2交通流理论介绍解析
《交通流理论 》课件

数值模拟法
定义:通过计 算机程序模拟 交通流现象的
方法
优点:可以模拟 复杂的交通流现 象,包括车辆之 间的相互作用、
道路条件等
缺点:需要较 高的计算能力 和技术水平, 且可能存在误
差
应用:用于研 究交通流的基 本规律、优化 交通设计和控
制等方面
交通流分析与评价方法
交通流流量分析
交通流量定义:单位时间内通过道路某一断面的车辆数 交通流量分类:基本流量、设计流量、实际流量 交通流量调查方法:路边调查、断面调查、连续调查
交通信号优化:通过调整交通 信号的配时方案,减少车辆在 路口的等待时间和延误
智能交通系统应用:利用智能 交通系统技术,实时监测交通
状况,调整交通流分配
交通流控制策略
交通信号控制:通过调整交通信号灯的配时方案,优化交通流分配,减少 拥堵和事故发生率。
智能交通系统:利用先进的技术手段,实时监测交通流量、车速等参数, 为交通管理部门提供决策支持,实现交通流优化与控制。
交通流分析与评价方法在交 通安全与控制中的应用
交通流分析与评价方法介绍
交通流分析与评价方法在环境 保护与可持续发展中的应用
交通流数据的采集与处理
交通流分析与评价方法的发 展趋势与挑战
交通流优化与控制策略
交通流优化方法
道路设计优化:优化道路布局 和设计,提高道路通行能力和 安全性
交通管理优化:加强交通管理, 提高交通运行效率和管理水平
交通组织优化:通过合理规划道路网络、优化交通标志标线等措施,提高 道路通行效率,减少交通冲突。
公共交通优先:通过设置公交专用道、提高公交服务质量等措施,鼓励市 民选择公共交通出行,减少私家车使用,从而优化交通流。
交通流理论及其应用

交通流理论及其应用第一章交通流理论概述交通流理论研究的是交通系统中的车辆运动、交通管制、道路设施、交通信息和旅行者的行为等方面的问题。
交通流理论在道路规划、公路建设和交通管理等领域有着非常广泛的应用。
交通流理论的一个重要假设是,车辆在道路上的移动速度不仅受到道路设计的限制,还受到其他车辆的影响。
因此,在交通流理论中,车辆被看作是一个组成整体的流体,而不是独立的个体。
第二章交通流模型交通流模型是交通流理论的核心部分。
交通流模型通过建立数学方程,来描述交通系统中的车辆运动和相关因素。
常用的交通流模型有三种:宏观模型、微观模型和混合模型。
宏观模型是指从整体上研究交通流的模型,宏观模型的主要参数是车流量、速度和密度。
宏观模型常用的方法包括现场观测、测量和统计分析。
微观模型是指从个体车辆的行为入手研究交通流的模型,微观模型的主要参数是车辆的位置、速度和加速度。
微观模型常用的方法是仿真模拟和建立基于车辆运动方程的数学模型。
混合模型是宏观模型和微观模型的结合,既考虑了交通流的整体特征,又考虑了车辆个体行为的影响。
混合模型综合了宏观模型和微观模型的优点,是目前研究交通流的主要方法之一。
第三章交通流参数交通流参数是交通流模型中的重要参数,主要包括车流量、速度和密度。
车流量是单位时间内通过某一道路断面的车辆数量,常用的单位是辆/小时。
车流量是衡量交通流量大小的主要指标,它直接影响道路的通行能力和交通拥堵的程度。
速度是车辆在单位时间内通过某一道路断面的平均速度,常用的单位是公里/小时。
速度是衡量交通流运行状况的主要指标,它受到道路状况、车辆性能和交通运行管理等因素的影响。
密度是单位时间内通过某一道路断面的车辆数量和车辆行驶长度之比,常用的单位是辆/公里。
密度是衡量交通流集聚程度的主要指标,它与车速和车流量有着密切的关系。
第四章交通流控制交通流控制是交通流理论的一项重要应用,包括交通信号灯、路口红绿灯、限速标志和车道指示标志等。
第2章 交通流理论基础知识

3、交通量三参数之间关系的应用 、
实施效果: 实施效果: 收费区域交 通量减少了 22%; ; 交通事故降 低5~10%; ; 公交利用率 大幅提高, 大幅提高, 增减了16条 增减了 条 公交线路和 200多辆公交 多辆公交 车。
斯德哥尔摩拥挤收费区域示意图( 年以来) 斯德哥尔摩拥挤收费区域示意图(2007年以来) 收费区域示意图 年以来
南京市: 南京市:龙蟠南路路段
