拉曼光谱原理及应用免费课件

合集下载

拉曼光谱-课件分享

拉曼光谱-课件分享
现代材料物理研究方法
拉曼光谱分析
主要内容
红外光谱(IR) 拉曼光谱(Raman)
分子振动光谱
2
激光拉曼光谱基础
1928 C.V.Raman发现拉曼散射效应 1960 随着激光光源建立拉曼光谱分析 拉曼光谱和红外光谱一样,也属于分子振动光谱 生物分子,高聚物,半导体,陶瓷,药物等分析 ,
是否出现拉曼活性主要取决于分子在运动过程时某一 固定方向上的极化率的变化。 对于分子振动和转动来说,拉曼活性都是根据极化率 是否改变来判断的。 对于全对称振动模式的分子,在激发光子的作用下, 肯定会发生分子极化,产生拉曼活性,而且活性很强; 而对于离子键的化合物,由于没有分子变形发生,不 能产生拉曼活性。
Strength enhanced 102~3 more sensitive concentration < 0.1mM similar to UV
preresonance
Resonance enhanced
共振拉曼散射
11
拉曼原理-LRS与IR比较
拉曼光谱是分子对激发光的散射,而红外光谱则是分子对红外光的吸 收,但两者均是研究分子振动的重要手段,同属分子光谱。
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
23
分析方法
普通拉曼光谱 一般采用斯托克斯分析
反斯托克斯拉曼光谱 采用反斯托克斯分析
24
Raman光谱可获得的信息
Raman 特征频率
Raman 谱峰的改变
Raman 偏振峰
47
100 Cr
100
depth profile lines

拉曼光谱法及其在材料研究中的应用(课件部分)

拉曼光谱法及其在材料研究中的应用(课件部分)

第一节 拉曼光谱基本原理1.1 拉曼散射与拉曼位移 拉曼线是入射光场与分子振动相互作用的结果。

利用拉曼 拉曼效应的机制和荧光现象不同,并不吸收激发光,引入Energy levels of a diatomic moleculeStokes and anti-Stokes scattering for cyclohexane 拉曼散射的经典理论能对电磁波产生拉曼散射,称分子有拉曼活性。

拉曼散射的选择定则 与拉曼散射相比,荧光通常是一种量子效率更高的过程,甚至很少量不纯物质的荧光也可以导致显著的拉曼信号降低。

使用衡荧光干扰、信号强度和检测器响应可获得最佳信噪比。

可以由玻璃或石英制成,而红外光谱测量需要用盐材料。

阵检测器或多通道的电荷藕合器件。

又抑制了荧光的产生。

发光的干扰。

高。

适当的波长还可以实现共振拉曼的测量。

要适合于作不同状态的试样在各种不同条件(如高、低温)等条件下的测试。

的束腰。

为了增强效果, 由于在可见光区域内,拉曼散射不会被玻璃吸收,因此拉状的长圆柱体,并使收集光方向垂直于入射光的传播方向。

拉曼散射信号的接收类型分单通道和多通道接收两种。

光电倍增管及电子学系统带来的噪声。

近红外FT-Raman光谱仪采用麦克尔逊干涉仪代替色散型表面增强拉曼光谱技术拉曼光谱仪的测试灵敏度等。

Distance dependence of the SERRS spectrum of a dye adsorbedonto silver colloid incorporated in a polymer.The spectrum of copper phthalocyanine taken with four differentexcitation frequencies.Overtones of copper phthalocyanine taken with an excitationfrequency of 514 nm.微区成像分析Polymer crystallinity studied using Raman spectroscopyFT Raman spectra of dicumyl peroxide cured rubber (stretched纤维光学拉曼光谱术Fiber-optic Raman spectroscopy聚合物材料领域:(1)聚合物的分子结构;(2)聚合物的结晶结构;(3)聚合物的取向结构;(4)共混聚合物的相结构;(5)聚合反应动力学;(7)聚合物加工的在线测试;(8)。

