泵与泵站设计计算书

合集下载

水泵设计计算

水泵设计计算

平顶山工学院市政工程系0214081-2班《水泵及水泵站》课程设计任务书一、课程设计的目的1、通过课程设计,使学生所获得的专业理论知识加以系统化,整体化,以便于巩固和扩大所学的专业知识;2、培养学生独立分析,解决实际问题的能力;3、提高设计计算技巧和编写说明书及绘图能力;4、为适应工作需要打一下的基础。

考虑美观以及便于施工等要求,根据可能和合理方案进行技术经济比较选定工程枢纽的布局,建筑物的结构型式,材料和施工方法等。

二、设计题目:海口城市净水厂送水泵站三、设计原始资料1、任务书某城市所需用水量 22.8×104 m3/d,用水最不利点地面标高66.60 m、服务水头24m,泵站处的地面标高 65.3 m、水池最高水位64.60m、水池最低水位标61.60m,经计算管网水头损失 19.93m。

试进行泵站工艺设计。

2、地区气象资料:最低气温:-5~15℃,最高气温:35~41℃,最大冰冻深度15㎝。

3、泵站地址1∕100~1∕500地形图(暂缺)4、站址处要求抗震设计烈度为7°。

5、电源资料:采用双回路供电,电压等级为:220V、380 V、10KV。

四、课程设计内容城镇给水厂送水泵站扩初设计。

五、设计成果:1. 说明书:概述:包括设计依据、机组选择、台数、泵站形式和建筑面积、启动方式等。

2.计算书:按教材中所要求步骤计算,写明计算过程并附必要草图。

图纸:泵站平、剖面图各一张(比例1∕50~1∕200)。

六、设计依据1、《水泵与水泵站》教材2、《给排水设计手册》第一、十、十一册3、《快速给排水设计手册》第四、第五册七、设计时间安排给水排水工程泵站课程设计时间18周一周(2010年12月27日—31日),要求学生集中时间完成全部内容,时间安排如下:1、基础资料收集 0.5d2、泵站规模计算及运行方式确定 1d3、水泵选型及泵房布置 0.5d4、泵房平面图、剖面图绘制 2d5、整理设计计算书和说明书 1d八、设计纪律要求1、设计中要自主完成,杜绝抄袭现象。

泵站计算书

泵站计算书

污水泵站计算书1、设计流量根据计算得污水总量为125m3/h,晴天污水量Q=28.3m3/h,雨天流量Q=96.7m3/h泵站共设二台潜污泵,两用一备(冷备),单泵流量为65m3/h=18.1 L/s。

2、集水池容积本工程水泵运行控制采用自动控制,根据室外排水规范,集水池有效容积取不小于最大1台水泵5min的出水量,暂取1台水泵6min的出水量:V=18.1 L/s×6×60s÷1000=6.516m3自动控制的水泵每小时开动次数不得超过6次,即单泵一次最小工作时间为10min,根据集水池来水和每台水泵抽水之间的规律推算有效容积的基本公式:Vmin= TminQ/4,得出Vmin=10×60×18.1/4÷1000=2.715m3(仅为单台水泵)。

由上可得,整个集水池的最小有效容积应为6.516m3。

设计集水池尺寸定为:有效水深1.0m,宽度4.5m,长度采用3.2m。

(3.8m×4.5m×1.0m=14.4m2≥6.516m2)3、计算泵房相关深度标高格栅前水面标高/m=来水管管内底标高+管内水深=2.110+0.3*0.55=2.275格栅后水面标高/m=集水池最高水位标高-格栅压力损失=2.275-0.3=1.975 污水流经格栅的压力损失按0.3mH2O估算,集水池有效水深取1.0m,则集水池最低水位标高/m=1.975-1.0=0.975水泵静扬程/m=出水井水面标高-集水池最低水位标高=5.730-0.975=4.755水泵吸压水管路(含至出水井管路)的总压力损失估算为3.524 mH2O因此,水泵扬程H/m=4.755+3.524+2=10.279m所以预选WQ2210-416型水泵。