800 600 400 200 0 0 10 20 k (pcu /km /lane ) 30 q (pcu /h /lane ) lane
2min 2min 5min 5min 15min
Underwood Greenberg Underwood Greenberg Underwood
2、交通流三参数之间的关系 、 2、停车场布局原则
(5) 流量 速度之间的关系 流量-速度之间的关系 (1)
70
南京市: 南京市:龙蟠南路路段
60 v(km /h ) h 50 40 30 20 0 200 400 q (pcu /h /lane) 600 800 2min Underwood 2min Greenberg 5min Underwood 5min Greenberg 15min Underwood
服务水平分级:行车速度、行车安全性、舒适性、经济性。 服务水平分级:行车速度、行车安全性、舒适性、经济性。 各国划分不一。 各国划分不一。
美 国
通行能力计算
可能通行能力
N 可能 = 3600 / ti N 可能 = (3600 / ti ) ⋅ α 交叉口
ti——平均车头时距(根据 查表); 平均车头时距( 查表); 平均车头时距 根据v查表 α交叉口——平面交叉口修正系数 平面交叉口修正系数
交通流理论基础知识概要课件

单位时间内通过道路某一断面的车辆数量,单位为辆/小时。
交通流分类
依据车辆类型
可分为机动车流、非机动车流和 行人流等。
01
02
依据交通目的
03
可分为客运交通流、货运交通流 等。
04
依据交通方式
可分为道路交通流、铁路交通流 、水路交通流和航空交通流等。
依据交通组织形式
可分为自由流、信号控制流和潮 汐流等。
噪音污染
交通工具产生的噪音对城市环境造成严重影响,影响居民的生活质 量,甚至导致听力受损。
土地资源占用
交通设施的建设需要占用大量的土地资源,对土地生态环境造成破坏 。
环保型交通方式的发展
公共交通
公共交通工具是环保型交通方式之一,如公交车、地铁等,能够 减少私家车出行,降低交通排放。
非机动车出行
鼓励市民使用自行车、电动车等非机动车出行,减少机动车的使 用,降低排放。
、道路状况、客流量等因素。
公共交通优化需要采用先进的智能调度系统和数据分 析技术,实现实时监控、智能调度和数据分析,以提
高公共交通系统的运行效率和可靠性。
06
交通流与环境保护
Chapter
交通排放对环境的影响
空气污染
交通排放的废气中含有大量的有害物质,如一氧化碳、氮氧化物、 碳氢化合物等,这些物质对大气环境造成严er
仿真软件介绍
软件名称
PanoSim
功能特点
PanoSim是一款基于微观仿真的 交通流模拟软件,能够模拟城市 道路、高速公路等不同交通场景 下的交通流情况。
适用范围
广泛应用于城市规划、交通工程 、道路设计等领域,为交通管理 部门提供决策支持。
仿真流程
《交通流理论 》课件

研究车辆在行驶过程中的群体行为和相互作用,揭示交通流 的内在机制。
交通流模型的比较与选择
适用范围
根据研究目的和场景选择合适的交通流模型,宏观模型适用于整体交通状况分析和预测,微观模型适用于个体车辆行 为研究和模拟,介观模型适用于揭示交通流内在机制和规律。
精度与计算成本
不同模型的精度和计算成本各不相同,需根据研究需求进行权衡和选择。
交通安预防提供理论支持。
02
交通流模型
宏观交通流模型
80%
平均速度-流量模型
描述交通流中车辆的平均速度与 流量之间的关系。
100%
交通流密度-流量模型
研究交通流密度与流量之间的关 系,用于描述交通流的拥堵状况 。
80%
宏观交通流模拟模型
通过模拟整个交通网络的运行情 况,预测交通流的变化趋势。
数据需求
不同模型所需的数据类型和数据量也不同,需根据可获取的数据情况进行选择。
03
交通流特性分析
交通流的流量特性
流量定义
交通流量是指在单位时间内通过道路某一断面的 车辆数。
流量变化
交通流量在不同时间段和不同道路条件下会有所 变化,通常呈现早晚高峰现象。
流量影响因素
交通流量受到多种因素的影响,如道路状况、交 通规则、车辆类型、驾驶员行为等。
微观交通流模型
车辆跟驰模型
描述单个车辆在行驶过程中与 前车的跟随行为。
车辆换道模型
