动能定理基础知识点和练习题

合集下载

动能定理专项训练(含解析)

动能定理专项训练(含解析)

动能定理专项训练一、选择题1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )(A )E k ′=-E k(B )E k ′=E k(C )E k ′<E k(D )E k ′>E k2.甲、乙两个物体的质量分别为甲m 和乙m ,并且甲m =2 乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( ). (A )1:1(B )2:1(C )1:2(D )2:13.两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同.若它们分别受到不同的阻力F a 和F b 的作用,经过相等的时间停下来,它们的位移分别为s a 和s b ,则( ). (A )F a >F b ,s a >s b(B )F a >F b ,s a <s b (C )F a <F b ,s a >s b(D )F a <F b ,s a <s b4.一个小球从高处自由落下,则球在下落过程中的动能( ). (A )与它下落的距离成正比 (B )与它下落距离的平方成正比 (C )与它运动的时间成正比(D )与它运动的时间平方成正比5.质量为2kg 的物体以50J 的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ). A 、5s B 、4s C 、s 22 D 、2s6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A )1:1(B )9:7(C )8:6(D )16:97.质点只受的力F 作用,F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t =0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A )t 1(B )t 2(C )t 3(D )t 48.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v -t 图像如图5—22所示.汽车牵引力为F ,运动过程中所受的摩擦阻力恒为f ,全过程中牵引力所做的功为W 1,克服摩擦阻力所做的功为W 2,则下列关系中正确的是().(A )F :f =1:3 (B )F :f =4:1(C )W 1:W 2=1:1(D )W 1:W 2=1:39.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E .若小物块冲上斜面的初动能变为2E ,则有( ). (A )返回斜面底端时的动能为E(B )返回斜面底端时的动能为23E(C )返回斜面底端时的速度大小为2v (D )克服摩擦阻力做的功仍为2E10.质量为m 的小球被系在轻绳的一端,在竖直平面内作半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg ,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A )mgR (B )2mgR (C )3mgR (D )4mgR11.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程().(A )小球在水平方向的速度逐渐增大 (B )小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D )到达最低位置时绳中的拉力等于小球重力12.如图所示,板长为L ,板的B 端静止放有质量为m 的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中().(A )摩擦力对小物体做功为μmgLcosα(1-cosα) (B )摩擦力对小物体做功为mgLsinα(1-cosα) (C )弹力对小物体做功为mgLcosαsinα (D )板对小物体做功为mgLsinα13.如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )(A )sLsin θ(B )θssin L (C )sLtan θ(D )θstan L二、填空题14.一个质量是2kg 的物体以3m /s 的速度匀速运动,动能等于______J .15.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______. 16.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.17.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量之比为______. 18.甲、乙两物体的质量之比为2:1m :m =乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.19.自由下落的物体,下落1m 和2m 时,物体的动能之比是______;下落1s 和2s 后物体的动能之比是______.20.甲、乙两物体的质量比m 1:m 2=2:1,速度比v 1:v 2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.21.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N .子弹射入土墙前的动能是______J ,它的速度是______m /s .22.质量为m 的物体,作加速度为a 的匀加速直线运动,在运动中连续通过A 、B 、C 三点,如果物体通过AB 段所用时间和通过BC 段所用的时间相等,均为T ,那么物体在BC 段的动能增量和在AB 段的动能增量之差为______.23.质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为______m /s .24.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s ,空气密度为ρ、平均风速为v .设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P =______.25.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于______J (g 取10m /s 2) 三、应用题26.如图所示,一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.27.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?28.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度v.设汽max车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功.参考答案1、B解析:动能是标量,由可得答案为B。

动能定理基础知识点和练习题

动能定理基础知识点和练习题

动能定理(1) 动能221mV E k =是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。

(2)动能定理的表述合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为W=ΔE K .动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。