泵站计算书(样例)Word版

泵站计算书(样例)Word版

计算书工程(项目)编号 12622S002 勘察设计阶段施工图工程名称中新生态城(滨海旅游区范围)7号雨水泵站单体名称专业给排水计算内容泵房尺寸、标高、设备选型等(共 14页)封面1页,计算部分13页计算日期校核日期审核日期7号雨水泵站计算书符号:1、设计水量p Q —雨水泵站设计流量,y p Q Q %120=; y Q —排水系统设计雨水流量。

2、扬程计算d Z —进泵站处管道(箱涵)内底标高;H Z —泵房栅后最高水位(全流量),过栅损失总管-+=D Z Z d H ;L Z —泵房栅后最低水位(一台水泵流量),过栅损失总管-+=3/D Z Z d L ;有效h —泵站有效水深,LH Z Z h -=有效;M Z —排涝泵房栅后平均水位,过栅损失总管-+=D Z Z d M 21;吸水h —从水泵吸水管~出水拍门的水头损失,拍门立管转弯吸水h gL g h ++=2v 2v 22ξ出水h —出水管路水头损失;总水头损失=出水吸水h h +M H —设计扬程,出水吸水(常水位)h h Z Z H M cM ++-=;max H —设计最高扬程,max H =最高水位-L Z +总水头损失;min H —设计最低扬程,min H =最低水位-H Z +总水头损失;3、格栅井计算1Z —格栅平台标高,一般按低于泵站进水管内底标高0.5m 考虑,即5.01-=d Z Z ;2Z —泵房顶板顶标高,一般按高于室外地坪0.2m 考虑,即2.02+=室外Z Z ;1)格栅井长度计算格栅井L —格栅井长度,∑==41i i L L 格栅井L 1—格栅底部前端距井壁距离,取1.50m ; L 2—格栅厚度,取0.6m ;L 3—格栅水平投影长度,安装角度按75°考虑 75)(123ctg Z Z L -=; L 4—格栅后段长度,取1.50m ; 2)格栅井宽度计算格栅v —过栅流速; 格栅h —格栅有效工作高度,总管总管格栅栅前最低水位栅前最高水位D Z D Z h d d =-+=-= 格栅b —栅条净间距;格栅S —栅条宽度; n —栅条间隙数,格栅格栅格栅v h b Q n p αsin =格栅B —格栅总宽度,n 1-n 格栅格栅格栅)(b S B +=一.工程概况本工程为滨海旅游区规划7号雨水泵站,服务系统为规划7号雨水系统。

泵站设计计算书

泵站设计计算书

泵站设计计算书1、流量与扬程确定给水系统中自身用水系数β=1.01=1.5×10000×1.01×1.41÷24=890m3/h 近期最高日最高时流量Q1=1.01×10000×1.5÷24=631.3 m3/h 近期最高日平均时流量Q2远期设计最高日最高时流量Q=2.5×10000×1.01×1.41÷24=1483 m3/h3=2.5×10000×1.01÷24=1052.1 m3/h 远期最高日平均是流量Q4预留安全水头h1=2m泵站内各部分水头损失h2=2m设计总扬程为H=h+ h1+ h2=42m2、机组选型=0.7*890=623 当一个泵检修时,另一个泵应通过70%的近期设计流量,即Q‘1=0.7*1483=1038 m3/h,以保证供水能力。

m3/h,Q'2水泵性能数据使用方案:近期采用2用一备,远期采用3用一备的方案查厂家提供的水泵样本可知底板为方形,长宽均为600mm,底座螺孔间距均为550mm,底座螺孔的直径φ22。