研究车辆在行驶过程中换道的 决策过程和换道行为对交通流 的影响。
微观交通流模拟模型
模拟单个车辆在道路上的行驶 行为,用于评估交通设施和交 通管理措施的效果。
介观交通流模型
流体动力学模型
将交通流视为流体,通过流体动力学理论描述交通流的运动 特性。
交通流理论

交通流理论1. 引言交通流理论是研究交通流动特性和交通流量的理论体系,是交通工程学科中的重要分支之一。
交通流理论的研究旨在提供对交通流动过程的深入了解,以便进一步优化交通系统设计和交通管理,提高道路通行效率和交通安全性。
本文将介绍交通流理论的基本概念、流量参数和交通流模型。
2. 交通流的基本概念2.1 交通流定义交通流是指在一定时间内通过交通线路或交通节点的车辆数量。
由于道路容量和车辆需求之间的差异,交通流不断变化。
为了研究交通流的特性,人们引入了一些概念和参数。
2.2 交通密度和车头时距交通密度指单位长度上通过的车辆数,常以辆/km表示。
车头时距是指相邻车辆之间的时间间隔,常以秒表示。
交通密度和车头时距是交通流理论中重要的参数。
3. 流量参数3.1 交通流量和实际容量交通流量是指通过某一断面的单位时间内的车辆数量。
实际容量是指在现实条件下通过断面所能容纳的交通流量。
实际容量受到道路几何条件、交通信号控制和车辆行为等因素的影响。
3.2 具备流量具备流量是指交叉口或道路中单位面积内通过的车辆数目。
具备流量与交通流量之间存在一定的关系,是进行交通流计算和交通规划的重要参数。
4. 交通流模型4.1 简单线性模型简单线性模型是最基本的交通流模型之一,假设速度和车头时距成正比。
该模型可以用来预测车辆平均速度、车头时距和交通流量之间的关系。
4.2 瓶颈模型瓶颈模型是一种描述交通拥塞现象的模型,可以用来研究交通流在瓶颈区域的行为。
通过分析瓶颈模型,可以找到减少交通拥堵的措施,提高交通流动效率。
4.3 非线性模型非线性模型是对交通流动过程更为细致的描述,考虑了交通流量对车速和车头时距的影响。
非线性模型可以更准确地预测交通流的行为,并为交通系统优化提供更实用的建议。
5. 结论交通流理论是研究交通流动特性和优化交通系统的重要理论体系。
通过研究交通流的基本概念、流量参数和交通流模型,可以更好地理解和优化交通系统设计,提高道路通行效率和交通安全性。
江苏省考研交通工程复习资料交通流理论重要模型分析

江苏省考研交通工程复习资料交通流理论重要模型分析交通工程是一个与人们生活息息相关的学科领域。
在交通规划、交通流量管理以及交通安全等方面,交通工程师需要掌握交通流理论以便进行准确的分析和预测。
本文将对江苏省考研交通工程复习资料中的交通流理论重要模型进行分析,并探讨其应用。
一、交通流理论概述交通流理论是研究交通流动规律的一门学科,通过建立各种数学模型,以解决交通拥堵、交通信号控制、交通规划等问题。
其中,常用的交通流理论模型有流量-密度关系模型、速度-流量关系模型和速度-密度关系模型。
1.1 流量-密度关系模型流量-密度关系模型描述了道路上的车辆流量与车辆密度之间的关系。
常见的数学模型有线性模型、三角形模型和其他非线性模型。
通过实际数据的反复测量和分析,可以建立适合实际情况的交通流量-密度关系模型,并根据模型得出的结果进行交通规划和信号控制。
1.2 速度-流量关系模型速度-流量关系模型研究了车辆流量对道路上的车辆速度的影响。
在道路通行能力预测和交通控制中,速度-流量关系模型起到了重要作用。
常见的模型有Greenshields模型、Greenberg模型和Daganzo-Newell模型等。
这些模型可以帮助交通工程师对道路拥堵情况进行评估,并提出相应的交通管理措施。
1.3 速度-密度关系模型速度-密度关系模型研究了道路上的车辆密度对车辆速度的影响。
一般情况下,车辆密度越大,车辆速度越低。
常用的模型有Greenberg模型、Daganzo-Newell模型和Underwood模型等。
通过建立速度-密度关系模型,交通工程师可以预测并规划道路的通行能力,以减少交通拥堵。
二、交通流理论重要模型分析在江苏省考研交通工程复习资料中,有几个重要的交通流理论模型值得特别关注。
2.1 Greenshields模型Greenshields模型是速度-流量关系模型中的经典模型之一。
