 2vcos θ v2πR(3)R 2 h 22πF NF N 21 F N 2 2(4)以式 (3) 代入式 (2),得22 22 2m4π R v4π RmF N 222222v2(5)RhR 4πRh 4π将式 (1) 和式 (5)代入式 (4),可求出圆筒壁对杂技演员的作使劲( 即支承力 )大小为2222224πRF NFN1F N 2 m g2 2 v2h4πR与壁的夹角 φ为FN 222arctan4πRv2arctan2 2FN 14πRh g议论 表演飞车走壁时 , 演员一定控制好运动速度,行车路线以及摩托车的方向 ,以保证三者之间知足解题用到的各个力学规律.2 -13 一质点沿 x 轴运动 ,其受力如下图 ,设 t = 0 时 ,v 0= 5m ·s-1,x 0= 2 m, 质点质量 m = 1kg, 试求该 质点 7s末的速度和地点坐标.剖析 第一应由题图求得两个时间段的 F(t)函数 ,从而求得相应的加快度函数,运用积分方法求解题目所问 ,积分时应注意积分上下限的取值应与两时间段相应的时辰相对应. 解 由题图得F t2t, 0 t 5s 35 5t,5s t 7s由牛顿定律可得两时间段质点的加快度分别为a 2t , 0 t 5sa 35 5t , 5s t 7s对 0 < t < 5s 时间段 ,由 adv 得dtvd tv 0 adtv积分后得 v 5 t 2再由 vdx 得dtxt dxvdtx 0积分后得 x 2 5t1 t 33将 t = 5s 代入 ,得 v 5= 30 m ·s-1 和 x 5 = 68.7 m 对 5s< t <7s 时间段 ,用相同方法有vtdva 2dtv 0 5 s得v 35t2xt再由dx vdtx5 5 s得x =23 -82.5t +将 t =7s代入分别得 v 7= 40 m ·s -1 和 x 7 = 142 m2 -14 一质量为 10 kg 的质点在力 F 的作用下沿 x 轴作直线运动 ,已知 F =120t + 40,式中 F 的单位为 N, t 的单位的s.在 t = 0 时 ,质点位于 x =5.0 m 处 ,其速度 v 0 =6.0 m ·s-1 .求质点在随意时辰的速度和地点.剖析 这是在变力作用下的动力学识题. 因为力是时间的函数 ,而加快度 a = dv/dt,这时 ,动力学方程就成为速度对时间的一阶微分方程 ,解此微分方程可得质点的速度v (t);由速度的定义 v =dx /d t,用积分的方法可求出质点的地点.解 因加快度 a = dv/dt,在直线运动中 ,依据牛顿运动定律有120t40m dvdt依照质点运动的初始条件 ,即t 0 = 0 时 v 0 = 6.0 m s·-1 ,运用分别变量法对上式积分,得vt4.0 dtdv 0 vv =2又因 v = dx /dt,并由质点运动的初始条件: t 0 = 0 时 x 0 = 5.0 m,对上式分别变量后积分 ,有xt6.0t 2dtdxx 0x =2 +2.0 t 32 -15 轻型飞机连同驾驶员总质量为10×3 kg .飞机以 55.0 m s·-1 的速率在水平跑道上着陆后,驾驶员开始制动 ,若阻力与时间成正比 ,比率系数 α= 5.0 ×102 N ·s -1,空气对飞机升力不计 ,求: (1) 10 s后飞机的速率; (2) 飞机着陆后 10s内滑行的距离.剖析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动. 其水平方向所受制动力 F 为变力 ,且是时间的函数.在求速率和距离时,可依据动力学方程和运动学规律,采纳分别变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有 Fma mdvαtαt dtdtvdt vmv 0得v v 0α t 22m所以 ,飞机着陆 10s后的速率为v = 30 m s· -1xt α t 2 dt又dxv 0x02m故飞机着陆后 10s内所滑行的距离s x x 0 v 0tα t 3 467 m6m2 -16 质量为 m 的跳水运动员 ,从 10.0 m 高台上由静止跳下落入水中.高台距水面距离为 h .把跳水运动员视为质点 ,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为 bv 2 ,此中 b 为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求: (1)运动员在水中的速率v 与 y的函数关系;(2) 如 b/m=-1 , 跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1 /10?(假设跳水运动员在水中的浮力与所受的重力大小恰巧相等)剖析该题能够分为两个过程,入水前是自由落体运动,入水后 ,物体受重力 P、浮力 F 和水的阻力 F f的作用 ,其协力是一变力 ,所以 ,物体作变加快运动.固然物体的受力剖析比较简单 ,可是 ,因为变力是速度的函数(在有些问题中变力是时间、地点的函数 ),对这种问题列出动力学方程其实不复杂 ,但要从它计算出物体运动的地点和速度就比较困难了.