由于采用的是立式泵,基础仅需考虑泵底板尺寸即可。

根据规范要求:基础长度L=底座长度L 1+(0.15~0.20)m=600+200=800mm 基础宽度B=底座螺孔间距b 1+(0.15~0.20)m=550+200=750mm于是计算出基础平面尺寸为800mm*750mm , 机组总重量W=1550*9.8=15190N, 基础深度为H=**0.3B L W=3m式中 L ——基础长度,L=0.800m ; B ——基础宽度,B=0.750m ;γ——基础所用材料的容重,对于混凝土基础,γ=23520N/m 33,吸水管和压水管路的确定吸水管采用钢铁管 v=1.36m/s 1000i=6.39 DN=400mm 压水管采用钢铁管 v=2. 4m/s 1000i=29.1 DN=300mm 4,吸水管和压水管的水头损失 吸水管中水头损失∑h=∑h s +∑h l∑h l =1.5*6.39÷1000=0.0096m∑h s =(ζ1+ζ2+ζ3)*v 2/2g+ζ4*v 21/2g=(0.1+0.9+0.2)*1.362/2*9.8+0. 18*2.42/2*9.8=0.166mζ1:吸水口局部阻力系数ζ2:标准钢铁400mm900弯头局部阻力系数 ζ3:蝶阀局部阻力系数ζ4:DN400*300偏心渐缩管的局部阻力系数 ∑h=0.0096+0.166=0.1756m 压水管路德局部损失∑h=∑h s +∑h l∑h l =2.5*29.1÷1000=0.07m∑h s =(ζ5+ζ6+ζ7)*v 2/2g=(3.5+0.2+0.2)*2.4/2*9.8=0.478m ζ5:止回阀局部阻力系数 ζ6:蝶阀局部阻力系数ζ7:蝶阀局部阻力系数∑h=0.07 +0.478=0.548m因为泵内总损失H=0. 548+0.1756=0.7236m所以所选的泵是适合的。

泵与泵站课程设计书

泵与泵站课程设计书

目录第一部分原始资料 (2)第二部分选泵计算及布置 (2)1.设计流量的确定和设计扬程估算 (2)2.初选泵和电机 (3)3.机组基础尺寸的确定 (3)4.吸水管路与压水管路计算 (4)5.基础与管道布置 (4)6.吸水管路与压水管路水头损失计算 (5)7.泵安装高度的确定和泵房高度计算 (6)8.附属设备的选择 (7)9.泵房建筑高度的确定 (8)10.泵房平面尺寸的确定 (8)第三部分课设小结 (8)------序------取水泵站在水厂中也称一级泵站。

在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。

取水泵站由于它靠江临水的特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。

其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。

本次课程设计仅以取水泵房为例进行设计,设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。

取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。

设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。

在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。

在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。

此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,所以用远期的容量及扬程计算。

泵与泵站课程设计计算书第一部分 原始资料某新建水源工程近期设计水量1600003m /d ,要求远期发展到2800003m /d ,采用固定式取水泵房(一级泵站),两条直径为1200mm 的钢制自流管从江心取水。

泵站设计计算书

泵站设计计算书

泵站设计计算书第一章:泵站兴建缘由及概况1.兴建缘由:博斯腾湖位于我国新疆巴音郭楞蒙自治州境内。

其上游为开都河、下游为孔雀河。

故博斯腾湖既是开都河水系和焉耆盆地地面径流的归宿地,又是孔雀河的发源地。

多年以来孔雀河水道狭窄,芦苇丛生,博斯腾湖水出流不畅,沿岸湖宽水浅,湖面蒸发损失很大(年蒸发量约为10亿m3),因而造成孔雀河灌区农业用水不足,整个焉耆盆地地下水位升高,土壤盐渍化严重。

因此巴音郭楞蒙古自治州粮食产量一直较低。

每年均由国家调进粮食。

由于孔雀河枯水季节流量小,故不能满足下游两个水电站发电的需水量。

其中铁门关水电站5×8500kw 机,只能运行一台,石灰窑水电站2×3000+2×3200kw机也不能满足机组的发电量。

同时由于湖面蒸发损失的增加,近20年以来,博湖的水质也发生了很大的变化,湖水的矿化度1958年为0.383~0.390g/L,而1981年6~8月的平均矿化度为1.8g/L。