它假设车辆在道路上的速度与车流量呈负线性关系。
交通流理论第二章

第二章 交通流特性第一节 交通调查交通调查:在道路系统的选定点或选定路段,为了收集有关车辆(或行人)运行情况的数据而进行的调查分析工作。
意义:交通调查对搞好交通规划、道路设施建设和交通管理等都是十分重要的。
调查方法:(1)定点调查;(2)小距离调查(距离小于10m );(3)沿路段长度调查(路段长度至少为500m ); (4)浮动观测车调查; (5)ITS 区域调查。
图2—1中,纵坐标表示车辆在行驶方向上距离始发点(任意选定)的长度,横坐标表示时间。
图中的斜线代表车辆的运行轨迹,斜率为车速,直线相交表示超车。
穿过车辆运行轨迹的水平直线代表定点调查; 两条非常接近的水平平行直线表示小距离调查;一条竖直直线表示沿路段长度调查(瞬时状态,例如空拍图片); 车辆的轨迹之一就可代表浮动车调查;ITS 区域调查类似于在不同时间、不同地点进行大量的浮动车调查。
图2—1 几种调查方法的时间—距离图示时间(s )距离(m )高速公路车道一、定点调查定点调查包括人工调查和机械调查两种。
人工调查方法即选定一观测点,用秒表记录经过该点的车辆数。
机械调查方法常用的有自动计数器调查、雷达调查、摄像机调查等。
自动计数器调查法使用的仪器有电感式、环形线圈式、超声波式等检测仪器,它几乎适用于各种交通条件,特别是需要长期连续性调查的路段。
雷达调查法适用于车速高、交通量密度不大的情况。
摄像机调查法一般将摄像机安装在观测点附近的高空处,将镜头对准观测点,每隔一定的时间,如15s、30s、45s或60s,自动拍照一次,根据自动拍摄的照片上车辆位置的变化,清点出不同流向的交通量。
这种方法可以获得较完全的交通资料,如流量、流向、自行车流及行人流和行驶速度、车头时距及延误等。
除这些方法以外,还有航空摄影调查法、光电管调查法等。
定点调查能直接得到流量、速度和车头时距的有关数据,但是无法测得密度。
二、小距离调查这种调查使用成对的检测器(相隔5m或6m)来获得流量、速度和车头时距等数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1950年赫尔曼(Herman)博士运用动力学方法 建立跟车模型,进而提出了跟驰理论
1955年,莱脱希尔(Lighthill)和惠特汉 (Whitham)提出了流体动力学模拟理论 汽车时代,交通波理论和车辆排队理论等相继问 世 1975年,丹尼尔(Daniel L.G.)和马休 (Matthow J.H.)合作出版了《交通流理论》一 书,1998年出版了修订版。该书全面系统地阐述 了交通流理论的研究内容和成果,成为交通流理 论的经典论著。
d1 un1 t T un1 t T T x n1 t T T
.
假设两车的制动距离相等,即 则有
d 2 d3
s t xn t xn1 t d1 L
两边对t求导,得到 也即
..
x n t x n1 t x n1 t T T
第二节 线性跟驰模型
一、线性跟驰模型的建立
跟驰模型实际上是关于反应—刺激的关系式,用 方程表示为:
反应= 灵敏度×刺激
驾驶员接受的刺激是指其前面引导车的加速或减 速行为以及随之产生的两车之间的速度差或车间 距离的变化; 驾驶员对刺激的反应是指根据前车所做的加速或 减速运动而对后车进行的相应操纵及其效果。
判断阶段:对本车将要采取的措施做出判断; 执行阶段:由大脑到手脚的操作动作。 这4个阶段所需要的时间称为反应时间。假设反应时间为T, 前车在t时刻的动作,后车要经过(t+T)时刻才能做出相 应的动作,这就是延迟性。
3、传递性
由制约性可知,第一辆车的运行状态制约着第二辆车的运 行状态,第二辆车又制约着第三辆车,…,第n辆车制约 着第n+1辆。一旦第一辆车改变运行状态,它的效应将会 一辆接一辆的向后传递,直至车队的最后一辆,这就是传 递性。 这种运行状态改变的传递又具有延迟性。这种具有延迟性 的向后传递的信息不实平滑连续的,而是像脉冲一样间断 连续的。
基本公式: s t xn t xn1 t d1 d2 L d3
d1 un1 t T un1 t T T x n1 t T T
.