例题分析:例1:质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 的作用下,从平衡位置P 点缓慢地移动到Q 点,如图所示,则力F 所做的功为( ) A .θcos mgLB .θsin FlC .)cos 1(θ-mgLD .FL应用动能定理简解多过程题型。

物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使题型简化。

例2、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。

F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。

(g=10m/s 2)例3:如图所示,AB 为四分之一圆弧轨道,半径为0.8m ,BC 是水平轨道,长3m ,BC 处的动摩擦因数为115μ=。

现有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。

求:(1)物体在轨道AB 段所受的阻力对物体做的功。

(2)物体下滑到B 点时对圆弧轨道的压力多大?例4、如图11所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,RAB C V 0S 0α P图11滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?利用动能定理巧求动摩擦因数例5、如图12所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。

(完整版)动能定理经典题型总结,推荐文档

(完整版)动能定理经典题型总结,推荐文档

21222121mv mv W -=动能和动能定理一、知识聚焦1、动能:物体由于运动而具有的能量叫动能. 表达式:Ek = 动能是标量,是状态量 单位:焦耳( J )221mv 2、动能定理内容:合力对物体所做的功等于物体动能的变化。

3、动能定理表达式:二、经典例题例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合 表达式:=-S f F )(221mv得到牵引力:N kmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s2)提示 石头的整个下落过程分为两段,如图5—45所示,第一段是空中的自由下落运动,只受重力作用;第二段是在泥潭中的运动,受重力和泥的阻力。

两阶段的联系是,前一段的末速度等于后一段的初速度。

考虑用牛顿第二定律与运动学公式求解,或者由动能定理求解。

解析 这里提供三种解法。

解法一(应用牛顿第二定律与运动学公式求解):石头在空中做自由落体运动,落地速度gH v 2=在泥潭中的运动阶段,设石头做减速运动的加速度的大小为a ,则有v2=2ah ,解得g hH a =由牛顿第二定律,ma mg F =-所以泥对石头的平均阻力N=820N 。

10205.005.02)()(⨯⨯+=⋅+=+=+=mg h h H g h H g m a g m F 例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

动能定理简单练习题

动能定理简单练习题

动能定理简单练习题动能定理简单练习题动能定理是物理学中的一个基本定理,描述了物体的动能与其速度之间的关系。

它在解决各种物理问题中起着重要的作用。

本文将给出一些简单的练习题,帮助读者更好地理解和应用动能定理。

练习题一:一个质量为1 kg的物体以10 m/s的速度沿着水平方向运动,求它的动能。

解析:根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能=1/2 × 1 × (10)^2 = 50 J。

练习题二:一个质量为2 kg的物体以2 m/s的速度运动,当它的速度增加到4m/s时,求它的动能的增加量。

解析:首先求物体在速度从2 m/s增加到4 m/s时的动能。

根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能1=1/2 × 2 × (2)^2 = 4 J。

再求物体在速度从0 m/s增加到4 m/s时的动能。

即动能2=1/2 × 2 × (4)^2 = 16 J。

所以动能的增加量=动能2 - 动能1 = 16 J - 4 J = 12 J。

练习题三:一个质量为0.5 kg的物体以20 m/s的速度运动,当它的速度减小到10 m/s时,求它的动能的减小量。

解析:首先求物体在速度从20 m/s减小到10 m/s时的动能。

根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能1=1/2 × 0.5 × (20)^2 = 100 J。

再求物体在速度从20 m/s减小到0 m/s时的动能。

即动能2=1/2 × 0.5× (10)^2 = 25 J。

所以动能的减小量=动能1 - 动能2 = 100 J - 25 J = 75 J。

练习题四:一个质量为10 kg的物体以5 m/s的速度运动,撞击到一个质量为5kg的静止物体,两个物体粘在一起后以共同的速度运动,求它们共同的速度。

解析:由于两个物体粘在一起后以共同的速度运动,可以利用动能守恒定理解决这个问题。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

