《运筹学》使用Excel求解线性规划问题
运筹学数学excel操作实例

根据对上述建模过程的总结,在电子表格中建立线性规划模型的步骤可归纳如下:
回忆例2-1某制药厂的生产计划问题,其求解结果如图13-8所示,即生产4公斤药品Ⅰ和2公斤药品Ⅱ,总利润为1400元.但该最优解是在假设所有的模型参数都准确的前提下做出的,在此基础上,管理层如果进一步考虑下列问题:
图13-11右下部分的“规划求解”对话框显示了求解时应注意的问题:求目标单元格的最大值(利润最大);约束为设备的实际使用时间小于等于设备的可用时间及实际总业务量小于等于总业务提供量的限制.
打开“选项”对话框,仍选择“采用线性模型”和“假定非负”,回到“规划求解”并按“求解”按钮,得到问题的最优方案为:每月X线及CT检查的业务量分别为1320人次和480人次,磁共振业务量为0,即不必购买该设备;按最优方案安排业务每月可获利55200元.
图13-10的右半部分显示了“规划求解”对话框及“选项”对话框的内容.该问题的目标是所用的胶管原料的总根数最少,因此设置目标单元格为I12等于最小值.由于实际获得的材料数量必须满足需求量的要求,考虑到最优方案(各种截法的某一组合)不一定能使截出的三种材料数量恰好等于需要的数量,而某种材料超过需求量是允许的,故在添加约束时可设置实际截得的数量大于等于需求量,即I9:I12>=K9:K12(本题中,该约束取“>=”和“=”的结果是相同的);又由于截出的各种材料数量均为整数,因此约束中应包括决策变量取整数的限制,即C13:H13=整数.
用EXCEL求解线性规划

用EXCEL求解线性规划
要用EXCEL求解线性规划问题,需要遵循以下步骤:
1. 给定问题中的约束条件和目标函数。
2. 打开EXCEL,建立一个新的工作表。
3. 在工作表中输入问题的约束条件和目标函数。
在输入目标函数时,需要将所有项移动到等号左侧,使它成为一个线性方程。
需要注意将不等式约束条件转化为等式约束条件,可以通过添加松弛变量来实现。
4. 使用EXCEL的“规划”工具,在工具栏中点击“数据”-“分
析”-“规划器”,打开“规划器”。
5. 在“规划器”中,选择需要优化的目标单元格,在“约束条件”
中输入所有约束条件所在的单元格,设置变量单元格的范围。
6. 可以在“选项”中添加其他约束条件。
例如,可以设定变量的整数或二元特性等。
7. 单击“求解”按钮,EXCEL将自动求解最优解,并输出最优
值和变量值。
需要注意的是,线性规划问题求解的结果是一个数值,而不是图形。
因此,需要谨慎分析问题以确保从数值结果中得到了正确的结论。
用Excel求解运筹学问题

可变单元格 单元格 名字 $C$12 Units Produced Doors $D$12 Units Produced Windows 约束 单元格 名字 $E$7 Plant 1 Used $E$8 Plant 2 Used $E$9 Plant 3 Used 终 阴影 约束 允许的 允许的 值 价格 限制值 增量 减量 2 0 4 1E+30 2 12 150 12 6 6 18 100 18 6 6 终 递减 目标式 允许的 允许的 值 成本 系数 增量 减量 2 0 300 450 300 6 0 500 1E+30 300
C D Optimal Units Produced 16 17 Doors Windows 18 =DoorsProduced =WindowsProduced
E Total Prof it =TotalProf it
(1) 只有一个目标函数系数变动的影响
门的单位利润从$100变到$1000,产品组合的变化
5.Under the Tools menu, choose the "Add-Ins" command.
6.Click the Solver Table checkbox to have Solver Table load with Excel every time it is loaded.
怎么利用EXCEL求解线性规划