拉曼光谱基本原理课件

拉曼光谱基本原理课件
拉曼光谱的发展趋势
随着技术的进步,拉曼光谱的发展趋势包括提高光谱分辨率和灵敏度、拓展应用领域、结合其他技术进行联合分 析以及开发便携式设备等。未来,拉曼光谱有望在更多领域发挥其作用,如纳米材料研究、生物成像、地学等领 域。
对拉曼光谱未来发展的展望与期待
拉曼光谱未来发展的展望
随着技术的不断进步和应用领域的拓展,拉曼光谱在未来将 有望实现更高的分辨率和灵敏度,更深入地揭示物质的内部 结构和化学信息。同时,随着纳米技术的发展,拉曼光谱有 望在纳米材料研究等领域发挥重要作用。
共振拉曼散射(Resonance Raman scattering):利用激光器的波长与样品的共 振吸收峰相近,从而增强拉曼散射信号。
偏振拉曼散射(Polarized Raman scattering):研究样品的偏振特性,可获得样 品的分子结构和取向信息。
拉曼光谱的数据处理
01
02
03
04
基线校正
高灵敏度拉曼光谱技术
近年来,高灵敏度拉曼光谱技术得到了广泛的研究和应用 。通过使用更先进的检测系统和信号增强技术,可以实现 对微量样品的高分辨率和高效检测。
实时拉曼光谱技术
该技术可以在短时间内获取样品的拉曼光谱信息,为快速 分析和实时监测提供了可能。
拉曼光谱在各领域的应用前沿
01
环境监测
拉曼光谱可以用于检测空气、水和土壤中的有害物质,例如重金属、有
智能化和自动化
随着人工智能和机器学习技术的发展,未来拉曼光谱技术将更加智能化和自动化,实现更 快速、准确的分析和预测。
05
总结与展望
拉曼光谱的基本原理与技术概述
拉曼光谱的基本原理
拉曼光谱是一种基于拉曼散射原理的散射光谱技术。当光在物质中传播时,会与物质的分子或原子相 互作用,引发散射。拉曼散射是其中一种散射方式,它与物质的分子或原子结构相关,可以提供关于 物质内部结构和化学信息的信息。

拉曼光谱课件

拉曼光谱课件
总结词
利用拉曼光谱分析大气中的有害物质,如二氧化氮、二氧化硫、一氧化碳等,有助于监测和治理空气 污染。
详细描述
拉曼光谱能够检测大气中不同污染物的分子振动模式,从而确定污染物的种类和浓度。这种方法具有 非接触、无损、快速和高灵敏度的特点,对于大气污染的预防和治理具有重要意义。
水体污染物的拉曼光谱分析
总结词
拉曼光谱技术可用于检测水体中的有害物质,如重金属离子、有机污染物等,为水环境 的监测和治理提供有力支持。
详细描述
通过对水体样本进行拉曼光谱扫描,可以获取水中污染物的分子振动信息,从而判断污 染物的种类和浓度。这种方法在水质监测、饮用水安全等领域具有广泛的应用前景。
土壤污染物的拉曼光谱分析
总结词
用于分离拉曼散射信号中的不 同波长成分。
光电倍增管
用于检测拉曼散射信号,转换 为电信号。
实验操作流程
显微镜观察
使用显微镜观察样品,选择测 量区域和焦点。
数据采集
采集拉曼散射信号,记录光谱 数据。
样品准备
选择适当的样品,进行表面清 洁和干燥。
光路调整
调整拉曼光谱仪、单色仪和显 微镜的光路,确保测量区域的 聚焦。
与生物学和医学交叉
拓展拉曼光谱在生物分子结构和细胞代谢过程 中的应用。
与计算科学交叉
利用计算模拟方法预测分子拉曼光谱,指导实验设计和优化。
THANK YOU
总结词
高分子化合物的拉曼光谱分析主要依赖于链振动和侧基的振动,可以提供高分子化合物的结构和序列信息。
详细描述
拉曼光谱能够检测高分子化合物中主链和侧基的振动模式,从而推断出高分子的结构和序列。通过分析拉曼光谱 ,可以确定高分子化合物的聚合度、序列长度和支链结构等信息。