基本公式: s t xn t xn1 t d1 d2 L d3
2、延迟性
从跟驰车队的制约性可知,前车改变运行状态后,后车也 要改变。但前后车辆运行状态的改变不是同步,而是后车 运行状态滞后于前车。
驾驶员对于前车运行状态的改变要有一个反应的过程,这 个过程包括4个阶段,即:
感觉阶段:前车运行状态的改变被察觉;
认识阶段:对这一变化加以认识;
跟驰理论及交通影响模型
交通流模型 交通三参数 跟驰模型 换道模型 交通安全模型 交通影响模型
第一节 交通流理论研究回顾
交通流理论是运用数学、物理学和力学原理描述 交通流特性的一门边缘科学,目的是为了阐述交 通现象形成的机理,使城市道路与公路的规划设 计和营运管理发挥最大的功效
Biblioteka 《Traffic flow theory》认为跟驰行为发生在两车车头间距 为0~100m或0~125m的范围内;
Weidman的研究则认为车头间距小于等于150m时,车辆 处于跟驰状态。
二、车辆跟驰特性
跟驰状态下车辆的行驶具有以下特性:
制约性
延迟性
传递性
同时也是车辆跟驰模型建立的理论基础
n 1, 2,3,...
1、制约性
紧随要求:在后车跟随前车运行的车队中,出于对旅行时 间的考虑,后车驾驶员总不愿意落后很多,而是紧随前车 前进。
车速条件:后车的车速不能长时间大于前车的车速,而只 有在前车速度附近摆动,否则会发生追尾碰撞
间距条件:车与车之间必须保持一个安全距离,即前车制 动时,两车之间有足够的距离,从而有足够的时间供后车 驾驶员做出反应,采取制动措施。 即前车的车速制约着后车的车速和车头间距。
第二节 跟驰理论概述
1950年赫尔曼(Herman)博士运用动力学方法 建立跟车模型,进而提出了跟驰理论。随后, Reuschel 和Pipes 研究了跟驰理论的解析方法。
车辆跟驰模型是运用动力学方法,探究在无法超 车的单一车道列队行驶时,车辆跟驰状态的理论。 车辆跟驰模型从交通流的基本元素—人车单元的 运动和相互作用的层次上分析车道交通流的特性。 通过求解跟驰方程,不仅可以得到任意时刻车队 中各车辆的速度、加速度和位置等参数,还可以 通过进一步推导,得到平均速度、密度、流率等 参数,描述交通流的宏观特性。 车辆跟驰模型是交通系统仿真中最重要的动态模 型,用来描述交通行为即人—车单元行为。 车辆跟驰模型的研究对于了解和认识交通流的特 性,进而把这些了解和认识应用于交通规划、交 通管理与控制,充分发挥交通设施的功效,解决 交通问题有着极其重要的意义。
20世纪70年代中期起,交通流理论逐渐由纯理论 转向应用研究
1994年在日本横滨召开的国际学术会议正式确立 了将美国提出的智能交通系统ITS作为现代交通运 输系统的发展方向和主流进行开发和研究。交通 流理论的发展开始朝着不同学科的融合及传统理 论创新等方向发展 伴随着计算机技术的飞速发展以及模糊论、突变 论、混沌论、分形论、协同论等现代数学分支理 论的诞生、发展和完善,交通流理论研究领域得 到进一步拓展。
一、跟驰状态的判定
跟驰状态临界值的判定是车辆跟驰研究中的一个关键,现 有的研究中,对跟驰状态的判定存在多种观点。 国外的研究中,美国1994年版的《道路通行能力手册》规 定当车头时距小于等于5s时,车辆处于跟驰状态; Paker在研究货车对通行能力的影响时,采用了6s作为判 定车辆跟驰状态的标准;