燃煤电厂脱硫废水零排放研究 黄聿昆
燃煤电厂脱硫废水零排放处理技术研究进展

燃煤电厂脱硫废水零排放处理技术研究进展
燃煤电厂脱硫废水是指在燃煤发电过程中,通过脱硫设备处理后产生的含有大量废水
的排放物。
由于脱硫废水中含有大量的硫酸盐等污染物,对环境造成污染。
燃煤电厂脱硫
废水的零排放处理技术一直是环境保护领域研究的热点。
1. 废水浓缩技术:通过对脱硫废水进行蒸发或者冷凝等操作,使废水中的水分蒸发掉,从而达到废水的浓缩效果。
这种技术能够有效减少废水的体积,减少后续处理的难度
和成本。
2. 膜技术:膜技术是一种常用的脱硫废水处理技术,主要包括超滤、纳滤、反渗透
等膜分离方法。
通过这些膜的使用,可以将废水中的污染物分离出去,得到高纯度的水质。
该技术的能耗较低,处理效果较好。
3. 综合利用技术:目前一些研究已经发现了燃煤电厂脱硫废水中存在的一些有用物质,如硫酸、钾盐等。
可以利用一些合适的技术将这些有用物质从废水中提取出来,并进
行资源化利用。
4. 生物处理技术:生物处理技术是一种环保、经济的废水处理方法。
通过使用一些
特定的微生物,能够将废水中的有机物降解成无害的物质,从而实现脱硫废水的零排放。
除了上述的几种常见的脱硫废水零排放处理技术外,还有一些其他的研究方法,如化
学沉淀、电化学等技术,可以根据不同的废水特性采取不同的处理方法。
燃煤电厂脱硫废水零排放处理技术在过去几年里取得了显著的进展。
通过不断的研究
和改进,相信在不久的将来,能够找到更加高效、经济、环保的处理方法,实现燃煤电厂
脱硫废水的零排放。
燃煤电厂脱硫废水零排放处理技术研究进展

燃煤电厂脱硫废水零排放处理技术研究进展燃煤电厂是我国主要的电力供应来源之一,但同时也是大气污染的主要排放源之一,其中二氧化硫排放量占据了其主要部分。
为了降低这种污染物的排放量,许多燃煤电厂在污染物排放控制方面采取了脱硫技术。
但随之而来的一个问题就是脱硫废水处理。
传统的化学沉淀法、生物处理法等并不能完全消除脱硫废水的有害成分,更不能达到零排放的要求。
因此,燃煤电厂脱硫废水的零排放处理技术已成为燃煤电厂污染物治理及环保的重要课题之一。
目前,常见的燃煤电厂脱硫废水零排放处理技术可以分为三类,分别为膜分离法、零排放工艺和光催化氧化技术。
膜分离法包括反渗透技术(RO)、超滤技术(UF)和气体渗透技术(GOT)。
其中,RO 技术主要通过高压力将废水中的有害物质挤压出去,使水分子得以自由穿过半透膜进行分离。
UF技术则是在废水中加入特殊材料的微孔膜,通过物质分子在膜上挤压和筛选,从而分离出有害物质,其分离效果与RO相近。
GOT技术是一种新兴的分离技术,用于将有害物质通过特殊的膜分离出去,不同于其它膜分离技术的是,其膜可以选择性地分离废水中的某些物质,从而提高了废水的处理效率。
零排放工艺主要是通过多级逆渗透、离子交换、臭氧氧化等工艺进行有害物质的分离与净化。
它的基本原理是将大分子化合物通过逆渗透分离后,采用离子交换材料进行去除有机物、重金属、硝酸盐等离子物质,最后采用臭氧氧化或电解等方法使剩余物质无毒害性,从而达到零排放的目的。
这种方法工艺成熟、操作简单、装置较小,特别适宜处于城市化发展快速的地区。
光催化氧化技术是利用光催化剂产生的光化学反应,将脱硫废水中的污染物物理或化学变换成无毒物质,被广泛应用于各种工业废水的治理中,但对于含有复杂有机物质的脱硫废水的修复还存在一些难点,如光化学反应条件的改善以及光催化剂的催化效率的提高等。
