拉曼光谱定义
拉曼光谱和透射电镜

拉曼光谱和透射电镜
拉曼光谱和透射电镜是两种用于研究材料结构和性质的分析技术,它们分别通过不同的原理和方法提供有关样品的信息。
1.拉曼光谱(Raman Spectroscopy):
原理:拉曼光谱是一种分析技术,基于分子或晶体中的分子振动引起的光子散射现象。
当激光光束通过样品时,其中的分子会散射光子,产生拉曼散射光。
通过分析拉曼散射光的频移,可以获得关于分子振动和结构的信息。
应用:拉曼光谱广泛用于材料科学、化学、生物学等领域,可以用于分析晶体结构、化学成分、分子构型等。
2.透射电镜(Transmission Electron Microscopy,TEM):
原理:透射电镜是一种高分辨率的显微镜,使用电子束而不是可见光。
样品被穿透的电子束通过样品后,通过透射电镜的透射系统形成高分辨率的图像。
TEM可以显示样品的内部结构,具有极高的分辨率,可以观察纳米级别的细节。
应用:透射电镜主要用于研究材料的微观结构,如晶体结构、纳米颗粒、生物细胞等。
它在纳米科技、材料科学、生物学等领域有广泛的应用。
这两种技术在研究材料时具有互补性。
拉曼光谱提供关于分子振动和结构的信息,而透射电镜则提供关于材料微观结构的高分辨率图像。
结合使用这两种技术,可以更全面地了解材料的性质和结构。
拉曼光谱法

拉曼光谱法0421拉曼光谱法1拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差及化合物振动频率、转动频率间关系的分析方法。
与红外光谱类似,拉曼光谱是一种振动光谱技术。
所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐射。
拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。
这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以cm-1 为单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。
频率不变的散射称为弹性散射,即所谓瑞利散射。
如果产生的拉曼散射频率低于入射频率,则称之为斯托克散射。
反之,则称之为反斯托克散射。
实际上,几乎所有的拉曼分析都是测量斯托克散射。
用散射强度对拉曼位移作图得到拉曼光谱图。
由于功能团或化学键的拉曼位移与它们在红外光谱中的吸收波数相一致,所以谱图的解析也与红外吸收光谱相同。
然而,通常在拉曼光谱中出现的强谱带在红外光谱中却成为弱谱带甚至不出现,反之亦然。
所以,这两种光谱技术常互为补充。
拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或气体),样品制备简单甚至不需样品制备。
谱带信号通常处在可见或近红外光范围,可以有效地和光纤联用;这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃,塑料内)或将样品溶于水中获得。
现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。
因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。
除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。
它们是共振拉曼光谱,表面增强拉曼光谱,拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。
其中,在药物分析应用相对较多的是共振拉曼和表面增强拉曼光谱法。
拉曼光谱的原理及应用

