机械式转向器的设计与计算

合集下载

《汽车设计》课程教学大纲

《汽车设计》课程教学大纲

《汽车设计》课程教学大纲课程代码:020241010课程英文名称:Automobile Design课程总学时:48 讲课:48 实验:0 上机:0适用专业:车辆工程专业大纲编写(修订)时间:2017.5一、大纲使用说明(一)课程的地位及教学目标该课程是车辆工程专业本科生的一门必修专业课。

通过本课程的教学,使学生掌握汽车总体设计的步骤、方法、有关参数对汽车性能的影响;学会分析和评价整车及总成的结构与性能,合理选择结构方案及有关参数;学会主要总成的设计计算方法。

学生在完成本课程的学习后,应能进行初步的汽车总体设计和总成设计与计算等技术工作,为今后从事汽车及科研、设计等工作打下扎实的基础。

(二)知识、能力及技能方面的基本要求1.基本知识:掌握汽车设计的一般流程、主要设计指标、汽车主要总成的选型、主要参数的选择;汽车主要零部件的主要类型、工作条件、设计要求、材料、性能、结构特点等。

2.基本理论和方法:掌握汽车设计的基本原则,明了汽车发动机的相关参数对汽车设计的重大影响,着重掌握汽车底盘主要总成的参数选择、确定、设计计算,掌握提高零件疲劳强度,降低或增强摩擦,提高零部件工艺性的途径和方法等在设计中的应用。

3.基本技能:掌握设计计算、结构设计,编制技术文件等技能。

(三)实施说明1、本大纲中各章内容之间既相互关联又各自独立,每一章论述车辆一个系统的设计;2、本课程中未提及汽车车架设计的内容,这一部分在另外一门课程中讲述;3、本课程重点是有关汽车设计的基本理论、方法和程序,忌将设计理解为设计计算,教师应结合车辆工程专业的实际问题,在教学过程中注意理论与实际结合,突出实际应用;4、教师在授课过程中可以根据实际情况酌情安排各部分的学时,课时分配表仅供参考;5、课程的教学目标通过讲授、课后作业、实验和课程设计四个环节来实现。

教师要注重对基本概念、基本方法和解决实际问题思路的讲解,以便学生在实际应用中能举一反三,灵活运用。

汽车转向设计与计算

汽车转向设计与计算

转向系统的计算设计:这次设计的电动车用的是麦弗逊式独立悬架,采用分段式转向梯形机构。

对于采用独立悬架的汽车转向车轮,转向梯形中的横拉杆应是分段式的,以避免运动干涉,防止一个车轮的上下跳动影响另一个车轮的跳动。

(图一)这种转向系统的结构大多如图1所示。

转向轴1的末端与转向器的齿轮轴2直接相连或通过万向节轴相连;齿轮图2与同装于一壳体内的齿条3啮合。

外壳则固定于车身或车架上。

齿条通过两端的球铰接头与两根分开的横拉杆4相连,两横拉杆又通过球头销与左右车轮上的梯形臂5、6相连。

这里齿条3既是转向器的传动件又是转向梯形机构中三段式横拉杆的一部分。

齿轮—齿条式转向器具有结构简单紧凑,制造工艺简便等优点,不仅适用于整体式前轴也适用于前轮采用独立悬架的断开式前轴,目前广泛地被采用于轿车、轻型客货车、微型汽车等车辆上。

但与之相配的转向梯形机构与传统的整体式转向梯形机构相比有其特殊之处。

故有必要加以研究和探讨。

绝大多数齿轮一齿条式转向器都布置在前轴后方,这样既可避让发动机的下部,又便于与转向轴下端连接。

安装时齿条中心线应与汽车纵向对称轴垂直;并且当转向器处于中立位置时,齿条两端球铰中心应对称地处于汽车纵向对称轴的两侧。

对于给定的汽车,其轴距L、主销后倾角口以及左右两主销轴线延长线与地面交点间距离K均为已知定值。

对于选定的转向器,其齿条两端中心距M也为已知定值.故在设计中需确定的参数为梯形底角、梯形臂长l以及齿条中心线到梯形底边的安装距1离,而横拉杆长度l可由上述参数确定其表达式为。