往常需要采纳积分的方法去解所列出的微分方程.这也成认识题过程中的难点.在解方程的过程中 ,特别需要注意到积分变量的一致和初始条件确实定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P -F f-F =ma由题意 P = F、 F f= bv2 ,而a = dv /dt = v (d v /dy),代入上式后得-bv2= mv (d v /dy)考虑到初始条件 y0=0 时 , v0 2gh ,对上式积分,有mv dvtdy0b v0 vv v0e by / m 2ghe by / m(2) 将已知条件 b/m = 0.4 m -1 ,v =0 代入上式 ,则得y m ln v 5.76 mb v0*2 -17 直升飞机的螺旋桨由两个对称的叶片构成.每一叶片的质量m= 136 kg,长 l = 3.66 m.求当它的转速 n= 320 r/min 时 ,两个叶片根部的张力.(设叶片是宽度必定、厚度平均的薄片)剖析 螺旋桨旋转时 ,叶片上各点的加快度不一样,在其各部分双侧的张力也不一样;因为叶片的质量是连续散布的 ,在求叶片根部的张力时 ,可选用叶片上一小段 ,剖析其受力 ,列出动力学方程 ,而后采纳积分的方法求解.解 设叶片根部为原点 O,沿叶片背叛原点 O 的方向为正向 ,距原点 O 为 r 处的长为 dr 一小段叶片 ,其 双侧对它的拉力分别为 F T(r) 与 F T (r + dr ).叶片转动时 ,该小段叶片作圆周运动 ,由牛顿定律有dF T F T rF T r drmω2 rdrl因为 r =l 时外侧 F T = 0,所以有t dF Tlm ω2F T rl r drrF T m ω2 2r 22πmn 22r 2rll2ll上式中取 r =0,即得叶片根部的张力F T 0 =10×5 N负号表示张力方向与坐标方向相反.2 -18 一质量为 m 的小球最先位于如图 (a)所示的 A 点 ,而后沿半径为 r 的圆滑圆轨道 ADCB 下滑.试求小球抵达点 C 时的角速度和对圆轨道的作使劲.剖析 该题可由牛顿第二定律求解. 在取自然坐标的状况下 ,沿圆弧方向的加快度就是切向加快度a ,t与其相对应的外力 F 是重力的切向重量 mgsin α,而与法向加快度 a n 相对应的外力是支持力 F N 和重力t的法向重量 mgcos α.由此 ,可分别列出切向和法向的动力学方程F = mdv/dt 和F n =ma n .因为小球在t滑动过程中加快度不是恒定的 ,所以 ,需应用积分求解 ,为使运算简易 ,可变换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度 ,方法比较简易.但它不可以直接给出小球与圆弧表面之间的作使劲.解 小球在运动过程中遇到重力 P 和圆轨道对它的支持力 F N .取图 (b) 所示的自然坐标系,由牛顿定律得F tmgsin α mdv(1)dtF n F Nmgcos α mmv 2(2)R由 vdsr α r α运动到点 C 的始末条件 ,进行积分 ,有d ,得 dtd ,代入式 (1),并依据小球从点 Adtdtvvαv 0d90org sin αd αv v得v2rgcos α则小球在点 C 的角速度为ωv2 cos α/rr g由式 (2)得F Nm mv 2 mgcos α 3mgcos αr由此可得小球对圆轨道的作使劲为F NF N 3mgcos α负号表示 F ′N 与 e n 反向.2 -19 圆滑的水平桌面上搁置一半径为 R 的固定圆环 ,物体紧贴环的内侧作圆周运动 ,其摩擦因数为μ,开始时物体的速率为 v 0 ,求: (1) t 时辰物体的速率; (2) 当物体速率从 v 0减少到 12 v 0时 ,物体所经历的时间及经过的行程.剖析运动学与动力学之间的联系是以加快度为桥梁的,因此 ,可先剖析动力学识题.物体在作圆周运动的过程中,促进其运动状态发生变化的是圆环内侧对物体的支持力 F N和环与物体之间的摩擦力 F f,而摩擦力大小与正压力 F N′成正比 ,且F N与F N′又是作使劲与反作使劲 ,这样 ,便可经过它们把切向和法向两个加快度联系起来了 ,从而可用运动学的积分关系式求解速率和行程.解 (1) 设物体质量为 m,取图中所示的自然坐标 ,按牛顿定律 ,有mv2F N ma nRdvF f ma tdt由剖析中可知,摩擦力的大小 Ff=μF ,由上述各式可得N2μv dvR dt取初始条件 t =0 时 v =v 0 ,并对上式进行积分,有t R v dvdt20 μ v0 vv Rv0R v0μt(2)当物体的速率从 v 0减少到 1/2v 0时 ,由上式可得所需的时间为tRμv0物体在这段时间内所经过的行程t stRv0dt vdtv0μt0 RsRln 2μ2 -20 质量为 45.0 kg 的物体 ,由地面以初速 60.0 m·s-1 竖直向上发射 ,物体遇到空气的阻力为 F r=kv, 且 k = 0.03 N/( m-1最大高度为多少?s· ). (1) 求物体发射到最大高度所需的时间.