总之,现有的燃煤电厂脱硫废水零排放处理技术都具有各自的优势和缺点,要选择适合自己电厂实际情况的技术,需要考虑如下几方面因素:设备投资与运行成本、处理效率、处理量和成品水质量等。
燃煤电厂脱硫废水零排放的探讨

燃煤电厂脱硫废水零排放的探讨摘要:目前火电厂普遍使用的脱硫在实际的生产过程中会出现工业脱硫废水,而且水质极为特殊,会含有不同的重金属,高密度的悬浮物以及无机盐之类的杂质,对于环境产生了巨大的污染,而且处理困难相当之大。
所以,对脱硫废水必须进行独自的处理。
本文就燃煤电厂脱硫废水零排放进行了简单的分析。
关键词:燃煤电厂;废水;零排放引言在中国,燃煤电厂几乎占据了发电行业发展的大部分市场,同时也出现了诸多问题,燃煤发电所产生的大气污染对于人类环境产生了巨大的威胁。
正是因为如此,所以在中国一些燃煤电厂几乎都安装了烟气脱硫系统。
其中石灰石-石膏湿法脱硫工艺的使用最为普遍,这种脱硫工艺运行时,所排出的脱硫废水来源主要出自于脱硫后的石灰石以及烟气,里面包含许多被国家环保有关部门评定为一级污染物的杂质譬如硫酸盐,重金属以及悬浮物等等。
由于其污染性较强,所以一般对脱硫废水进行独自处理。
一、脱硫废水的性质和处理必要性1脱硫废水的性质脱硫废水具有水质和水量不稳定的特点。
脱硫废水总的特点是悬浮物和COD较高,易沉淀,含有过饱和的亚硫酸盐、硫酸盐以及重金属。
湿法脱硫废水的主要特征是:1.1呈现弱酸性,pH值约4~6;悬浮物高,但颗粒细小,主要成分为粉尘和脱硫产物(CaSO4和CaSO3);1.2含有可溶性的氯化物和氟化物、硝酸盐等;还有Hg、Pb、Ni、As、Cd、Cr等重金属离子。
2脱硫废水处理的必要性脱硫废水中的杂质主要来自烟气、脱硫剂(目前湿法脱硫的脱硫剂大多用石灰石)和工艺水。
其中,污染成分主要来自烟气,而烟气中的杂质又来源于煤的燃烧。
煤中含有包括重金属在内的多种元素,这些元素在燃烧后生成多种化合物,其中气体化合物会随烟气进入脱硫系统,溶解于吸收浆液中。
脱硫废水中的杂质主要包括悬浮物、高浓度的亚硫酸盐、硫酸盐、氟化物以及重金属。
这些杂质与电厂的其它工业废水性质完全不同,所以应进行单独处理。
二、燃煤电厂废水零排放概述零排放并不是说不排放水,而是不降有害物质通过水体排放到自然环境中,电厂生产使用的水资源最终以蒸汽的形式排放大自然环境中,或者爱电厂内部水循环系统中留存。
燃煤电厂脱硫废水零排放处理技术研究进展

燃煤电厂脱硫废水零排放处理技术研究进展燃煤电厂排放的废水中含有大量的硫化物,如果不经过处理直接排放到环境中,会对水体造成污染,对水生态环境造成严重的影响。
燃煤电厂废水的处理是十分重要的环节。
当前,燃煤电厂废水处理技术主要有化学法脱硫、生物法脱硫和膜法脱硫等,这些技术在硫化物的去除上都有一定的效果。
这些方法存在着处理效率低、处理成本高和废水二次污染等问题,需要进一步研究和改进。
近年来,关于燃煤电厂脱硫废水零排放处理技术的研究取得了一些进展。
一方面,有学者对传统的化学法脱硫进行了改进,采用新型吸收剂或添加剂来提高脱硫效率。
某些具有吸附性能的纳米材料可以作为吸附剂,将废水中的硫化物吸附到其表面,从而实现对硫化物的去除。
添加一些特殊的氧化剂或还原剂可以改变废水中的溶解性,使硫化物转化为难溶性的沉淀物,从而实现脱硫的目的。
这些改进可以提高脱硫率和去除效果,但仍存在着吸附剂回收和再利用、氧化剂或还原剂的用量控制等问题需要解决。