利用线性回归方法求解生产计划方法一:1、建立数学模型:①设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润②确定目标函数及约束条件目标函数:y=max+115P90x约束条件:200x .....................⑴+y10≤20x .....................⑵4≤+y16128x .....................⑶+y1015≤220yx ..........................⑷,≥2、在Excel中求解线性规划①首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项:图1②将目标方程和约束条件的对应公式输入各单元格中F2=MMULT(B6:C6,F6:F7);F3=MMULT(B3:C3,F6:F7);F2=MMULT(B4:C4,F6:F7);F2=MMULT(B5:C5,F6:F7);出现图2样式:图2线性规划问题的电子表格模型建好后,即可利用“线性规划”功能进行求解。
选择“工具”→“规划求解”出现“规划求解参数”窗口,如图3所示:图3在该对话框中,目标单元格选择F2,问题类型选择“最大值”,可变单元格选择F6:F7,点击“添加”按钮,弹出“添加约束条件”窗口,如图4所示:图4根据所建模型,共有4个约束条件,针对约束(1):2002010≤+y x ,左端“单元格所引用位置”选择F3,右端“约束值”选择D3,符号类 型选择“<=”,同理继续添加约束(2)(3)(4),完成后选择“确定”,回到“规划求解参数”对话框,如5图所示:图5④点击“选项”按钮,弹出“规划求解选项”对话框,选择“采用线性模型”和“假定非负”两项,如图6所示:图6⑤点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果: 运算结果报告:敏感性报告:极限报告:方法二:1、建立数学模型设生产拉盖式书桌x 台,普通式书桌y 台,总利润为Z 元 确定目标函数及约束条件 目标函数:y x Z 90115max += 约束条件:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0,22010151281642002010..y x y x y x y x t s 2、在Excel 中规划求解在Excel 中建立线性规划模型,如图1所示:图11)在E2中输入“=B2*B6+C2*C6”如图2所示,同理 E3=B3*B6+C3*C6E4=B4*B6+C4*C6B7=B5*B6+C5*C6图22)单击“工具”菜单下的“规划求解”,在弹出的“规划求解参数”对话框输入各项参数:✓目标单元格选择B7✓问题类型选择“最大值”✓可变单元选择B6:C6✓约束条件选择B6:C6≥0;E2:E4≤D2:D4参数设置完毕,如图3:图33)点击“选项”,弹出“规划求解选项”对话框,选择“采用线性模型”、“假定非负”和“显示迭代结果”,说明要求求解的问题是线性模型且所求的变量必须为非负,如图4所示:图44)点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果:运算结果报告:敏感性报告:极限值报告:。
excel线性规划求解

To Calculate Total LHS, 選擇SUMPRODUCT
1 2
選定第一列範圍
選定第二列範圍
SUMPRODUCT(F6:G6,G3:G3)=F6*F3 + G6*G3
Then repeat the same steps for constraint #2 and #3
輸入Slack 公式
求最小值
1.輸入變數x1, x2的值所在的儲存格 2.『新增』限制式
1.輸入限制式左邊及右邊的儲存格 2.選擇適當的符號
左邊
右邊
1.選擇後之結果 2.按『新增』
1.此限制式表示 constraint #1and #2 2.再新增 constraint #3
Constraint #3的左邊,右邊及符號
1.前三項限制式(constraints#1,#2,#3) 2.選擇『選項』
新增 constraint #4: x1 >=0 constraint #5: x2 >=0
按『求解』後的結果
想將此圖轉貼於 EXCEL工作表上 1.選此按鈕 2.回到EXCEL
1.按貼上的按鈕或 『編輯』下的貼上, 即顯示圖案。 2. 將之移至適當位置
完成
线性规划求解
Linear Programming Problem
輸入公式Βιβλιοθήκη 列出EXCEL的求解方式: Min:Minimum Objective Value=F4*F3+G4*G3 LHS: Left Hand Side RHS: Right Hand Side Slack: RHS - LHS for “<=“ LHS- RHS for “>=“
EXCEL求解线性规划问题

约束右端值降低15时,目旳函数值旳变化量。
解:(1)最优解为x1=0, x2=12.4, x3=9.5
(2) x1旳目旳系数降低5,占允许降低旳百分比=5/∞=0%,x2 旳目旳系数增长4,占允许增长旳百分比=4/7.8=51.2%。
变化旳百分比和为51.2%,没有超出100%,所以最优解不变。
(3)第一资源约束右端值增长30,占允许增长旳30 /∞=0%, 第二资源约束右端值增长4 ,占允许增长旳4/15=26.7%,
•初值和终值分别指 单元格在此次求解 前旳数值和求解后 旳数值。
敏感性分析报告(1)
可变单元格中 • “单元格”指决策变量所在单元格旳地址 • “名字”是决策变量旳名称 • “终值”是决策变量旳终值,即最优值 • “递减成本”指最优解中档于0旳变量,相应旳目旳函数中旳系数
增长或降低多少,最优解不再为0 • “目旳式系数”目旳函数中旳系数,为已知条件 • “允许旳增量”与“允许旳减量”表达目旳函数中旳系数在增量
(1)引用旳类型
三种类型 :
相对引用、 绝对引用、混合引用
(2) 相对引用
格式: A3 、B6
使用相对引用后,系统将会记住建立公式旳单元格和被 引用旳单元格旳相对位置,在复制这个公式时,新旳公式单 元和被引用旳单元依然保持这种相对位置。
(3)绝对引用 格式:$a$3 $d$5
绝对引用是指被引用旳单元与引用旳公式单元旳位置 关系是绝正确,不论将这个公式复制到任何单元,公式所 引用旳还是原来单元格旳数据。
2) 在弹出旳对话框中旳“可用加载宏”列表框 中,选定待添加旳加载宏“规划求解”选项旁 旳复选框,然后单击“拟定”.单击“拟定” 后,“工具”菜单下就会出现一项“规划求解”
3. “规划求解”各参数设置
利用Excel求解线性规划问题