1、 一质量为1kg 的物体被人用手由静止向上提高 (1)物体克服重力做功• (2)合外力对物体做功.解:⑴ m 由 A 到 B :W Gmgh 10J克服重力做功10W 克G W G 10J C12⑵m 由A 到B ,根据动能定理11: W -mv2⑶ m 由 A 到 B : W W G W FW F 12J2、 一个人站在距地面高 h = 15m 处,将一个质量为 上抛出• (1)若不计空气阻力,求石块落地时的速度 ⑵若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W.1 2 解:(1) m 由A 到B :根据动能定理: mgh mv⑵m 由A 到B ,根据动能定理12:1 2 1 2 mgh Wmv t mv oW 1.95J2 23a 、运动员踢球的平均作用力为200N ,把一个静止的质量为在水平面上运动 60m 后停下.求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理13:1 2 W mv 0 0 50J 2(3b)球在运动员踢球的过程中,根据动能定理14W 】mv 2-mv 22 210不能写成:W G mgh 10J .在没有特别说明的情况下,临 默认解释为重力所做的功,而在这个过程中重力所做的功为负. 11也可以简写成:“m : A B : Q W EJ',其中 W E k 表示动能定理. 12此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功. 13踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 14结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能, 然后其他形式的能又转化为动能,而前后动能相等(3)手对物体做功.B m0 2J* N hA±+ mgm = 100g 的石块以v o = 10m/s 的速度斜向 V.1kg 的球以10m/s 的速度踢出,v 0 0 v ; v 0m_O A Bmg mg1m ,这时物体的速度是 2m/s ,求:4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v o 竖直下抛,落地后,小钢球陷入泥 土中的深度为h 求:(2)泥土对小钢球的阻力是恒力还是变力 (4)求泥土对小钢球的平均阻力大小 .解:(1) m 由A 到B :根据动能定理:(2) m 由1状态到3状态15 16:根据动能定理:Fs 1 cos0omgscos180° 0 0s 100m15也可以用第二段来算s 2,然后将两段位移加起来.计算过程如下: m 由2状态到3状态:根据动能定理:o12mgs 2 cos180 0 mv s 70m则总位移s s, s?100m .(1)求钢球落地时的速度大小v.(3)求泥土阻力对小钢球所做的功 mgmgH12 12 mv mv 0 2 2(2)变力 6.(3) m 由B 到C ,根据动能定理: mgh W1 2 mv 2W f1 2mv 0 mg v tW f2 mv 02mg Hcos180°2h5、在水平的冰面上,以大小为 F=20N 冰车受到的摩擦力是它对冰面压力的 进了一段距离后停止.取g = 10m/s 2. (1)撤去推力F 时的速度大小. I 程s. I 的水平推力,推着质量 0. 01倍,当冰车前进了 .求:(2)冰车运动的总路m=60kg S 1=30m 的冰车, 后,撤去推力F ,冰车又前 由静止开始运动•解:(1) m 由1状态到2状态:根据动能定理7 F& cos0oo1 2mgs cos180 — mv 014m/s 3.74m/sv6、如图所示,光滑1/4圆弧半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B 点,然后沿水平面前进4m,到达C点停止.求:(1) 在物体沿水平运动中摩擦力做的功(2) 物体与水平面间的动摩擦因数.解:⑴m由A到C9:根据动能定理:mgR W f 0 0W f mgR 8J⑵ m 由 B 到C: W f mg x cos180°0.27、粗糙的1/4圆弧的半径为0.45m,有一质量为0.2kg的物体自最高点A从静止开始下滑到圆弧最低点B时,然后沿水平面前进0.4m到达C点停止.设物体与轨道间的动摩擦因数为0.5 (g =10m/s 2),求:(1) 物体到达B点时的速度大小•(2) 物体在圆弧轨道上克服摩擦力所做的功.解:⑴m由B到C :根据动能定理:mg I cos180°v B 2m/s1 2⑵ m由A到B:根据动能定理:mgR W f mv(3 02克服摩擦力做功W克f W f 0.5J8、质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为I,斜面倾角为,物体在斜面上运动的水平位移为s,,在水平面上运动的位移为S2,如图所示10.m由A到B :根据动能定理:mgh mg cos I cos180o mgs2 cos180°0 0又Q I cos s i、s S1 S2h则: h s 0即:ss9也可以分段计算,计算过程略10、汽车质量为 m = 2 x 103kg ,沿平直的路面以恒定功率 达到最大速度20m/s.设汽车受到的阻力恒定.求:证毕•9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的 从斜面的顶端以初速度 v o 沿斜面滑下,则停在平面上的 C 点•已知AB = BC 克服摩擦力做的功• ° A 故功 解:设斜面长为I , AB 和BC 之间的距离均为s ,物体在斜面上摩擦力 O 到B :根据动能定理: mgh W f 2 s cos180o 0 0 O 到C :根据动能定理: mgh W f 2 2s cos180° 1 2mv 2mgB 点•若该物体 ,求物体在斜面上N i厂ABN 2W f-mv 2 mgh 2克服摩擦力做功W 克 f W fmgh 1 2mv o2(1)阻力的大小. ⑵这一过程牵引力所做的功 (3)这一过程汽车行驶的距离解12 : (1)汽车速度v 达最大v m 时,有F f ,故:P F v m f v mf 1000N(2)汽车由静止到达最大速度的过程中: 6 g Pt 1.2 10 J (2)汽车由静止到达最大速度的过程中,由动能定理: mg mg l cos180o 1 2mv m 2l 800m 11. AB 是竖直平面内的四分之一圆弧轨道,在下端 A 点起由静止开始沿轨道下滑。