生物法脱硫被广泛研究并应用于燃煤电厂废水处理中。
生物法脱硫利用特定的微生物通过呼吸作用将废水中的硫化物转化为硫酸盐,并最终生成硫颗粒。
这种方法具有处理效率高、操作简单和能耗低的优点。
在应用生物法脱硫技术时需要注意微生物的培养、废水中的COD浓度和温度等因素对其脱硫效果的影响,以确保其在实际应用中的稳定性和可行性。
膜法脱硫是一种新兴的废水处理技术,在燃煤电厂废水处理中也得到了一定的应用。
膜法脱硫通过选择性膜的渗透来实现对废水中硫酸盐的分离和浓缩。
由于该方法无需添加任何化学试剂,避免了对环境的二次污染。
膜法脱硫还存在着膜堵塞和膜寿命有限等问题,需要进一步研究和改进。
燃煤电厂脱硫废水零排放预处理工艺研究进展

燃煤电厂脱硫废水零排放预处理工艺研究进展摘要:脱硫废水零排放工艺是一个连续的、灵活的处理过程,良好的预处理效果是开展后续工序的基石,根据不同电厂脱硫废水的水质状况和运行工况加以调整实现“一厂一策”才能形成最适合的处理方法,实现工艺路线最优化,不仅可以降低脱硫废水的处理成本,还可以促进固废的资源化利用,实现双碳目标走煤炭高效清洁利用的绿色转型发展路线。
关键词:燃煤电厂;脱硫废水;零排放预处理工艺;研究进展引言针对燃煤电厂脱硫废水处理,通过结合实际生产中各类技术的典型工程案例,详细阐述了不同技术的特点及适用条件,对于具体脱硫废水技术路线的选择应坚持一厂一策的原则,从全厂角度出发,首先确定最终产物的去向即选择经济合理的末端处理技术,根据末端处理的水量水质要求,进一步确定浓缩减量和预处理技术。
随着近年来燃煤电厂经济压力不断增大,工艺路线的选择不仅要关注技术的先进性,更需要关注技术路线的投资和运行成本,技术经济性决定着技术路线的最终选择。
1零排放工艺概述脱硫废水是指为维持脱硫系统物质平衡、防止氯浓度超标并保证石膏品质,从而定期由石膏系统和清洗系统中排出的一定量废水。
脱硫废水呈弱酸性,对设备和管道具有腐蚀性;重金属种类多,成分复杂,若直接排放,其中的毒性离子会对人体呼吸道、肝脏和肾器等造成不可逆的损伤;另外脱硫废水悬浮物含量高,Ca2+、Mg2+浓度高,易引起设备结垢堵塞;高浓度Cl-会使pH降低、脱硫效率降低,影响脱硫石膏品质,并造成设备严重腐蚀。
脱硫废水零排放工艺是根据中国水资源短缺现状和国家脱硫废水排放标准而提出的循环经济方案,指不向外界排放出任何对环境有不良影响的水体,进入电厂的水经过一定处理后最终以蒸汽形式排入大气,或者以合理经济的方式在电厂内封闭处理,最终目的在于提高废水二次利用率并减少污染物排放。
脱硫废水零排放工艺主要可分为3个阶段:预处理、浓缩减量和蒸发结晶。
2传统脱硫废水处理技术目前燃煤电厂普遍采用传统三联箱工艺来处理脱硫废水,脱硫废水三联箱包括中和箱、沉降箱和絮凝箱,分别投加石灰乳、有机硫和絮凝剂、助凝剂,经过充分搅拌反应后自流进入澄清池,以去除废水中悬浮物、重金属、COD等有害物质,清水经盐酸调节pH至6~8进入出水池。
燃煤电厂脱硫废水零排放技术研究分析

燃煤电厂脱硫废水零排放技术研究分析发布时间:2022-06-21T03:37:25.789Z 来源:《当代电力文化》2022年第4期作者:周小兵[导读] 燃煤电厂作为我国主要的供电企业,承担着总发电量的68%左右,因此必须保证其安全稳定运行,周小兵大唐杨凌热电有限公司陕西省咸阳市 712100摘要:燃煤电厂作为我国主要的供电企业,承担着总发电量的68%左右,因此必须保证其安全稳定运行,但同时也属于高能耗、好污染企业,在使用燃煤发电的过程中,总会出现一些具有危害性、污染性的物质。