红外和拉曼光谱课件PPT

红外和拉曼光谱课件PPT
瑞利散射是光在物质中传播时发生的弹性散射,其散射光的 频率与入射光的频率相同。而拉曼散射是光在物质中传播时 发生的非弹性散射,其散射光的频率与入射光的频率不同。
拉曼光谱与分子结构的关系
拉曼光谱的谱线
拉曼光谱的谱线反映了物质分子的振动和转动能级的变化, 不同物质分子的拉曼光谱具有独特的特征谱线。
分子振动和转动能级
拉曼光谱实验操作流程
实验操作流程
01
02
03
04
1. 打开拉曼光谱仪,预热并 稳定仪器。
2. 将激光器调整到合适的波 长和功率。
3. 将样品放置在样品台上, 并调整焦距和位置,确保激光
光束能够照射到样品上。
4. 进行拉曼光谱的采集,记 录实验数据,并进行分析和解
释。
数据处理与分析
数据处理
对采集的红外或拉曼光谱数据进行平 滑处理、基线校正、归一化等操作, 以提高数据质量和可分析性。
红外和拉曼光谱课件
目录
CONTENTS
• 红外光谱基本原理 • 拉曼光谱基本原理 • 红外光谱与拉曼光谱的应用 • 实验技术与操作 • 红外和拉曼光谱的发展趋势
01 红外光谱基本原理
红外光谱的产生
红外光谱是分子吸收特定波长的 红外光后产生的光谱,其原理基
于分子振动和转动能级跃迁。
当红外光照射分子时,分子中的 电子和振动、转动能级发生相互 作用,导致分子吸收特定波长的
分子转动是指分子整体绕其质心旋转, 其转动能级跃迁也会产生红外光谱。
红外光谱与分子结构的关系
不同化学键或基团在红外光谱中具有特定的吸收峰,这些吸收峰的位置和强度可以 反映分子内部结构和化学键类型。
通过分析红外光谱的吸收峰位置和强度,可以推断出分子的结构特征和化学键信息, 如碳氢、碳氧、碳碳等键的弯曲和伸缩振动。

拉曼光谱原理及应用讲义

拉曼光谱原理及应用讲义

20
White light Image
30
40
50
60
40
50
60
70
80
Length X (祄)
Length Y (祄)
2-纳米材料
碳纳米管研究
3.0
2.5
Tube Diameter
2.0
Tangential Modes (G-Modes)
Electronic properties
Radial Breathing Mode
——任何一次拉曼光谱实验中都会遇到的问题




• 1-灵敏度

• 2-光谱分辨率

• 3-空间分辨率
影响:准确性、取谱速度、空间分辨效果
光谱分辨率
Intensity (cnt) Intensity (cnt)
12 000 11 000 10 000
9 000 8 000 7 000 6 000 5 000 4 000 3 000 2 000 1 000
•组分信息 •结构信息
1800
2000
拉曼光谱给出的信息?
PET的拉曼光谱--官能团
Bg
Bg
乙二醇模式: 结构的指示剂
羰基伸缩 线宽=>结晶度
拉曼光谱给出的信息?
Intensity (A.U.)
2000200000 甲醇vs. 乙醇
1500150000
CH3OH vs. CH3CH2OH
OH Bending
拉曼光谱应用-鉴定不同材料
在纤维材料中通常使用的材料的拉曼光谱
10000
8000
Nylon6 尼龙
6000

拉曼光谱及其应用.pptx

拉曼光谱及其应用.pptx
发展
• 拉曼光谱是一种散射光谱,它是1928 年印度物理学家C. V. Raman 发现的。 • 30 年代拉曼光谱曾是研究分子结构的主要手段,此时的拉曼光谱仪是以汞弧灯为光源 ,物质产生的拉曼散射谱线极其微弱,因此应用受到限制,尤其是红外光谱的出现, 使得拉曼光谱在分子结构分析中的地位一落千丈。 • 至60 年代激光光源的问世,以及光电讯号转换器件的发展给拉曼光谱带来新的转机。 世界上各大仪器厂家相继推出了激光拉曼光谱仪,此时拉曼光谱的应用领域不断拓宽。 • 70 年代中期,激光拉曼探针的出现,给微区分析注入活力。 • 80 年代以来,随着科学技术的飞速发展,激光拉曼光谱仪在性能方面日臻完善。目前 ,拉曼光谱已广泛应用于材料、化工、石油、高分子、生物、环保、地质等领域。就 分析测试而言,拉曼光谱和红外光谱相配合可以更加全面地研究分子的运动状态,提 供更多的分子结构分析方面的信息。
应用

区分真假鸡血石➤Fra bibliotek鉴别毒品➤
监测水果表面残留农药
者。
天然鸡血石和仿造鸡血石的拉曼光谱有本质的区别,前者主要是地开石和辰砂的拉曼光谱,后者主要是有机物的拉曼光谱,利用拉曼光谱可以区别二
天然鸡血石的拉曼光谱:
仿造鸡血石的拉曼光谱:
图(a)
上图中,a是地(黑色),b是血(红色) 查阅资料,对不同物质的拉曼光谱进行比对,可以知道,天然鸡血石“地”的主要成分为地开石,天然鸡血石样品“血”既有辰砂又有地开石, 实际上是辰砂与地开石的集合体。仿造鸡血石“地”的主要成分是聚苯乙烯-丙烯腈,“血”与一种名为PermanentBordo的红色有机染料的拉曼光 谱基本吻合。
图(b)
鉴别毒品:使用拉曼光谱法对毒品和某些白色粉末进行了分析,谱图如下:

【2024版】拉曼光谱分析法--ppt课件

【2024版】拉曼光谱分析法--ppt课件

优 滤光片组
检测系统
Nd-YAG激光光源
点 ➢ 荧光背景出现机会小
➢ 分辨率高 ➢ 波数精度和重现性好 ➢扫描快,操作方便 ➢近红外光的特性(光纤维中传递性能好、可穿透生物组织)
PPT课件
29
✓近红 外激光 光源
Nd-YAG激光器代替可见光激光器; 产生1.064μm近红外激发光,比可见光 长约1倍,影响信噪比,FT技术克服; 激发光能量低于荧光所需阈值。
e
e
e
e
温度升高 概率大!
3振 电
2动 子
1 0
能 级
基 态
e e
Rayleigh 散射 PPT课件
Raman 散射 8
2、 拉曼光谱图
CCl4的散射光谱
Rayleigh scattering
Stocks lines
anti-Stockes lines
PPT课Δ件ν/cm-1
9
CCl4的拉曼光谱
适用于分子结构分析
PPT课件
11
3、拉曼光谱与分子极化率的关系 拉曼活性取决于振动中极化率是否变化。
若分子在电场E(光波的电磁场)中,产生诱导偶极距μ
μ = αE α为极化率
反映了分子中电子云 变形的难易程度
分子极化率是诱导偶极矩与外电场的强度之比
分子中两原子距离最大时,α也最大
拉曼散射强度与极化率成正比例关系
➢干涉滤光片组,由折射率高低不同 的多层材料交替组合而成。
✓检测器
➢室温下的铟鎵砷检测器 ➢液氮冷却的锗检测器
PPT课件
31
三、激光显微拉曼光谱仪
使入射激光通过显微镜聚焦到试样的微小部位 (直径小至5 μm ),可精确获取所照射部位的拉 曼光谱图。 ➢ 共焦显微激光拉曼光谱仪(使用CCD检测器): 显微镜的物镜和目镜的焦点重合于一点,排除了非 焦点处组分对成像的影响,可显示微区的不同深度 和三维结构信息。 ➢ 激光拉曼光纤探针:光导纤维传感技术与显微镜 耦合而成,可对远距离、特殊环境中试样的拉曼散 射进行原位遥感探测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 结构信息(晶体、无定形、同分异构 体…)
Intensity
Band postion band Position shift
Band Width
Raman shift
拉曼光谱的特征
拉曼频移
峰位与激发波长没有关系
多激发波长:选择适合的激发波长
70000
60000
Intensity (a.u.)
50000
20
White light Image
30
40
50
60
40
50
60
70
80
Length X (祄)
Length Y (祄)
2-纳米材料
碳纳米管研究
3.0
2.5
Tube Diameter
2.0
Tangential Modes (G-Modes)
Electronic properties
Radial Breathing Mode
9 000 8 000 7 000 6 000 5 000 4 000 3 000 2 000 1 000
0
SiC的拉曼光谱图
分辨率为 2 cm-s1i普c1通1-5分32辨18率00
4 000
分ssiicc11辨11--553322率1680000 为0.65 csmic-11高1-5分32辨60率0
20 000 15 000 10 000
5 000 0 -40
-30
-20
Z (祄)
共焦状态不好
-10
0
界面?
3-拉曼光谱在材料研究中的应用介绍
拉曼光谱应用领域:
1:半导体材料; 2:聚合体;3:碳材料; 4:地质学/矿物学/宝石鉴定; 5:生命科学; 6:医药;7:化学; 8:环境;9:物理 10:考古;11:薄膜; 12: 法庭科学:违禁药品检查;区分各种颜料,色素,油漆,纤维 等;爆炸物的研究;墨迹研究;子弹残留物和地质碎片研究
Energy
5
4
3
2
c2
1
+
c1
0 Tuneable Bandgap
-1
e-
v1
-2
v2
-3
-4
-5 0 2 4 6 8 10
Density of electron states
玻尔半径 dt Radius
CNT的拉曼光谱和荧光光谱共点测量
数据来自 Prof. Honda, Tokyo University of Science
1.5
Intensity (cnt/sec)
1.0
0.5
0.0
500
1 000
1 500
2 000
Raman Shift (cm-1)
D-band Info on defects
不同管径的碳纳米管与不同激发波长共振,因此可以 通过不同激发波长研究不同手性和管径的碳纳米管
Conduction Valence
拉曼光谱学 ——原理及应用
HORIBA Jobin Yvon 北京办事处
报告内容
➢1-什么是拉曼光谱 ? – 简单介绍 ➢2-拉曼光谱仪工作原理介绍 ➢3-拉曼光谱在材料研究中的应用介绍 ➢4-HORIBA Jobin Yvon拉曼光谱仪简介
什么是拉曼效应?
时间 和发现人?
1928 年,印度科学家C.V Raman in首先在CCL4光谱 中发现了当光与分子相互作用后,一部分光的波长
35
1000