(2)剖析物体在发射过程中 ,同时遇到重力和空气阻力的作用,其协力是速率v 的一次函数 ,动力学方程是速率的一阶微分方程,求解时 ,只需采纳分别变量的数学方法即可.可是,在求解高度时 ,则一定将时间变量经过速度定义式变换为地点变量后求解 ,并注意到物体上涨至最大高度时 ,速率应为零.解 (1) 物体在空中受重力 mg 和空气阻力 F r = kv 作用而减速.由牛顿定律得mg k mdv(1)vdt依据始末条件对上式积分,有t vddtmvvv 0mg kvtmln 1 kv 06.11 skmgdv dv(2) 利用v 的关系代入式 (1),可得dtdydvmg kv mv分别变量后积分y 0dyv 0mvdvmgkv故m mg ln 1kv 0 v 0183 mykmgkv 0 和 y 2议论 如不考虑空气阻力 ,则物体向上作匀减速运动.由公式tv 0 分别算得 t ≈s和g2gy ≈184 m,均比实质值略大一些.2 -21 一物体自地球表面以速率 v 0 竖直上抛.假设空气对物体阻力的值为F r = kmv 2 ,此中 m 为物体的质量 ,k 为常量.试求: (1) 该物体能上涨的高度; (2)物体返回地面时速度的值. (设重力加快度为常量. )剖析因为空气对物体的阻力一直与物体运动的方向相反 ,所以 ,物体在上抛过程中所受重力 P 和阻力 F r 的方向相同;而下落过程中 ,所受重力 P 和阻力 Fr 的方向则相反.又因阻力是变力 ,在解动力学方程时 ,需用积分的方法.解 分别对物体上抛、 下落时作受力剖析 ,以地面为原点 ,竖直向上为 y 轴 (如下图 ) .(1) 物体在上抛过程中 ,依据牛顿定律有mg km 2 m dv m vdvv dt dy 依照初始条件对上式积分,有y 0 v ddy v2v0 g kvy 1ln g kv 2 2k g kv02物体抵达最高处时, v = 0,故有hymax 1 ln g kv 022k g (2)物体下落过程中 ,有2vdvmg kmv m对上式积分 ,有ydy 0vdv0 v0 g k2vkv 2 1/ 2v则v0 1g2 -22 质量为 m 的摩托车 ,在恒定的牵引力 F 的作用下工作 ,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m.试计算从静止加快到mv /2所需的时间以及所走过的行程.剖析该题依旧是运用动力学方程求解变力作用下的速度和地点的问题,求解方法与前两题相像,只是在解题过程中一定想法求出阻力系数k.因为阻力 Fr = kv2 ,且 F r又与恒力 F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加快度为零 ,此时速度达到最大.所以,依据速度最大值可求出阻力系数来.但在求摩托车所走行程时,需对变量作变换.解设摩托车沿 x 轴正方向运动 ,在牵引力 F 和阻力 F r同时作用下 ,由牛顿定律有F k 2 m dv(1)v dt当加快度 a = dv/dt = 0 时,摩托车的速率最大,所以可得k=F/v m2 (2) 由式 (1) 和式 (2)可得依据始末条件对式(3)积分 ,有t mdtFF 1 v 2 m dv (3)v m2 dt1v m v2 12 dv1 2v m则tmv m ln3 dvmvdv 2F(3)积分 ,有又因式 (3) 中 m,再利用始末条件对式dtdxxmdxF 1v m v212 dv0 12v m则xmv m2ln40.144 mv m 22F3F*2 -23 飞机下降时 ,以 v 0 的水平速度下落伍自由滑行,滑行时期飞机遇到的空气阻力 F 1= -k 1 v 2, 升力F 2= k 2 v 2, 此中 v 为飞机的滑行速度 ,两个系数之比 k 1/ k 2 称为飞机的升阻比.实验表示,物体在流体中运动时 ,所受阻力与速度的关系与多种要素有关 ,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有 F ∝ v,而在速度较大或流体密度较大的有 F ∝ v 2 ,需要精准计算时则应由实验测定.此题中因为飞机速率较大,故取 F ∝v 2 作为计算依照.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实质上已成为飞机跑道长度设计的依照之一.剖析 如下图 ,飞机触地后滑行时期遇到 5 个力作用 ,此中 F 1 为空气阻力 , F 2 为空气升力 , F 3 为跑道作用于飞机的摩擦力 , 很明显飞机是在合外力为变力的状况下作减速运动 ,列出牛顿第二定律方程 后 ,用运动学第二类问题的有关规律解题.因为作用于飞机的合外力为速度 v 的函数 ,所求的又是飞机 滑行距离 x,所以比较简易方法是直接对牛顿第二定律方程中的积分变量dt 进行代换 ,将 dt 用dx取代 ,获得一个有关 v 和 x 的微分方程 ,分别变量后再作积分.v解 取飞机滑行方向为 x 的正方向 ,着陆点为坐标原点,如下图 ,依据牛顿第二定律有F N k 1v 2m dv(1)k 2v 2dtF Nmg 0(2)将式 (2)代入式 (1),并整理得μmg k μkv 2m dvm dv12dt v dx分别变量并积分 ,有vm dvv2dxμmgk 1 μk 2v 0v得飞机滑行距离xm ln μmg k 1 μk 2 v 2(3)2 k 1 μk 2 μmg考虑飞机着陆瞬时有 F N = 0 和v = v 0 ,应有 k 2v 02= mg,将其代入 (3)式 ,可得飞机滑行距离 x 的另一表达。