为此,本文针对燃煤电厂脱硫废水产生的原因、脱硫废水产生的特点、以及产生脱硫废水的必然性的现实情况进行详细地分析,进一步研究了燃煤电厂脱硫废水零排放的技术,以期能促进技术发展。
关键词:燃煤电厂;脱硫废水;零排放技术引言:燃煤电厂的主要发电来源就是煤炭燃烧发热发电,然而煤炭中都会含有硫元素,在燃烧的过程中会生成二氧化硫等有害物质,其溶入到水中更是会形成亚硫酸,经过氧化后还会促成酸雨,对生态环境的危害极大。
为了减少燃煤电厂中脱硫废水的危害,实现脱硫废水零排放的目的,需要专业人员进一步研究其技术。
1.燃煤电厂脱硫废水情况1.1废水产生的原因煤炭发电厂将烟气引入到吸收塔内,利用吸收塔内吸收剂吸收烟气中的硫元素,给烟气脱硫。
然而烟气通常温度都很高,会将吸收塔内的工艺水不断地蒸发,并且烟气中的氯化物会逐渐地溶解到吸收剂液体之中,使吸收剂的吸收效果不断降低,影响吸收塔整体的脱硫工作质量。
当吸收塔内的浆液浓度达到相关标准时,就需要把吸收塔内浆液吸取出来,利用石膏将其脱水,脱水过程中产生的液体就是废水的主要部分。
1.2脱硫废水的特点燃煤电厂的脱硫废水经过了多种物质和工艺处理之后,根据燃煤的品质会产生不同的有害物质,其主要包括:亚硫酸、石膏颗粒、二氧化硅、氢氧化铁、氢氧化铝、钙、镁、氯离子和金属物质等,会不同程度地造成管道、设备腐蚀、废水硬度比较高、管道堵塞、抑制石灰石溶解、水中金属元素超标等情况,远远地超出了我国废水排水相关的标准,对生态环境造成很严重的危害,甚至还会影响饮水人员、动物身体上的疾病以及生命安全。
燃煤电厂脱硫废水零排放处理技术研究进展

燃煤电厂脱硫废水零排放处理技术研究进展随着我国经济的迅猛发展和人民生活水平的不断提高,对电能的需求越来越大,燃煤电厂作为我国主要的电力供应来源之一,产生的废水排放也越来越多。
其中,脱硫废水就是其中之一。
一般情况下,燃煤电厂脱硫废水的处理方式是采用物理、化学或者生物法进行处理,并把处理得到的废水排放到海洋或者河流中,对水质环境造成严重的污染。
为了解决这一问题,燃煤电厂脱硫废水零排放治理技术应运而生。
燃煤电厂脱硫废水零排放治理技术是一种新兴的环境保护技术,它的发展历程大致可以分为以下几个阶段:(1)传统脱硫废水处理技术阶段:燃煤电厂脱硫废水主要采用物理、化学或者生物法进行处理。
其中,物理法主要是通过沉淀、过滤等方式去除脱硫废水中的杂质和固体颗粒,然后将处理后的水排放到河流或者海洋中,这会对环境造成很大的危害。
化学法主要是采用化学药剂对脱硫废水进行处理,然后再沉淀、过滤等去除其杂质和固体颗粒,最后再将水排放到污水处理厂中处理。
由于该技术存在处理效率低、化学药剂消耗多、二次污染等问题,在使用中受到了很大的限制。
(2)转化为资源化利用阶段:燃煤电厂脱硫废水由于含有大量的含硫酸盐以及其他有机物质,在生产过程中限制了其资源的回收利用。
随着环境保护意识的加强,需要对脱硫废水进行资源化利用。
目前,一些国家已经实现了对脱硫废水的资源化利用,将其转化为磷肥、钙肥、酸性精矿浸出用的稀硫酸等。
(3)零排放技术阶段:到了二十一世纪初,为了满足环境保护的需要,对燃煤电厂脱硫废水进行了零排放治理技术的研究。
常规的脱硫废水处理技术难以完全达到零排放的目标,而膜技术、吸附技术、氧化技术、生物技术、自净化技术等成为了研究热点。