动能定理知识点

动能定理知识点

动能定理一、是非题1. 有势力的方向总是垂直于等势面。

( √ )2. 机械能守恒定理是,当质点系不受外力作用时,则动能与势能之和等于零。

( × )3. 汽车由静止启动,获得动能,是因为其后轮(后轮为驱动轮)受地面的摩擦力向前, 做正功。

( × )4. 系统内力所做功之代数和总为零。

( × )5. 如果某质点系的动能很大,则该质点系的动量也很大。

( × )6. 从高度h 处以相同的初速v 0,但以不同的角度发射物体,当物体落到地面时,其动能不同。

假设空气阻力不计。

( × )7. 作平面运动的均质直杆的动能为)cos (6122ϕuv v u m ++。

其中,m 为杆的质量,u 、v 是杆两端点的速度,ϕ是u 、v 速度方向间的夹角。

( √ )8. 作用在某刚体上的力系所作的功,等价于这个力系向刚体上任意一点简化后的主矢、主矩对此刚体所作的功之和。

9. 若力使刚体做加速运动,则力必对此刚体做功。

( × )10. 力)/()(22y x y x ++=j i F 是有势力(保守力).11. 质杆OA 绕O 轴转动的角速度为ω,其质量为M ,长为l (如图所示),则求出杆的动能为2222131C M Ml T υω+=。

( × ) 12. 试判断下述说法是否正确:若质点的动量守恒,则该质点对任一定点的动量矩也一定守恒。

( √ )若质点对某定点的动量矩守恒,则其动量也一定守恒。

( × )若质点对某定点的动量矩守恒,则其动能一定为常量。

( × )质点的动能为常量,则必存在一定点,使质点对该定点的动量矩守恒。

( × )若质点的动量改变,其动能也一定发生变化。

( × )若质点的动能发生变化,则其动量也一定发生变化。

( √ )若质点的动量发生变化,则其动量矩也一定发生变化。

( × )质点对某定点的动量矩发生变化,则其动量也一定发生变化。

第二讲动能定理(原卷版)

第二讲动能定理(原卷版)