普通物理学第五版02牛顿定律习题答案

解题思路与技巧
解题思路
首先理解牛顿第一定律的基本概念,即惯性。然后分析题目中的物理情境,判 断物体是否受到外力作用,以及外力对物体的运动状态有何影响。最后根据牛 顿第一定律得出结论。
解题技巧
在解题过程中,要特别注意区分外力和惯性。外力是改变物体运动状态的原因, 而惯性是物体保持其运动状态不变的性质。同时,要掌握摩擦力和阻力的概念 及其对物体运动状态的影响。
习题答案
• 题目1:一个在平直轨道上行驶的火车,关闭发动机后逐渐停下来,请问火车受 到的阻力与火车前进方向是什么关系?
• 答案:阻力与火车前进方向相反。根据牛顿第一定律,火车在关闭发动机后, 如果没有阻力作用,将保持匀速直线运动。然而,由于阻力作用,火车逐渐减 速并停下来。因此,阻力必须与火车前进方向相反。
04 牛顿定律的应用
习题答案
题目1
一个质量为2kg的物体在光滑的水平面上受到一个大小 为10N的外力作用,求物体的加速度。
答案
根据牛顿第二定律,$F = ma$,得$a = frac{F}{m} = frac{10}{2} = 5m/s^2$。
题目2
一个质量为5kg的物体在斜面上静止,受到一个与斜面成 30°的外力作用,求物体的加速度。
1. 题目
一质量为2kg的质点,在力F=2N的作用下,由静止开始运动, 求质点在2秒末的速度。
习题答案
答案
2m/s
2. 题目
一质量为1kg的质点,在力矩M=2N·m的作用下,围绕原点做匀速圆周运动,求质点转动一周的时间 。
习题答案
答案:2s
3. 题目:一质量为5kg的物体,在水平地面上受到大小为10N的水平推 力作用,求物体在2秒末的速度。
案例2
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理答案第二章牛顿定律-习题解答

将牛顿运动定律应用于各种实际问题中,如天体运动、弹性碰撞、摩擦力问题等,通过建立物理模型和 运用数学工具解决实际问题。
解决复杂问题的思路与方法
01
02
03
04
建立物理模型
根据问题的实际情况,抽象出 具体的物理模型,如质点、刚 体、弹性碰撞等,为解决问题 提供清晰的思路。
定律的应用场景与实例
总结词
牛顿第一定律在日常生活和科学研究中有着广泛的应用。例如,汽车安全带的设计、投掷物体的轨迹、行星的运 动等都遵循这一规律。
详细描述
汽车安全带的设计依据了惯性定律,通过限制乘客在急刹车或碰撞时的运动,减少伤害风险。投掷物体时,出手 的角度和力量会影响物体的运动轨迹,这也符合惯性定律。行星的运动规律是牛顿第一定律的重要应用之一,行 星绕太阳的椭圆轨道运动可以由惯性定律推导出来。
05
习题解答
常见错误解析与纠正
01 02 03
错误1
混淆了牛顿第二定律中的力和加速度概念,将力误认为是 加速度的原因,而实际上力是产生加速度的原因。纠正: 正确理解力和加速度的关系,力是产生加速度的原因,加 速度的大小和方向由力的三要素决定。
错误2
在分析多力作用下物体的运动时,未能正确分析合力和加 速度的关系。纠正:在分析多力作用下物体的运动时,应 先求出合力,再根据牛顿第二定律求出加速度,最后根据 运动学公式求解速度和位移。
导出牛顿第三定律。
定律的应用场景与实例
要点一
总结词
牛顿第三定律在现实生活中有着广泛的应用,例如火箭发 射、车辆行驶、体育运动等。
要点二
详细描述
在火箭发射中,火箭向下喷射高温高压气体,产生一个向 上的反作用力,使火箭升空。在车辆行驶中,车辆发动机 产生的力推动车辆前进,同时车辆也会给地面一个向后的 反作用力,使地面产生磨损。在体育运动中,例如篮球投 篮时,投篮的力量和手受到的反作用力大小相等、方向相 反。
大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律一、填空题(本大题共16小题,总计48分)1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=.J Ai 疽3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向成。
角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=.4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向.(1)卡车以。
=2m/s2的加速度行驶,/ =,方向.(2)卡车以a = -5m/s2的加速度急刹车,/ =,方向・5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。