22年中平均每年增高0.064g/L博湖已由淡水湖变为微咸湖,水质变坏的趋势,近几年更为严重。

为此,决定在博湖的西南面,孔雀河口以东约两公里处建设泵站,目的在于:1.根据焉耆盆地治碱、排水,降低地下水位的要求,保证湖水位低于1046m高程;2.调节孔雀河流量,满足库尔勒和塔里木两灌区灌溉用水的需要;3.保证铁门关水电站和石灰窑电站枯水期的发电流量,满足负荷要求,冬季不要限电;4.促进湖水循环,防止湖水继续咸化,同时限制地下水位升高,减轻土壤盐渍化程度。

博湖泵站建成后,可兼收排水、灌溉、发电、保护水质四方面的效益,一举而数得。

2.基本资料的分析整理。

一)、地形资料博斯腾湖附近水系地形图(1/500)。

二)、地质资料泵站站址处:地表下0-2m,厚2m,亚砂土(干容重γ干=1.5t/m3);地表下2-12m厚10m细砂土(干容重γ干=1.55 t/m3);贯入10cm数达60次;地表下12-112m厚100m,亚砂土(干容重γ干=1.8t/m3),贯入3cm,击数为70次;地下水位1047.08-1047.78m,低于湖水位,由湖水补给。

泵站设计计算书

泵站设计计算书

泵站设计计算书一、流量确定考虑到输水管漏渗和净化站本身用水,取自用水系数α=1.5,则近期设计流量:Q=1.05×100000÷3600÷24=1.215 m³/s远期设计流量:Q=1.05×1.5×100000÷3600÷24=1.823 m³/s二、设计扬程(1)水泵扬程:H=HST+Σh式中HST 为水泵静扬程.Σh 包括压水管水头损失、吸水管路水头损失和泵站内部水头损失采用灵菱型式取水头部。

在最不利情况下的水头损失,即一条虹吸自流管检修时要求另一条自流管通过75%最大设计流量,取水头部到吸水间的全部水头损失为1米,则吸水间最高水面标高为4.36-1=39.36 米,最低水位标高为32.26-1=31.26 米。

正常情况时,Q=1.215/2=0.608 m³/s,一般不会淤泥,所以设计最小静扬程:HST=42.50-39.36=3.14 m设计最大静扬程:HST=42.50-31.26=11.24 m(2)输水管中的水头损失Σh设采用两条φ900 铸铁管,由徽城给水工程总平面图可知,泵站到净水输水管干线全长1000m,当一条输水管检修时,另一条输水管应通过75%设计流量,即:Q=0.75×1.823=1.367 m³/s,查水力计算表得管内流速v=2.16 m/s, 1000i=5.7m ,所以Σh=1.1×5.7×1000/1000=6.27m (式中1.1 系包括局部水头损失而加大的系数)。

(3)泵站内管路中的水头损失hp其值粗估为2 m(4)安全工作水头hp其值粗估为2 m综上可知,则水泵的扬程为:设计高水位时:Hmax=11.24+1+6.27+2+2=21.51 m设计低水位时:Hmin=3.14+1+6.27+2+2=13.41 m三、机组选型及方案比较:水泵选型有以下二种方案:方案一方案二水泵型号20sh-19 20sh-19A流量范围450─650L/s 36─560L/s扬程范围15─27m 14─23m轴功率148─137KW 108KW允许吸上真空高度4m 4m泵重量1950Kg 2000Kg电动机重量1530Kg 1380Kg功率190KW 135KW配带电动机型号JR-126─6 JS-126─6方案一: 一台20sh-19 型水泵(Q=450~650 l/s,H=15~27m, N=148~137KW),近期4 台,3 台工作,一台备用,远期增加一台,4 台工作,一台备用。

泵与泵站设计计算书要点

泵与泵站设计计算书要点

目录1 吸水井 (2)1.1 吸水井设计水位 (2)1.2 吸水井标高 (2)1.3 吸水井布置 (3)1.4 吸水井长度 (3)2 水泵选择 (3)2.1 供水流量计算 (4)2.2 供水曲线及分级供水 (4)2.3 水泵扬程计算 (5)2.4 水泵选择 (6)2.5 吸水管和出水管管径 (7)2.6 水泵基础计算 (8)3 二级泵房平面布置 (9)3.1 水泵基础布置 (9)3.2 水泵基础布置 (9)4 二级泵房高程布置 (10)4.1 水泵安装高度 (10)4.2 水泵及管线相关标高 (11)4.3 起重设备及泵房高度 (11)5 真空泵设计计算 (13)5.1 抽气量 (13)5.2 最大真空值H (13)rmax6 排水泵设计计算 (14)7 消防校核 (14)泵房设计计算说明书1 吸水井二级泵房前设吸水井,以调节水量,使水位稳定。