拉曼光谱的原理及应用拉曼光谱是将激发的样品通过分析散射光的频率而得到的一种光谱技术。
它是基于拉曼散射效应,即光与物质相互作用后,光的频率发生变化而产生散射光谱。
拉曼光谱的原理及应用如下。
原理:拉曼散射是指当物质被激发后,光通过与物质分子或晶体相互作用而发生频率改变的现象。
当光与物质相互作用后,其中一部分光的频率会发生变化,其频率的差值与物质分子或晶体的振动和转动能级有关。
这种频率发生变化的光被称为拉曼光,而拉曼光谱则是分析和记录这种光的技术和结果。
应用:1.化学分析:拉曼光谱可以用于分析化学物质的成分、结构和浓度。
不同化学物质的分子结构和振动能级不同,因此它们与光相互作用后会产生不同的拉曼光谱。
通过对比样品的拉曼光谱与数据库中已知物质的拉曼光谱,可以确定样品的成分和结构。
2.材料科学:拉曼光谱在材料科学中有广泛的应用。
例如,可以通过拉曼光谱来分析材料中的应变、晶格缺陷、晶体结构及化学组成等。
由于拉曼光谱对物质的表面敏感性较强,因此它在研究纳米材料和杂质掺杂材料的结构和性质方面特别有用。
3.生物医学:拉曼光谱在生物医学领域有多种应用。
例如,可以使用拉曼光谱来识别肿瘤组织与正常组织的差异,从而在肿瘤诊断和治疗中发挥重要作用。
此外,拉曼光谱还可以用于分析生物分子的结构变化和相互作用,以及研究细胞功能和代谢过程。
4.环境分析:拉曼光谱可以用于环境样品的分析和监测,例如水质、大气污染物、土壤和废物中的化学物质。
通过拉曼光谱技术,可以对这些环境样品中的有机和无机成分进行定性和定量分析,从而提供可靠的环境数据。
5.药品质量检测:拉曼光谱可用于对药物的质量进行快速和准确的检测。
通过对药物样品的拉曼光谱进行分析,可以确定药物的成分、结构和纯度,以保证药物的质量和疗效。
总结:拉曼光谱技术以其非破坏性、快速、准确的特点在各个领域得到广泛应用。
基于拉曼散射现象,拉曼光谱能够提供关于样品成分、结构和相互作用的信息。
它已成为化学、材料科学、生物医学、环境分析和药品质量检测等领域中不可或缺的分析工具,为科研和工业应用提供了重要支持。
拉曼光谱

4.斯托克斯线强度比反斯托克斯线强;
拉曼光谱仪
拉曼光谱仪的基本结构
1.光源 它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。 2.外光路 外光路部分包括聚光、集光、样品架、滤光和偏振等部件。 3.色散系统 色散系统使拉曼散射光按波长在空间分开,通常使用单色仪。 4.接收系统 拉曼散射信号的接收类型分单通道和多通道接收两种。光电倍增管 接收就是单通道接收。 5.信息处理与显示 为了提取拉曼散射信息,常用的电子学处理方法是直流放大、选频 和光子计数,然后用记录仪或计算机接口软件画出图谱。
拉曼光谱图
拉曼光谱的横坐标为拉曼位移,以波数 表示纵坐标为拉曼光强。由于拉曼位移与 激发光无关,一般仅用Stokes位移部分。对 发荧光的分子,有时用反Stokes位移。
拉曼光谱的信息
拉曼频率 的确认 物质的组成
parallel
拉曼偏振
perpendicular
晶体对称性和取 向
拉曼峰宽晶体质量好 坏 Nhomakorabea拉曼峰强 度
物质总量
拉曼光谱的特征
1. 对不同物质Raman 位移不同; 2.对同一物质 (
v v s v0 , v s 和 v0分别为斯托克斯
位移和入射光波数) 与入射光频率无关;是表征分子振-转能级 的特征物理量;是定性与结构分析的依据;
3.拉曼线对称地发布在瑞利线两侧,长波一侧为斯托克斯线,
拉曼光谱法优势
对样品无接触,无损伤;样品无需 制备 适合黑色和含水样品,试样量少
光谱成像快速、简便,分辨率高
一次可同时覆盖50-4000cm-1波数的 区间 仪器稳固,维护成本低,使用简单
拉曼光谱法的不足
拉曼散射信号弱
拉曼光谱