,则(1)摆线的张力§=2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .⑵ 摆锤的速率V=I6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=.7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为.8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为= 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如用同样大小的水平力从右边推A,则A推B的力等于・9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力.10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力11.(3分)假如地球半径缩短1%,而它的质量保持不变,则地球表面的重力加速度g增大的百分比是・12.(3分)一小珠可以在半径为R的竖直圆环上作无摩擦滑动.今使圆环以角速度切绕圆环竖直直径转动.要使小珠离开环的底部而停在环上某一点,则角速度刃最小应大于13.(3分)一块水平木板上放一砍码,秩码的质量"7 = 0.2kg,手扶木板保持水平,托着徒码使之在竖直平面内做半径R = 0.5m的匀速率圆周运动,速率〃 = lm/s.当祛码与木板一起运动到图示位置时,萩码受到木板的摩擦力为,砥码受到木板的支持力为14.(3分)一质量为M的质点沿x轴正向运动,假设该质点通过坐标为x的位苴时速度的大小为kx(k为正值常量),则此时作用于该质点上的力「=,该质小从x = x0点出发运动到x =心处所经历的时间△ t =15.(3分)质量为0.25 kg的质点,受力F = ti(SI)的作用,式中t为时间.f = 0时该质点以y = 2j(SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是.16.(3分)在半径为R的定滑轮上跨一细绳,绳的两端分别挂着质量为叫和%的物体,旦m} >m2.若滑轮的角加速度为”,则两侧绳中的张力分别为,& =二、单选题(本大题共30小题,总计90分)1.(3分)在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度坊上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?[]A^ 2a}B、2(q+g)C、2q+gD、仅i+g2.(3分)下列说法中哪个是正确的?[ ]A、合力一定大于分力B、物体速率不变,所以合力为零C、速度很大的物体,运动状态不易改变D、质量越大的物体,运动状态越不易改变3.(3分)用细绳系一小球使之在竖直平面内作圆周运动,当小球运动到最高点时,它】]A、将受到重力、绳的拉力和向心力的作用B、将受到重力、绳的拉力和离心力的作用C、绳子的拉力可能为零D、小球可能处于受力平衡状态4.(3分)水平公路转弯处的轨道半径为R,汽车轮胎与路面间的摩擦系数为日,要使汽车不致于发生侧向打滑,汽车在该处行驶速率[ ]A、不得小于B、不得大亍如而C、必须等于加RgD、应由汽车质量决定5.(3分)两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂丁•天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为[ ]A、丹a2=gB、a A = 0,仅2 = gC^ 坊=g, = 0D^ a x = 2g, a2 =06.(3分)水平地面上放一物体A,它与地面间的滑动摩擦系数为现加一恒力/如图所示.欲使物体A有最大加速度,则恒力户与水平方向央角0应满足[ ]11—Ax sin 3 ="B、cos( ="C^ tanB 、C 、D 、 M + m M-m SE 、M-mM 7. (3分)一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突 然断开,小猴则沿杆子赂直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为8. (3分)如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜 面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为[ ]A 、 gsin 。
大学物理第2章 牛顿运动定律

推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt
大学物理题库-牛顿定律习题与答案解析

7-2 图第二章 牛顿定律一、选择题:1、如图2-1所示,滑轮、绳子的质量均忽略不计,忽略一切摩擦阻力,物体A 的质量A m 大于物体B 的质量B m 。
在A 、B 运动过程中弹簧秤的读数是:[ ](A )g m m B A )(+ (B )g m m B A )(- (C )g m m m m B A B A -4 (D )g m m m m BA BA +42、在升降机的天花板上拴一轻绳,其下端系有一重物。