1.1 吸水井设计水位吸水井设计最高水位为清水池最高水位,即42.3m ,设计最低水位按照最不利情况考虑,即设计最低水位为清水池池底标高减去清水池至二级泵房吸水井的水头损失。

清水池设一根出水管,出水管管径取为DN900,管内流速为1.10m/s 。

查水力计算表可得,输水管水力坡降为i=0.15%。

取清水池到二级泵房吸水井之间管道总长为50m ,则输水管没程水头损失为i h i l 0.15%500.075m=⨯=⨯=局部水头损失计算如下:表1-1 吸水井前管道局部水头损失计算表配件名称 数量 规格 局部阻力系数90度弯头 1 DN900 1.1 蝶阀 2 DN900 0.4 进出口2 DN900 2 ∑ξ3.5由上表计算可得,局部水头损失为:22f v 1.10h 3.50.216m 2g 29.81=ξ=⨯=⨯则总水头损失为:i f h h h 0.0750.2160.291m =+=+=清水池最低水位为40.2m ,则吸水井最低水位为39.91m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录目录 (1)第一章概述 (2)1.1设计对象的概况 (2)1.2设计任务 (2)第二章水泵机组的选择 (3)2.1设计流量的确定和设计杨程的估算 (3)2.1.1设计流量Q (3)2.1.2设计扬程H (3)2.2水泵选型 (4)2.2.1选择原则 (4)2.2.2选泵计算 (4)第三章总体设计与计算 (4)3.1机组基础尺寸的确定 (5)3.2 吸水管路与压水管路设计计算 (5)3.3 机组与管道布置 (5)3.4 吸水管路与压水管路中的水头损失 (6)3.5泵安装高度的确定和泵房高度计算 (8)第四章附属设备的选择 (8)4.1起重设备 (8)4.2引水设备 (8)4.3排水设备 (9)4.4通风设备 (9)4.5计量设备 (9)第五章泵房尺寸的确定 (9)5.1泵房建筑高度的确定 (9)5.2泵房平面尺寸的确定 (9)小结 (9)参考文献 (10)第一章概述1.1设计对象的概况某新建水源工程近期设计水量120000m3/d,要求远期发展到270000m3/d,采用固定式取水泵房(一级泵站),用两条直径为1200mm的钢制自流管从江中取水。

自流管全长160m。

水源洪水位标高为30.50m(1%频率),枯水位标高为18.60m(97%频率),常水位标高为25.10m。

净化厂反应池前配水井的水面标高为47.30m,泵站切换井至净化厂反应池前配水井的输水干管全长为1800m,吸水间动水位标高以17.5m计,现状地面标高按24.5m考虑。