拉曼位移Δv=vR-vo
vR为拉曼线频率,vo为入射光频率。拉曼 位移与入射光频率无关,只与分子振动能 级差ΔE(ΔE=hv)有关。
不同分子具有不同振动能级,拉曼位移是 特征的,是研究分子结构的重要依据。
拉曼散射线的特点
•斯托克斯线和反斯托克斯线对称地分布在瑞利线两 侧,相对应的拉曼位移完全相等,但斯托克斯线强度比 反斯托克斯线强度大得多;
第四章 拉曼光谱
概述
拉曼光谱是建立在拉曼散射效应基础上 的光谱分析法。
拉曼光谱与红外光谱一样,源于分子的 振动能级跃迁,属分子振动光谱。
拉曼光谱的基本原理
Real States 真实能级
Virtual State 虚能级
Mid IR Stokes Raman 红外 斯托克斯拉曼
E1+hv0 E0+hv0
•瑞利散射光的强度只有入射光强度的约10-3,而拉曼 散射光的强度非常弱,只有入射光强度的约10-6-10-8;
•若改变入射光的频率,拉曼散射线的频率也发生变化, 但它们总是出现在在瑞利线两侧,相对应的拉曼位移 保持不变;拉曼位移只与分子结构有关。
拉曼光谱图
CCl4的拉曼光谱 拉曼光谱图以拉曼位移为横坐标,拉曼线强度为纵坐标。入射光 频率当作0。由于Stokes线强于反Stokes线,所以拉曼光谱仪记录 的是前者,忽略反Stokes线。
拉曼光谱选律
从量子力学的观点来看,拉曼光谱起源于分子振动过 程中极化率的改变,红外光谱起源于分子振动过程中 偶极矩的变化.
极化率表征分子在电场(光波的电磁场)作用下分 子中电子云变形的难易程度。
振动时极化率发生变化,该振动是拉曼活性的;
振动时偶极矩发生变化,该振动是红外活性的;
拉曼光谱

拉曼光谱(RAMAN SPECTRA)的原理(续)
Mid IR Stokes Raman Rayleigh Anti-Stokes Raman Fluorescence
红外 斯托克斯拉曼
瑞利散射 反斯托克斯拉曼
荧光
Real States 真实能级
Virtual State 虚能级
Vibrational States 振动能级 i
的研究员充满吸引力。
拉曼光谱仪的主要厂商及相关仪器
美国PerkinElmer公司的RamanStation 400系列拉曼光 谱仪
全球唯一的运用中阶梯光栅及二维面阵CCD 检测器组合成的二维色散型拉曼光谱仪,集 中了宽波段,高分辨率及检测速度快等特点, 摒弃了传统的获取高分辨率图谱所惯用的多 次测量不同谱带再进行拼接的方法,可在一 秒钟内获取覆盖整个波段的高分辨率拉曼图 谱。 分光系统采用中阶梯光栅技术,不含任何可 移动元件,保证系统的高度稳定性 高灵敏度二维CCD检测器,使得整个波段的 数据同时获取,避免了光谱失真 采用超稳定785nm的激光光源,减弱了荧光 背景的产生。
拉曼光谱(RAMAN SPECTRA)的原理(续)
设散射物分子原来处于基电子态,振动能级如图所示。 当受到入射光照射时,激发光与此分子的作用引起的 极化可以看作为虚的吸收,表述为电子跃迁到虚态 (Virtual state),虚能级上的电子立即跃迁到下能级而 发光,即为散射光。设仍回到初始的电子态,则有如 图所示的三种情况。因而散射光中既有与入射光频率 相同的谱线,也有与入射光频率不同的谱线,前者称 为瑞利线,后者称为拉曼线。在拉曼线中,又把频率 小于入射光频率的谱线称为斯托克斯线,而把频率大 于入射光频率的谱线称为反斯托克斯线。
拉曼光谱

分析技术
种类
优点
不足
几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 拉曼光谱2、以CCD为代表的多通道探测器的拉曼光谱分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 拉曼光谱用于分析的优点和缺点
1、拉曼光谱用于分析的优点
含义
光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散 射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。
拉曼光谱-原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级 (点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:
相关信息
电化学原位拉曼光谱法,是利用物质分子对入射光所产生的频率发生较大变化的散射现象,将单色入射光(包 括圆偏振光和线偏振光)激发受电极电位调制的电极表面,通过测定散射回来的拉曼光谱信号(频率、强度和偏振 性能的变化)与电极电位或电流强度等的变化关系。一般物质分子的拉曼光谱很微弱,为了获得增强的信号,可采 用电极表面粗化的办法,可以得到强度高104-107倍的表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)光谱,当具有共振拉曼效应的分子吸附在粗化的电极表面时,得到的是表面增强共振拉曼散射(SERRS)光谱, 其强度又能增强102-103。
拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分 析过程中操作简便,测定时间短,灵敏度高等优点。
2、拉曼光谱用于分析的不足 (1)拉曼散射面积 (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响 (3)荧光现象对傅立叶变换拉曼光谱分析的干扰 (4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题 (5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析 的结果产生一定的影响。
干货全方位看懂拉曼光谱