这些技术的研究为燃煤电厂脱硫废水零排放治理技术的研究奠定了基础。
目前国内外对燃煤电厂脱硫废水零排放治理技术进行了广泛的研究,并取得了一些显著成果。
主要包括以下几个方面:(1) 膜技术:采用具有分离特性的膜过滤废水中的杂质和固体颗粒,达到液固分离的效果。
燃煤电厂脱硫废水零排放处理技术研究进展

燃煤电厂脱硫废水零排放处理技术研究进展燃煤电厂作为中国能源行业的重要组成部分,占据了我国电力生产的大部分比例。
燃煤电厂排放的二氧化硫等有害气体对环境造成了严重污染,为了达到国家对大气环境质量的要求,燃煤电厂必须对排放的废气进行处理,其中废水的处理更是一个重要的环节。
本文将对燃煤电厂脱硫废水零排放处理技术的研究进展进行详细的介绍。
一、脱硫废水的产生燃煤电厂在进行燃烧过程中,会产生大量的含硫废气,为了达到国家大气污染物排放标准,燃煤电厂通常会采用湿法烟气脱硫技术进行脱硫处理。
在湿法烟气脱硫过程中,废水是不可避免的产物,其中主要包括脱硫吸收液的排放和洗涤废水的排放。
脱硫吸收液的排放是指经过脱硫设备后被吸收二氧化硫的液体废物,通常是以水为主的溶液。
洗涤废水是指在脱硫塔的操作过程中,所产生的冲洗废水,其中含有少量的脱硫吸收液和烟气中的杂质。
这些废水的排放对环境造成了严重的污染,因此燃煤电厂需要对脱硫废水进行处理,以达到零排放的要求。
二、脱硫废水零排放的挑战目前,燃煤电厂脱硫废水处理面临的主要挑战包括废水量大、污染物含量高、处理成本高等问题。
燃煤电厂每天产生的废水量极大,对废水处理设施的处理能力提出了较高的要求。
脱硫废水中含有的污染物浓度较高,包括硫酸盐、重金属离子等有害物质,需要采用高效的处理技术进行去除。
由于脱硫废水处理的复杂性,处理成本较高,对燃煤电厂的经济运行造成了一定的影响。
燃煤电厂脱硫废水零排放技术的研究成为了当前环保领域的热点问题。
针对脱硫废水零排放的挑战,国内外的科研人员进行了大量的研究工作,提出了多种新型的废水处理技术,取得了一定的成果。
以下对其中的几种主要技术进行介绍。
1. 聚合物吸附材料技术聚合物吸附材料技术是近年来备受关注的一种脱硫废水处理技术。
该技术通过合成特定的聚合物吸附材料,利用其对废水中的有害物质进行吸附,从而实现废水中有害物质的去除。
相比传统的化学沉淀法和生物法,聚合物吸附材料技术具有处理效率高、处理时间短、工艺简单等优点,是一种较为具有潜力的废水处理技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃煤电厂脱硫废水零排放研究黄聿昆
发表时间:2020-01-16T13:22:52.900Z 来源:《基层建设》2019年第28期作者:黄聿昆
[导读] 摘要:脱硫废水是燃煤电厂末端废水,也是在电厂污水处理中难度最大的一类废水。
江苏京源环保股份有限公司江苏南通 226000
摘要:脱硫废水是燃煤电厂末端废水,也是在电厂污水处理中难度最大的一类废水。
开发高效脱硫废水处理方法成为燃煤电厂实现可持续发展的重中之重。
文章将深入研究燃煤电厂脱硫废水零排放的技术路线,以供借鉴。
关键词:燃煤电厂;脱硫废水;零排放
1脱硫废水的来源和性质
目前,燃煤发电是我国最主要、最成熟的火力发电方式。
实际生产中,为降低环境污染影响,要采取烟气脱硫处理措施。
根据脱硫产物状态的不同,可分为湿法、半干法和干法。
其中,湿法脱硫技术主要有石灰石石膏法和双碱法等。
在湿法脱硫系统中,循环使用吸收剂会导致吸收塔内盐分和悬浮杂质浓度越来越高。