当升降机以加速度a 上升时,绳中的张力正好等于所能承受的最大张力的一半;当绳子刚好被拉断时升降机上升的加速度为:[ ] (A )a 2 (B ))(2g a + (C )g a +2 (D )g a +3、如图2-7所示,一竖立的圆筒形转笼,其半径为R ,绕中心轴o o '轴旋转,一物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使A 不落下,则圆筒旋转的角速度ω至少应为:[ ](A )Rgμ (B )g μ (C )Rgμ (D )R g4、如图2-8所示,质量为m作用力的大小为:[ ](A )θsin mg (B )θcos mg(C )θcos mg (D )θsin mg5、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2 .今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 (A) N =0. (B) 0 < N < F .(C) F < N <2F. (D) N > 2F. [ ]6、质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.Bm 1-2 图A8-2 图9-2 图 [ ]7、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ] 8、在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rgs μω≤. (B) Rgs 23μω≤. (C) R gs μω3≤. (D)Rg s μω2≤. [ ]9、一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)g l. (B) gl θcos . (C) g l π2. (D) gl θπcos 2 . [ ]10、光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]二、填空题:1、已知质量为m 的质点沿x 轴受力为)2(+=x k F ,其中k 为常数。
大学物理习题答案解答第二章牛顿运动定律

第二章 牛顿运动定律一、填空题1、考察直线运动,设加速度为()a t ,初速度为00v =,则由dv a dv adt dt =⇒= 两边定积分,即 00v t v dv adt =⎰⎰ 得质点在任意时刻t 的速度为 110()()t v t a t dt =⎰ (2-1)再由ds v ds vdt dt =⇒= 两边定积分,即 00s t s ds vdt =⎰⎰ 得质点在任意时刻t 的路程为 0220()t s s s v t dt ∆=-=⎰ 把(2-1)式代入上式,得211200()tt s a t dt dt ∆=⎰⎰依题设可知两物体必做直线运动,设某时刻两物体间作用力为F ,则两物体的加速度分别为11F a m = 和 22F a m = 所以两物体在相同时间内发生的路程分别为:2221111121211200000011()1()()tt tt t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰ 2221221121211200000022()1()()t t t t t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰所以 11222111s m m s m m ∆==∆ 此即为所求。
2、箱子在最大静摩擦力的作用下,相对地面具有的最大加速度为2max 0max 00.49.8 3.92()F mg a g m s m mμμ-====⨯=⋅ (1)若设箱子相对卡车静止,即物体相对地面的加速度2max 2a m s a -=⋅<表明箱子与卡车底板间是静摩擦,摩擦力的大小为40280()F ma N ==⨯=(2)依然设箱子相对卡车静止,即物体相对地面的加速度2max 4.5a m s a -=⋅>表明箱子与卡车底板间是滑动摩擦,摩擦力的大小为0.25409.898()F mg N μ==⨯⨯=3、如图2-1(a)所示建立直角坐标系,再分析滑块的受力情况,如图2-1(b)所示,滑块受到三个力的作用,分别是地球施加的重力mg ,斜面对它的支持力1N 和滑动摩擦力1f ,并设其加速度为a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章牛顿运动定律一选择题1.下列四种说法中,正确的为:()A. 物体在恒力作用下,不可能作曲线运动;B. 物体在变力作用下,不可能作曲线运动;C. 物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动;D. 物体在不垂直于速度方向的力作用下,不可能作圆周运动;解:答案是C。
2.关于惯性有下面四种说法,正确的为:()A. 物体静止或作匀速运动时才具有惯性;B. 物体受力作变速运动时才具有惯性;C. 物体受力作变速运动时才没有惯性;D. 惯性是物体的一种固有属性,在任何情况下物体均有惯性。