⼲货全⽅位看懂拉曼光谱拉曼光谱(Raman spectra)以印度科学家C.V.拉曼(Raman)命名,是⼀种分⼦结构检测⼿段。
拉曼光谱是散射光谱,通过与⼊射光频率不同的散射光谱进⾏分析以得到分⼦振动、转动⽅⾯信息。
以横坐标表⽰拉曼频移,纵坐标表⽰拉曼光强,与红外光谱互补,可⽤来分析分⼦间键能的相关信息。
图1:印度科学家拉曼⼀、拉曼光谱原理拉曼效应:起源于分⼦振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分⼦振动能级(点阵振动能级)与转动能级结构的知识。
拉曼效应是光⼦与光学⽀声⼦相互作⽤的结果。
光照射到物质上发⽣弹性散射和⾮弹性散射. 弹性散射的散射光是与激发光波长相同的成分,⾮弹性散射的散射光有⽐激发光波长长的和短的成分, 统称为拉曼效应。
图2:拉曼散射⽰意图物质与光的相对作⽤分为三种:反射,散射和透射。
根据这三种情况,衍⽣出相对应的光谱检测⽅法:发射光谱(原⼦发射光谱(AES)、原⼦荧光光谱(AFS)、X射线荧光光谱法(XFS)、分⼦荧光光谱法(MFS)等),吸收光谱(紫外-可见光法(UV-Vis)、原⼦吸收光谱(AAS)、红外观光谱(IR)、核磁共振(NMR)等),联合散射光谱(拉曼散射光谱(Raman))。
拉曼光谱应运⽽⽣。
相对作⽤光谱类型实际应⽤反射发射光谱原⼦发射光谱(AES)、原⼦荧光光谱(AFS)、X射线荧光光谱法(XFS)、分⼦荧光光谱法(MFS)散射吸收光谱紫外-可见光法(UV-Vis)、原⼦吸收光谱(AAS)、红外观光谱(IR)、核磁共振(NMR)透射联合散射光谱拉曼散射光谱(Raman)表1:光谱种类区分表拉曼频移(Raman shift):拉曼光谱的横坐标称作拉曼频移。
拉曼散射分为斯托克斯散射和反斯托克斯散射,通常的拉曼实验检测到的是斯托克斯散射,拉曼散射光和瑞利光的频率之差值称拉曼频移(Raman shift):Δν=| ν 0 – ν s |, 即散射光频率与激发光频之差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼光谱定义
拉曼光谱(Raman Spectroscopy)是一种非破坏性的分子特征检测手段。
它通过对激发后的分子进行检测,来识别分子中的原子或分子组成部分。
它具有高灵敏度、高准确性和非破坏性,广泛应用于有机/无机化学、生物化学、物理化学等多个学科领域。
拉曼散射是一种被激发光分子而发生的光谱效应,它是物理学家里昂·拉曼在1928年发现的,以他的名字命名。
它的本质是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱就是拉曼散射效应的可视化图形表示,它可以显示出物体内不同原子或分子的激发状态,从而反映出物体的结构和性质。
拉曼光谱的基本原理是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱的基本原理是根据物质的不同结构,被激发的分子状态不同,由此产生出不同的散射光谱来反映它们的特性。
拉曼光谱是一种高灵敏度、高准确性的分子特征检测手段,它可以直接检测分子中的原子或分子组成部分,从而反映物体的结构和性质。
由于它的非破坏性、精确性和
高灵敏度,拉曼光谱已经广泛应用于有机/无机化学、生物化学、物理化学、食品分析、环境分析等诸多领域。
拉曼光谱定义,就是表示一种利用拉曼散射原理来检测物质结构特征的方法,即通过测量拉曼散射光谱,来鉴定和识别物体中不同原子或分子组成部分的特性。
它可以提供客观准确的数据,为研究者提供重要的参考信息,从而更好的了解物质的结构、性质和功能。