1.2设计任务1.绘制图纸(1)水泵站平面布置图平面布置图上应绘出泵房的平面,表示其外形尺寸和相互距离。

平面图上绘出各种连接管渠,管道上需注明管径。

图中应附设备一览表,说明各设备的名称、数量及主要外形尺寸。

图中应附图例及必要的文字说明。

图中应附比例。

(2)水泵站剖面图剖面图上应绘出各水泵之间的连接管渠。

图上应标出各水泵的顶、底及水面标高,应标出主要管渠、设备机组和地面标高。

图上应附设备名称(比如,水泵的型号)。

图上应附图例、比例。

(3)图例、说明等课程设计图纸应能较好地表达设计意图,图面应布局合理、正确、清晰,图纸应清洁美观,主次分明,线条粗细有别。

图幅宜采用2号图。

剖面图横向和纵向比例一般不相等。

图纸要有边框,应画出标题栏,标注图名,图中文字、图例的表示应规范,图形位置安排适当,字体大小合理,具体要求详见制图标准。

2.写出计算书和说明书一份完整的计算书和说明书主要内容包括:1、原始资料2、机组的选择3、机组基础尺寸的确定4、机组和管路的确定5、机组轴线标高的确定6、辅助设备的选择及其布置7、泵房尺寸的确定:包括长、宽、高尺寸8、精选水泵,水泵扬程的校核第二章 水泵机组的选择2.1设计流量的确定和设计杨程的估算2.1.1设计流量Q考虑到输水干管漏损和净化厂本身用水,取自用水系数α=1.05,则近期设计流量为2412000005.1⨯=Q = h m /52503 =s m /46.13 远期设计流量为h m Q /5.118122427000005.13=⨯=s m /28.33= 2.1.2设计扬程H1)泵所需净扬程 ST H通过取水部分的计算已知在最不利情况下(即一条自流管检修,另一条自流管通过75%的设计流量时),从取水头部到泵房吸水间全部水头损失为1.1m ,则吸水间中最高水面标高为30.50-1.10=29.40m ,最低水面标高为18.60-1.1=17.50m 。

所以泵所需净扬程ST H 为:洪水位时,m H ST 90.1740.2930.47=-=枯水位时,m H ST 80.2950.1730.47=-=2)输水干管中的水头损失 ∑h设采用两条1200DN 钢管并联作为原水输水干管。

当一条输水管检修时,另一条输水管应通过75%的设计流量(按远期考虑),即:m h m m Q 333461.238.88595.1181275.0==⨯=查水力计算表得管内流速s m v /18.2=,0040.0=i ,所以m h 92.718000040.01.1=⨯⨯=∑(式中1.1系包括局部损失而加大的系数)。

3)泵站内管路中的水头损失 p h粗估为2m ,则泵设计扬程为:枯水位时,m H 72.412292.780.29max =+++=洪水位时,m H 82.292292.790.17min =+++=2.2水泵选型2.2.1选择原则1.首先要满足最高供水工况的流量和扬程要求,并使所选水泵特性曲线的高效率范围尽量平缓,对特殊工况,必要时另设专用水泵来满足其要求;2.尽可能选用同型号水泵;或扬程相近、流量大小搭配的泵;3.应考虑近远期结合,一般考虑远期增加水泵台数或换装大泵;4.一般尽量减少水泵台数,选用效率较高的大泵,但亦要考虑运行调度方便,适当配置小泵,通常取水泵房至少需设2台,送水泵房至少2—3台(不包括备用泵);5.泵应在高效率段运用(特别对经常运行工况);6.尽可能选用允许吸上真空度值大或必需气蚀余量值小的泵,以提高水泵安装高度,减少泵房埋深,降低造价;7.水泵选择必需考虑节约能源,除了选用高效率泵外,还可考虑运行工况的调节;8.高浊度水源的取水泵房应选用低转速,耐磨的水泵,有条件可在水泵内壳留道,叶轮表面涂耐磨涂料。

2.2.2选泵计算近期三台24SA —10型泵(m H kW N m H m Q s 3,727,51,38003====),两台工作,一台备用。

远期增加一台同型号泵,三台工作,一台备用。

根据24SA-10型泵的要求选用JSQ1510—6型异步电动机(850kW ,6kV )。

第三章 总体设计与计算3.1机组基础尺寸的确定查泵与电机样本,计算出24SA-10泵机组基础平面尺寸为3200mm ⨯1300mm ,机组总重量=+=m W W W p N 847708.941008.94550=⨯+⨯基础深度H 可按下式计算:γ⨯⨯=B L WH 0.3式中 L ——基础长度,L =3.2m ;B ——基础宽度,B =1.3m ;γ——基础所用材料的容重,对于混凝土基础,3/23520m N =γ故 m H 60.2235203.12.3847700.3=⨯⨯⨯= 基础实际深度连同泵房底板在内,应为3.78m 。