解:答案是D 。
3.在足够长的管中装有粘滞液体,放入钢球由静止开始向下运动,下列说法中正确的是:()A. 钢球运动越来越慢,最后静止不动;B. 钢球运动越来越慢,最后达到稳定的速度;C. 钢球运动越来越快,一直无限制地增加;D. 钢球运动越来越快,最后达到稳定的速度。
解:答案是D 。
4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为:()A. 0B. P /4C. PD. P/2解:答案是A。
简要提示:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.质量分别为m1和m2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的滑动摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A和a B分别为选择题5图A. a A = 0,a B = 0;B. a A > 0,a B < 0;C. a A < 0,a B > 0D. a A < 0,a B = 0 。
解:答案是D 。
简要提示:水平拉力刚撤消的瞬间,滑块A 受到的合力为弹力和滑动摩擦力,均指向负x 方向,滑块B 受到的合力仍然为零。
6. 质量为m 的物体最初位于x 0处,在力F = - k /x 2作用下由静止开始沿直线运动,k 为一常数,则物体在任一位置x 处的速度应为( ) A.)11(0x x m k - B.)11(20x x m k - C.)11(30x x m k - D.)11(0x x m k - 解:答案是B 。
简要提示: 21d d d d x m k x t a -===v v v x x m k x x d )1(d 200⎰⎰-=v v v )11(2102x x m k -=v , 所以 )11(20x x m k -=v 。
7. 一质量为m 的物体在t = 0时下落,受到重力和正比于其速度(相对于空气)的空气阻力作用,已知相对固定在地面上的坐标系来说,其运动方程为v v b mg tm -=d d ,则相对于以垂直向上速度v 0运动的另一运动坐标系(用'表示)来说,运动方程变为:( )A. 'd 'd v v b mg tm --= B. ')(d 'd 0 v v v b g m t m --= C. )'()d 'd (00 v v v v +--=-b mg t m D. )'(d 'd 0v v v --=b mg tm 解:答案是D 。
简要提示:两个坐标系中的速度具有关系:v = v 0 + v ',v 和v '垂直向下,v 0垂直向上,因此v = v ' -v 0。
将上述v 代入运动方程v v b mg tm -=d d ,得到: )'(d 'd 0v v v --=b mg tm 8. 两个物体A 和B 用细线连结跨过电梯内的一个无摩擦的轻定滑轮。
已知物体A 的质量为物体B 的质量的2倍,则当两物体相对电梯静止时,电梯的运动加速度为:( )A. 大小为g ,方向向上B. 大小为g ,方向向下C. 大小为g /2,方向向上D. 大小为g /2,方向向下解:答案是B 。
简要提示:设电梯的加速度为a ,方向向下。
以地面为参考系,则物体A 和B 的动力学方程分别为:ma T mg 22=-ma T mg =-两式相减,得:a = g二 填空题1. 质量分别为m 1和m 2的两木块,用一细绳拉紧,沿一倾角为θ 且固定的斜面下滑,如图所示,m 1和m 2与斜面间的滑动摩擦因数分别为μ1和μ2,且μ1<μ2,则下滑过程中m 1的加速度为 ,m 2的加速度为 ,绳中张力为 。
解:答案为:θg m m m μm μθg cos sin 212211++-; θg m m m μm μθg cos sin 212211++-;θg m m m )m μ(μcos 212122+-。
简要提示:两物体的运动方程分别为:11111cos sin a m T g m g m =--θμθ22222cos sin a m g m g m T =-+θμθ21a a =。
联合求解得到:θg m m m μm μθg a a cos sin 21221121++-==; θg m m m )m μ(μT cos 212122+-=。
2. 如图所示,一根轻弹簧的两端分别固连着质量相等的两个物体A 和B ,用轻线将它们悬挂起来,在将线烧断的瞬间,物体A 的加速度大小是_____ m ⋅ s –2,O m 填空题3图 F m 1 mm 2 填空题4图填空题1图 μ2m 1μ1 θ m 2填空题2图物体B 的加速度大小是 m ⋅ s –2解:答案为:2g ; 0。
简要提示:A 物体 ma =mg +mg ,∴ a =2g 。
B 物体ma =mg -mg ,∴ a =0。
3. 如图所示,一细线一端系着质量为m 的小球,另一端固定于o 点,可在竖直平面上摆动,将小球拉至水平位置后自由释放,当球摆到与铅直线成θ 角的位置时,小球的切向加速度大小为 ;法向加速度大小为 。