为了使吸收塔内吸收剂中杂质浓度不超过要求范围,必须按时排放系统内废水,这部分废水就是脱硫废水。
石灰石石膏湿法脱硫技术是重要技术之一,该技术适用于我国大部分煤种,脱硫效率超过90%,系统回收率和吸附剂利用率也超过90%,工艺运行稳定,且石灰石廉价易得。
这一技术应用中产生脱硫废水,其主要来源于水力旋流器的溢流液、脱水机滤液以及清洗系统的冲洗废水。
脱硫废水中污染物的种类和浓度与煤的种类、煤含硫量、灰分含量、石灰石纯度、脱水效果、脱硫工艺工况等多种因素有关。
从脱硫废水水质特点及可能产生的影响分析可知,脱硫废水成分较复杂,呈酸性或半中性,总悬浮固体含量相对较高,废水普遍具有高浊度、高含盐量、难生物降解等特点。
高浊度脱硫废水容易在脱硫设备和管道中结垢,进而影响脱硫装置的正常运行。
脱硫废水中的高浓度氯离子会引起设备及管道腐蚀,也会抑制吸收塔内物理化学反应,进而降低脱硫效率。
此外,脱硫废水含有少量重金属,若处理不当,会污染土壤和水环境,并通过食物链富集最终危害动物和人类健康。
2脱硫废水零排放技术分析
2.1蒸发结晶法
蒸发结晶法是利用烟气、蒸汽或热水等热源蒸发废水,蒸发产生的水汽可凝结成水用于冷却塔补水、锅炉补给水等,废水中的溶解盐被蒸发结晶后进行综合利用或处置。
工程应用实例表明:以机械蒸汽再压缩蒸发技术(MVR)和多效蒸馏(MED)技术为代表的零排放技术投资和运行成本极高,某电厂处理废水综合费用约为180元/m3(含药耗、能耗、设备折旧、人工费用等),而且存在结晶盐处置的问题。
2.2烟道喷雾蒸发法
烟道喷雾干燥是利用尾部烟气进行脱硫废水零排放处理技术,其原理主要是利用烟气与废水之间进行热交换,分为旁路烟道蒸发和尾部烟道直接喷雾蒸发。
尾部烟道直接喷雾蒸发技术根据废水喷射的位置又可分为高温烟道喷雾蒸发和低温烟道喷雾蒸发。
低温烟道喷雾蒸发技术从空预器后烟道喷入缺点是系统需在机组较高负荷(空预器出口烟温≥110℃)下投运,当机组负荷低时,系统不能投运。
高温烟道直接喷雾蒸发是从空预器前烟道喷入,对机组效率影响较大。
2种烟道直喷技术均存在积灰及喷嘴堵塞的风险,且对烟道结构有较高的要求。
尾部烟道直接喷雾蒸发工艺流程为脱硫废水经预处理装置后,充分雾化后进入尾部烟道蒸发,水分被完全蒸发为气态水蒸气,随烟气进入脱硫吸收塔100%冷凝回收,其中污染物盐分随着水分蒸发结晶成固体颗粒,被除尘器捕捉进入干灰,实现废水零排放。
烟道直喷技术是利用烟气余热蒸发废水,无液体排放,不会造成二次污染。
旁路烟道蒸发工艺是从锅炉空预器入口烟道引出部分高温烟气进入旁路喷雾蒸发器,经预处理并浓缩后的废水喷入旁路喷雾蒸发装置,废水蒸发形成的水蒸气随烟气进入除尘器,溶解性盐结晶析出,在除尘器中被捕集,水蒸气进入脱硫系统循环利用。
旁路烟道系统复杂,影响机组热效率,投资成本较高,其优点是运行调节灵活,负荷适应性强,对机组要求较小。
3技术应用实例
某燃煤电厂应用低温烟气直接浓缩+高温热风旁路干燥的技术路线,系统设计处理能力30t/h(设有两套并行流程,每套2*15t/h),用于处理四台300mw级发电机组脱硫废水。
抽取脱硫塔入口约110℃的部分烟气,烟气进入气-水换热器,通过水介质取出烟气中的热量。
热水进入三效闪蒸系统,在真空条件下,热水沸腾蒸发,产生的蒸汽加热脱硫废水。
在每效的加热器与分离器组合作用下,使脱硫废水中水分子蒸发、盐离子结晶,废液得以逐级浓缩。