利用Excel求解线性规划问题线性规划问题的求解有很多方法,也有很多工具。
比如常用的Matlab、Lingo,记得参加数学建模的时候就是用的Lingo解决线性规划问题的。
本文主要讲解如何使用Excel求解线性规划问题,Excel本身是没有计算线性规划问题能力的,因此我们首先要加载相应的宏定义。
一、加载宏定义(不同版本的加载方式有所不同):Excel 2003:单击“工具”菜单,然后单击“加载宏”,选择“规划求解”点击确定。
Excel 2007:方法一:用快捷键。
先按Alt+T,再按I键,即可打开加载宏对话框。
方法二:单击“Office按钮→Excel 选项→加载项”,确保“管理”右侧下拉列表中的选项是“Excel 加载项”,单击“转到”按钮即可。
Excel 2010:直接在功能区中选择“开发工具”选项卡,在“加载项”组中单击“加载项”命令,选择“规划求解”点击确定。
注意:如果功能区中没有“开发工具”选项卡,可以通过自定义功能区来显示“开发工具”选项卡:单击“文件→选项→自定义功能区”,然后在右侧区域中勾选“开发工具”并单击“确定”。
二、初始化数据(以Excel 2010为例,其他版本大同小异):比如我们要计算的线性规划问题如下:那么,我们可以构造如下的表格数据。
其中,B2:F2为待求的值Xi,B3:F3为目标函数的系数,B4:F4、B5:F5、B6:F6为约束条件的系数。
在G3单元格中输入公式=$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3+$F$2*F3,并将鼠标放到单元格的右下角会变成黑色十字架,向下拖拽复制单元格公式到G4、G5、G6单元格。
然后,单击“数据”选项卡,单击“规划求解”打开“规划求解参数”对话框。
∙修改“设置目标”为$G$3,即最优解下目标函数的值z所在的单元格。
∙选择是求最大值,还是最小值。
∙“可变单元格”指的是最优解取值变量所在的单元格。
∙“遵守约束”指的是约束条件中对各变量的约束情况。
运筹学03-excel求解