解:答案为:g sin θ ; 2g cos θ 。
简要提示:由受力分析得:切向加速度大小a τ=g sin θ ,法向加速度大小a n = v 2/l =2g l cos θ /l =2g cos θ 。
4. 如图所示,一条重而均匀的钢绳,质量m = 4 kg ,连接两物体,m 1 = 7 kg ,m 2 = 5 kg ,现用F =200 N 的力向上作用于m 1上,则钢绳中点处的张力为 N 。
解:87.5 N 。
简要提示:22121s m 5.2)(-⋅=++++-=m m m g m m m F a , a m m g m m T )2/()2/(22+=+-,5.87))(2/(2=++=a g m m T N5. 如图所示,A 、B 两物体质量均为m ,用质量不计的定滑轮和细绳连接,并不计摩擦,则A 获得的加速度大小为________,B 获得的加速度大小为________。
解:答案为:g /5; 2g /5。
简要提示:物体A 和B 的运动方程分别为:B ma T mg =-A ma mg T =-2A B a a 2= 解得:A 的加速度大小为g /5,B 的加速度大小为 2g /5。
6. 一条公路的某处有一水平弯道,弯道半径为50m ,若一辆汽车车轮与地面的静摩擦因数为0.6,则此车在该弯道处行驶的最大安全速率为 。
解:答案为61.74 km ⋅ h –1A B填空题5图简要提示: mg Rm s 2max μ=v , 最大安全速率为11s max h 61.74km s m 300--⋅=⋅==mg μv7. 如图所示,堆放着三块完全相同的物体,质量均为m ,设各接触面间的静摩擦因数与滑动摩擦因数也都相同,均为μ 。
若要将最底下的一块物体抽出,则作用在其上的水平力F 至少为 。
解:答案为:F ≥ 6 μ mg 。
简要提示:对于最下面一块物体,有:ma mg mg F =--μμ32,ma mg F +=μ5。
可以算出上面两块物体因摩擦获得的加速度都是μg ,所以若要将最底下的一块物体抽出,则要求a >μg 。
得到:F ≥ 6 μ mg 。
8. 已知月球的质量是地球的1/81,月球半径为地球半径的3/11,若不计自转的影响,在地球上体重为G 1的一人在月球上的体重约为 。
解:答案为:G 1/6 。
简要提示:在地球上有:211r M mG G = 在月球上有:2222r M mG G =∴ 61)113(811)(2221221221122212≈===r r M M r M r M G G 9. 质量为m 的小球用长为L 的绳子悬挂着,在水平面内作匀速率圆周运动,如图所示,设转动的角速度为ω,则绳子与竖直方向的夹角θ为 。
解:答案为:)arccos(2Lg ω 简要提示:由动力学方程:θωθsin sin 2L m T =mg T =θcos填空题7图 m m m可得: L g2cos ωθ=,)arccos(2L g ωθ=10. 如图所示,质量分别为m 1、m 2和m 3的物体迭在一起,则当三物体匀速下落时,m 2受到的合外力大小为 ;当它们自由下落时,m 3受到的合外力大小为 ;当它们以加速度a 上升时,m 1受到的合外力大小为 ;当它们以加速度a 下降时,三物体系统受到的合外力大小为 ;解:答案为:0; m 3g ; m 1a ; (m 1+m 2+m 3)a 。
简要提示:由受力分析和牛顿第二定律可以得到。
三 计算题1.一物块在离地高1m 的水平桌面上匀变速滑动,当其滑到离桌边3 m 处时,速率为4 m ⋅ s –1,然后滑出桌边落地,其着地点距桌边1m ,求物块与桌面间的滑动摩擦因数。
解:物块滑离桌面后做平抛运动,则离开桌边的速率为hg x t x 2==v 从起始点滑到桌边,物体做匀变速直线运动,其加速度sa 2202v v -= 由牛顿第二定律:-μmg = ma得 )2(2122v --=-=x hg gs g a μ 将v 0 = 4 m ⋅ s –1, s =3m , x =1m , h =1m , g = 9.8 m ⋅ s –2,代入算得 μ =0.19。
2. 如图所示,两物体的质量m 1 = 1kg ,m 2 = 2kg ,用长细绳挂在定滑轮上,绳、滑轮的质量及摩擦均不计,开始时m 1离桌面高h 1 = 1m ,m 2离桌面高h 2 =填空题10图m 3m 2m 1填空题9图1.5m ,然后m 2由静止下落,求m 1上升最高点离桌面的高度h 。
解:如图,m 1有两个运动过程,一是以a向上作匀加速直线运动,设移动的距离为x 1,显然x 1=h 2。
二是以v 作竖直上抛运动,设向上移动的距离为x 2 。
取x 轴向上为正向,由牛顿定律⎩⎨⎧=-=-a m T g m a m g m T 2211 解得: g g m m m m a 311212=+-= 2122122 m 5.1ah ax h x ====v∴ m 5.02222===gah g x v 故 m 3121=++=h x x h3. 如图所示,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,设圆弧半径为r 。