蒸发出的水蒸汽冷凝回收利用,第三效最终高浓度浓缩液经真空脱水后进入尾水固化单元。
固化单元采用高温烟气旁路干燥技术,将最终浓缩废水分2路,选取2台锅炉实施干燥。
每路对应一台锅炉和一台干燥塔,抽取空预器入口约320℃的热烟气,在旁路干燥塔中将约1.5t/h的滤液干燥,实现废水固化,最终固体通过气力输送喷入静电除尘器前,被收集入粉煤灰中。
本技术路线在浓缩前也不需要对废水进行预处理。
脱硫废水中含有石膏晶体、亚硫酸钙、石灰石颗粒等形状不规则固体微粒,为盐类离子的吸附和结晶提供了条件。
取样脱硫废水蒸发结晶后的产物,分别在显微镜下观察固体的表面特性,并与脱硫废水中的固体表面特性进行比较,得出,蒸发结晶后的固体颗粒粒度明显增大,且表面不规则性增大。
蒸发后的产物颗粒粒径在第三效后明显增大,当密度为1150mg/m3时,颗粒的平均粒径约在22μm,当密度达到1370mg/m3时,颗粒的平均粒径约在31μm,为后续固液分离、脱除盐离子提供了条件。
4脱硫废水“零排放”技术发展
脱硫废水“零排放”是跨越多专业的综合性课题,单从一点切入很难全面解决问题,必须沿着脱硫废水“零排放”的工艺路线,由浅入深,由低投入向高投入来尝试寻求最优解。
4.1通过运行调整控制废水量
常规脱硫工艺及系统防腐等级的Cl-质量浓度上限为20000mg/L,而脱硫废水排水的Cl-质量浓度仅为8000~10000mg/L。
通过燃料控制、运行调整、加药辅助,提高FGD(烟气脱硫)浆液Cl-质量浓度至上限,可有效降低脱硫废水排放量。
4.2优化加药工艺降低加药成本
三联箱是常规脱硫工艺的标配絮凝沉淀设备,现场应用普遍存在设备腐蚀严重、加药系统自动化程度低、加药配比不合理、加药设备故障率高等现象。
通过设备改良,提高防腐等级;加装水质在线监测设备,调整加药配比,实施自动加药系统改造,以实现达标排放。
研
究重点可放在Ca2+、Mg2+去除方面,为后续深度处理创造条件。
4.3改良污泥脱水装置实现污泥干化
市面上常见的污泥脱水装置有板框式和离心式,从应用效果看,成功案例不多,除脱水装置自身的产品质量外,对污泥压滤前的加药调质方面重视度普遍不高,因此需要协同设备制造企业和化学专业、科研机构共同攻关,这样才能有效改良污泥脱水装置,提高设备可用率。
研究重点可放在污泥加药调质方面,降低污泥黏性,利于后续脱水处理。
4.4攻关低温闪蒸技术优化系统控制能耗
对比蒸汽结晶技术、机械-蒸汽结晶技术和低温闪蒸技术,低温闪蒸技术利用的是烟气余热,对机组效率影响最小,加之装置可从烟气中捕捉部分水蒸气,分设备状态的实时监控,提高安防事件和设备异常状态的响应能力。
构建三维虚拟能源站,与物理设备相补充,创新安全、检修、运行工作模式。
结语:综上所述,根据国家的环保政策,燃煤电厂对脱硫废水的处理越来越重视,脱硫外排废水零排放是近年来脱硫系统废水处理的主要方向。
电厂应综合考虑生产条件及水质情况,加强合理化、系统化设计,实现脱硫废水高效处理,使水重复利用率达先进水平,成功实现废水零排放。
参考文献:
[1]李宏远.燃煤电厂脱硫废水零排放治理技术路线分析与选择[J/OL].煤炭工程,2019(11):80-8.
[2]牛耀岚,胡伟,朱辉,邹龙生,宋小鹏.燃煤电厂脱硫废水处理方法及零排放技术进展[J].长江大学学报(自然科学版),2019,16(10):72-78.
[3]洪威.火力发电厂脱硫废水“零排放”技术路线分析[J].能源与节能,2019(10):73-74+111.。