第二讲 动能定理➢ 知识梳理一、动能1.定义:物体由于运动而具有的能. 2.公式:E k =12mv 2.3.矢标性:动能是标量,只有正值,动能与速度方向无关. 4.状态量:动能是状态量,因为v 是瞬时速度.5.相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12m 22v -12m 21v .动能的变化是过程量.二、动能定理1.内容:合外力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式 (1)W =ΔE k . (2)W =E k2-E k1. (3)W =12m 22v -12m 21v .3.物理意义:合外力的功是物体动能变化的量度. 4.适用范围广泛(1)既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.➢ 知识训练考点一、动能定理的理解和基本应用 1.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用. 2.解题流程3.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1、(2021·山东高考)如图所示,粗糙程度处处相同的水平桌面上有一长为L的轻质细杆,一端可绕竖直光滑轴O转动,另一端与质量为m的小木块相连。

木块以水平初速度v0出发,恰好能完成一个完整的圆周运动。

在运动过程中,木块所受摩擦力的大小为()A.mv202πL B.mv204πLC.mv208πL D.mv2016πL例2、随着高铁时代的到来,人们出行也是越来越方便,高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能()A.与它所经历的时间成正比B.与它的位移成正比C.与它的速度成正比D.与它的加速度成正比例3、(2018·全国卷Ⅱ·14)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功例4、如图所示,粗糙水平地面AB与半径R=0.4 m的光滑半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量m=1 kg的小物块在9 N的水平恒力F的作用下,从A点由静止开始做匀加速直线运动.已知x AB=5 m,小物块与水平地面间的动摩擦因数为μ=0.1,当小物块运动到B点时撤去力F,取重力加速度g=10 m/s2,求:(1)小物块到达B点时速度的大小;(2)小物块运动到D点时,轨道对小物块作用力的大小.课堂随练训练1、(2021·高考河北卷,T6)一半径为R 的圆柱体水平固定,横截面如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能定理
(1) 动能22
1
mV E k =
是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。

(2)动能定理的表述
合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为W=ΔE K .
动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。

例题分析:
例1:质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 的作用下,从平衡位置P 点缓慢地移动到Q 点,如图所示,则力F 所做的功为( ) A .θcos mgL
B .θsin Fl
C .)cos 1(θ-mgL
D .FL
应用动能定理简解多过程题型。

物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使题型简化。

例2、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。

F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。

(g=10m/s 2)
例3:如图所示,AB 为四分之一圆弧轨道,半径为0.8m ,BC 是水平轨道,长3m ,BC 处的动摩擦因数为1
15
μ=。

现有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。

求:(1)物体在轨道AB 段所受的阻力对物体做的功。

(2)物体下滑到B 点时对圆弧轨道的压力多大?
例4、如图11所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,
R
A
V 0
S 0
α P
图11
滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?
利用动能定理巧求动摩擦因数
例5、如图12所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。

已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。

利用动能定理巧求机车脱钩题型
例6、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图13所示。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离是多少?
练习巩固:
1、如图15所示,AB 与CD 为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=10m/s 2).
2、如图所示,一半径为R 的不光滑圆形细管,固定于竖直平面内,放置于管内最低处的小球以初速度v 。

沿管内运动,已知小球质量为m ,通过最高点处的速率为v 0/2,求: (1)小球在最低点处对轨道的压力大小;
(2)小球从A 运动到B 的过程克服阻力所做的功。

A
B
C
h
S 1 S 2
α
图12 S 2 S 1
L
V
V 0
图13
A
B
C
D
O
R E
图15
h
例1,由P到Q,根据动能定理:
WF-WG=△Ek=0
而WG=mgL(1-cosθ)
所以WF=mgL(1-cosθ)

2
例3
例4

5
例6
FL+=-k(M-m)gs1
对末节车厢根据动能定理,有-kmgs2=②,由于原来列车匀速,故有F="kMg "
③,联立解得Δs=s1-s2=. 巩固1。

相关文档
最新文档