Intensity (cnt)
1200
1400
1600
Raman Shift (cm-1)
15
1800
10
5
0
1200
1400
1600
1800
-40
Raman Shift (cm-1)
好的共焦状态
-30
-20
-10
0
Z (祄)
清晰的界面结果!
空间分辨率(共焦技术)
高分子多层膜
Intensity (cnt)
会发生改变(颜色发生变化),通过对于这些颜色
发生变化的散射光的研究,可以得到分子结构的信
息,因此这种效应命名为Raman效应。
Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science
2500
3000
785 nm
1000
1500
2000 Wavenumber (cm-1)
2500
3000
2-拉曼光谱仪的工作原理
拉曼光谱测量原理:
光栅
探测器
滤光装置
激光
样品
•光源-(太阳光-Hg灯-激光) •耦合光路-光照射到样品,收集散 射光 (大光路和显微光路)
•瑞利滤光片(去除瑞利散射光 -颜色不发生改变的光)
高分子聚合物
Video Image of Polymer matrix - Blue box indicates mapped area
Raman Mapping uses the confocal Raman microscope to analyze discrete points across a sample surface.
什么是拉曼效应?
光散射的过程:激光入射到样品,产生散射光。
散射光
弹性散射(频率不发生改变-瑞利散射)
非弹性散射(频率发生改变-拉曼散射)
瑞利散射
scatter= laser
laser
拉曼散射
scatter> laser
什么是拉曼效应?
拉曼光谱给出的信息?
520
不同材料的拉曼光
10 000
1200
1400
1600
Wavenumber (cm-1)
•组分信息 •结构信息
1800
2000
拉曼光谱给出的信息?
PET的拉曼光谱--官能团
Bg
Bg
乙二醇模式: 结构的指示剂
羰基伸缩 线宽=>结晶度
拉曼光谱给出的信息?
Intensity (A.U.)
2000200000 甲醇vs. 乙醇
1500150000
The Raman map consists of the superimposed spectra of the both components.
The cursors than can be used to generate 2000 Raman mapped images
Because of confocality the Raman map can show very exactly the localization of comp. 1 and 2 (spatial resolution at ex = 633 nm 0.8 µm lateral and 1.2 µm axial)
PL 光谱和拉曼光谱对于CNT的管径和手性都非常敏感
由于SWCNTs的发光范围集中在1.0 to 1.6 um, 所以有很大的应用前景.
Intensity (counts/s) Intensity (counts/s)
激发光 : 785nm
Raman
PL
140
794nm~914nm
3 500
3 000
2 500
2 000
1 500
1 000
500
0
555
560
565
570
575
580
585
Raman Shift (cm-1)
200
250
300
350
400
450
500
550
Raman Shift (cm-1)
光谱分辨率
Intensity (cnt)
7 000 6 000 5 000 4 000 3 000 2 000 1 000
•光谱仪和探测器 一般为单光栅光谱仪和CCD探测器
几个拉曼实验中的重要因素
——任何一次拉曼光谱实验中都会遇到的问题




• 1-灵敏度

• 2-光谱分辨率

• 3-空间分辨率
影响:准确性、取谱速度、空间分辨效果
光谱分辨率
Intensity (cnt) Intensity (cnt)
12 000 11 000 10 000
高分子聚合物
2000
1500
Single spectrum 1000 Component 1
500
500
1000
1500
Wavenumber (cm-1)
8000
Single spectrum 6000 Component 2
4000
2000
500
1000
1500
Wavenumber (cm-1)
1-聚合物,高分子
拉曼光谱应用-鉴定不同材料
在纤维材料中通常使用的材料的拉曼光谱
10000
8000
Nylon6 尼龙
6000
Kevlar 合成纤维
Pstyrene 聚苯乙烯
4000
PET
2000
Paper 纸纤维
Ppropylene丙烯
PE/EVA
0
聚乙烯
500
1000
1500
2000
2500
3000
• 一般情况,拉曼光谱是不随激发波长的变化而变化的 40000
30000
然而…
相关文档
最新文档