第2章 线性规划的计算机求解及应用举例§1线性规划模型在电子表格中的布局线性规划模型在电子表格中布局的好坏关系到问题可读性和求解方便性的高低。
本节以第一章中的例1(资源分配问题)为例来说明一下如何在电子表格中描述线性规划模型,让我们回顾一下第一章中例1的数学模型:Max 1243Z x x =+s.t. 1212126282318,0x x x x x x ≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩ (2.1)一般来说,在与问题相关的表格的基础上稍加调整就可以在电子表格中形成一个十分清晰的模型描述。
我们以表1-1为基础在Excel 电子表格中将上述问题描述如图2-1。
§2用Excel规划求解工具求解线性规划模型Excel 中有一个工具叫规划求解,可以方便地求解线性规划模型。
“规划求解”加载宏是Excel 的一个可选加载模块,在安装Excel 时,只有在选择“定制安装”或完全安装时才可以选择装入这个模块。
如果你现在的Excel 窗口菜单栏的“工具”菜单中没“规划求解”选项,可以通过“工具”菜单的“加载宏”选项打开“加载宏”对话框来添加“规划求解”(见图2-2)。
在应用规划求解工具以前,要首先确认在Excel 电子表格中包括决策变量、目标函数、约束函数三种信息的单元格或单元格区域。
图2-1中的电子表格中就已经有了这部分内容:决策变图2-1 资源分配问题的模型在Excel 电子表格的布局及公式图2-2 加载宏对话框量在C9和D9单元格中;目标函数的系数在第8行;约束函数在第5、6和7行。
因为我们不知道决策变量的值是多少,所以就在决策变量所在的单元格中填上初始值“0”,当然也可以什么都不填,系统会默认它为0,在求解以后Excel会自动将它们替换成决策变量的最优解。
下面我们接着上节的内容用Excel规划求解将第一章例1的资源分配问题解一遍。
首先将要求解模型的所有相关信息和公式像图2-1那样填入电子表格中后,再选取[工具] | [规划求解]命令后,弹出图2-3所示的“规划求解参数”对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 使用Excel 求解线性规划问题
利用单纯形法手工计算线性规划问题是很麻烦的。
office 软件是一目前常用的软件,我们可以利用office 软件中的Excel 工作表来求解本书中的所有线性规划问题。
对于大型线性规划问题,需要应用专业软件,如Matlab ,Lindo ,lingo 等,这些软件的使用这里我们不作介绍,有需要的,自己阅读有关文献资料。
用Excel 工作表求解线性规划问题,我们需要先设计一个工作表,将线性规划问题中的有关数据填入该工作表中。
所需的工作表可按下列步骤操作:
步骤1 确定目标函数系数存放单元格,并在这些单元格中输入目标函数系数。
步骤2 确定决策变量存放单元格,并任意输入一组数据。
步骤3 确定约束条件中左端项系数存放单元格,并输入约束条件左端项系数。
步骤4 在约束条件左端项系数存放单元格右边的单元格中输入约束条件左端项的计算公式,计算出约束条件左端项对应于目前决策变量的函数值。
步骤5 在步骤4的数据右边输入约束条件中右端项(即常数项)。
步骤6 确定目标函数值存放单元格,并在该单元格中输入目标函数值的计算公式。
例 建立如下线性规划问题的Excell 工作表:
12
121
21212max 1502102310034120..55150
,0z x x x x x x s t x x x x =++≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩
解:下表是按照上述步骤建立的线性规划问题的Excell 工作表。
其中:
D4=B2*B4+C2*C4, D5=B2*B5+C2*C5 , D6=B2*B6+C2*C6, C7= B2*B1+C2*C1 。
建立了Excel 工作表后,就可以利用其中的规划求解功能求相应的线性规划问题的解。
求解步骤如下:
步骤1 单击[工具]菜单中的[规划求解]命令。
步骤2 弹出[规划求解参数]对话框,在其中输入参数。
置目标单元格文本框中输入目标单元格;[等于]框架中选中[最大值\最小值]单选按钮。
步骤3 设置可变单元格区域,按Ctrl 键,用鼠标进行选取,或在每选一个连续区域后,在其后输入逗号“,”。
步骤4 单击[约束]框架中的[添加]按钮。
步骤5 在弹出的[添加约束]对话框个输入约束条件.
步骤6 单击[添加]按钮、完成一个约束条件的添加。
重复第5步,直到添加完所有条件
步骤7 单击[确定]按钮,返回到[规划求解参数]对话框,完成条件输入的[规划
求解参数]对话框。
步骤8 点击“求解器参数”窗口右边的“选项”按钮。
确信选择了“采用线性模型”旁边的选择框。
这是最重要的一步工作!如果“假设为线性模型”旁边的选择框没有被选择,那么请选择,并点击“确定”。
如果变量全部非负,而“假定变量非负”旁边的选择框没有被选择,那么请选择,并点击“确定”。
步骤9 单击[求解]按钮,弹出[规划求解结果]对话柜,同时求解结果显示在工作表中。
步骤10 若结果满足要求,单击[确定]按钮,完成操作;若结果不符要求,单击
[取消]按钮,在工作表中修改单元格初值后重新运行规划求解过程。
例 利用Excell 工作表求解线性规划问题
12
121
21212max 1502102310034120..55150
,0z x x x x x x s t x x x x =++≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 。
解:1 将光标方在目标函数值存放单元格(C7),点击“工具”,出现下图:
2 点击“规划求解”出现下图
如果是求最小值问题,选择“最小值”。
3.在可变单元格中选择决策变量单元格B2,C2,出现下图。
4. 点击“添加”,出现下图。
5.输入约束条件
6. 输入约束条件,点击“确定”,出现下图。
7. 点击“选项”,出现下图。
如果“采用线性模型”前没有√,点击“采用线性模型”;如果“假定非负”前
没有√,点击“假定非负”。
8. 点击确定,回到规划求解对话框,出现下图。
9.点击“求解”,出现下图‘
计算机给出求解信息“规划问题找到一解,可满足所有约束条件及最优状况”,这说明,问题有最优解。
10.点击“确定”,回到Excell工作表,出现下图。
在工作表中,给出了最优解情况:
120,30,max 6300x x z === 。
在工具栏中,如果没有“规划求解”项目,可通过“加载宏”添加规划求解功能。
提醒大家注意的是,在计算机安装时,很多计算机的office 软件是典型安装的,这时,需要有office 软件的安装盘。
利用Excell 工作表的规划求解功能,可得案例1.1 火电厂动力配煤问题的最优解为:
1号矿井生产的煤的使用量为0吨;
2号矿井生产的煤的使用量为313.07吨;
2号矿井生产的煤的使用量为649.72吨;
2号矿井生产的煤的使用量为37.2顿:
最小总成本是699193.13元。
下表是相应的Excell 求解表格。