3.2 吸水管路与压水管路设计计算每台泵有单独的吸水管与压水管(1) 吸水管已知 s m h m Q /094.1/5.393735.11812331=== 采用1000DN 钢管,则31006.2/40.1-⨯==i s m v ,(2) 压水管采用800DN 钢管,则3108.6/18.2-⨯==i s m v ,3.3 机组与管道布置为了布置紧凑,充分利用建筑面积,将四台机组交错并列布置成两排,两台为正常转向,两台为反常转向,在订货时应予以说明。

每台泵有单独的吸水管、压水管引出泵房后两两连接起来。

泵出水管上设有液控蝶阀((c )HDZs41X-10)和手动蝶阀(D 2241X-10),吸水管上设手动闸板闸阀(Z545T-6)。

为了减少泵房建筑面积,闸阀切换井设在泵房外面,两条DN 1200的输水干管用DN 1200蝶阀(GD371Xp-1)连接起来,每条输水管上各设切换用的蝶阀(GD371Xp-1)一个。

由于管径较大,相应的连接配件(如三通管、大小头等)没有全国通用的标准系列产品,本设计中采用了一些自制的配件,在其他设计中,以选用全国通用标准产品为宜。

3.4 吸水管路与压水管路中的水头损失取一条最不利线路,从吸水口到输水干管上切换闸阀为止计算线路图3.4.1吸水管路水头损失∑s h∑∑∑+=ls fs s h h hm i l h s fs 0026.0255.11006.231=⨯⨯=⋅=-∑()∑++=g v g v h ls 222132221ξξξ 式中 s m D Q v 4.10.1094.1442231=⨯==ππ s m D Q v 87.36.0094.1442232=⨯==ππ 1ξ——吸水管进口处局部阻力系数,75.01=ξ;2ξ——DN1200闸阀局部阻力系数,按开启度81=d a 考虑,15.02=ξ; 3ξ——偏心渐缩管DN 1000⨯600,21.03=ξ。

则 ()m gg h ls 25.0287.321.024.115.075.022=⨯++=∑ 故 m h h h ls fs s 25.025.00026.0=+=+=∑∑∑吸压水管路水头损失计算线路图3.4.2压水管路水头损失∑d h∑∑∑+=ld fd d h h h()2765432d dl fd i l i l l l l l h ⋅+++++=∑()15.010000.4855.110008.6351.1039.5112.8153.1172.5=⨯+⨯++++=m ()()gv g v g v h ld 22222225131211241098765234ξξξξξξξξξξ+++++++++=∑ 式中 s m D Q v 87.36.0094.1442233=⨯==ππ s m D Q v 18.28.0094.1442244=⨯==ππ s m D Q v 2.181.22.46144225=⨯==ππ输水干管输水干管ξ4——DN600⨯800渐放管,ξ4=0.21ξ5——DN800钢制 45弯头,ξ5=0.53;ξ6——DN800液控蝶阀,ξ6=0.15;ξ7——DN800伸缩接头,ξ7=0.21;ξ8——DN800手动蝶阀,ξ8=0.15;ξ9——DN800钢制 90弯头,ξ9=1.05;ξ10——DN800⨯1400渐放管,ξ10=0.33;ξ11——DN1200钢制斜三通,ξ11=0.5;ξ12——DN1200钢制正三通,ξ12=.1.5;ξ13——DN1200蝶阀,ξ13=0.15。

则()g g ld 218.233.005.115.0221.015.053.0287.321.0h 22⨯++⨯++++⨯=∑()g218.215.025.125.02⨯+⨯++ 2.104m 921.0023.10.160=++= 故 m h h h ld fd d 25.2104.215.0=+=+=∑∑∑从泵吸水口到输水干管上切换闸阀间的全部水头损失为:∑∑∑=+=m h h h d s 50.2因此,泵的实际杨程为:设计枯水位时,m H 22.42250.292.780.29max =+++=设计洪水位时,m H 32.30250.292.790.17min =+++=由此可见,初选泵机组符合要求。

3.5泵安装高度的确定和泵房高度计算为了便于施工,将泵房机器间底板放在与吸水间底板同一标高,因而泵为自灌式工作,所以泵的安装高度小于其允许吸上真空高度,无须计算。

相关文档
最新文档