2转动转向盘时,齿条便向左或向右移动,使左右两边的杆系产生不同的运动,从而使左右车轮分别获得一个转角。

以汽车左转弯为例,此时右轮为外轮,外轮一侧的杆系运动如图2所示。

设齿条向右移过某一行程S,通过右横拉杆推动右梯形臂,使之转过。

(图二)取梯形右底角顶点O为坐标原点,X、Y轴方向如图2所示,则可导出齿条行程S与外轮转角的关系:另外,有图像可知:而+arctan-(图三)为坐标原点,X、Y轴方向如图3所示,则同样可导出齿条行程取梯形左底角顶点O1S与内轮转角的关系,即:众所周知,在不计轮胎侧偏时,实现转向轮纯滚动、无侧滑转向的条件是内、外轮转角具有如图4所示的理想的关系,即(图四)(6)式中T—计及主销后倾角夕时的计算轴距主销后倾角3°计算得T=2800+693/2tan3=2818L—汽车轴距2800mmr—车轮滚动半径346.5mm由(6)式可将理想的内轮转角民,表示为设计变量:、底角y和安装距对于给定的汽车和选定的转向器,转向梯形机构尚有梯形臂长11离h三个设计变量。

转向系统设计计算匹配

转向系统设计计算匹配

1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。

装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。

2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。

机械式转向器的设计与计算

机械式转向器的设计与计算

机械式转向器的设计与计算机械式转向器是一种经典的机械装置,可以完成物体的旋转转移、扭转和角度校准等任务,常用于车辆转向系统、机械臂控制系统以及工业生产线等场合中。

在这篇文档中,我们将探讨机械式转向器的设计与计算方法。

一、机械式转向器的概述机械式转向器通常由两个主要部分组成:驱动轴和输出轴。

驱动轴是负责输入旋转力矩的轴,可以是手动或电动的。

输出轴则是负责传递旋转力矩的轴,可以是直线或曲线的。

通过曲柄、齿轮、滑块等机械元件的配合和变换,将输入转矩转化为输出转矩,实现物体的旋转和扭转。

机械式转向器具有以下特点:1. 结构简单,稳定性好;2. 能够承受较大的输出力矩;3. 可以与其他机械装置相结合,实现更复杂的动作。

二、机械式转向器的设计方法设计一个机械式转向器需要考虑以下几个方面:1. 设计输入和输出轴的位置和方向,以适应所需传动动作;2. 设计曲柄、齿轮、滑块等机械元件的形状、大小和配合方式,以实现输入和输出转矩的转化;3. 确定机械式转向器的尺寸和重量,以满足预定的设计要求。

具体的设计步骤如下:1. 确定动作要求和传动方式。

根据所需完成的动作要求和转动方向,设计输入和输出轴的位置和方向,确定驱动轴和输出轴间的夹角和轴向距离。

2. 选择合适的机械元件。

根据所需传动动作和力矩大小,选择适当的曲柄、齿轮、滑块等机械元件,并确定它们之间的配合方式和转动比。

3. 进行结构分析。

对机械式转向器的整体结构进行分析,验证各部件的尺寸和强度是否能够满足设计要求。

根据实际计算结果进行适当的调整。

4. 进行力学分析。

对机械式转向器的运动状态进行力学分析,确定输出力矩大小和方向,并进一步评估各部件的强度。

5. 进行制造和组装工作。

根据所设计的参数和尺寸,制造所需机械元件,并按照图纸要求进行组装。

三、机械式转向器的计算方法机械式转向器的计算方法与其他机械装置类似,可以采用以下几种常用的计算方法:1. 扭矩计算法。

通过计算输入和输出端的扭矩大小和方向,判断机械式转向器的传动能力是否满足要求。

汽车转向系设计答辩ppt课件

汽车转向系设计答辩ppt课件

五、动力转向机构设计
1.1对动力转向机构的选取
整体式动力转向器多用在轿车和前桥载重在15t以下的货车上,本设计 的货车的前桥的载重为2.4t,所以采用整体式动力转向器 2.液压式动力转向机构的计算
2.1动力缸尺寸计算
动力缸内径D
活塞杆直径
动力缸体壁厚t
六、转向梯形优化设计
建立约束条件时应考虑到:设计变量m及 过小时,会使横拉杆上的转 向力过大;当m过大时,将使梯形布置困难,故对m的上、下限及对 的下限应设置约束条件。因 越大,梯形越接近矩形.f(x)值就越大 ,而优化过程是求f(x)的极小值,故可不必对 的上限加以限制。
最小传动角约束条件为:
优化结果:
七、设计总结
通过本次汽车设计实践课程使我 们对汽车设计有更加深刻理解,不 仅锻炼了自己动手设计的能力,而 且培养了创新理念。在这里要非常 感谢老师和学校提供的这次机会.
谢谢!
目录
一、转向系的功能和要求 二、转向系分析 三、转向系主要性能参数 四、转向器设计计算 五、动力转向机构设计 六、转向梯形优化设计 七、设计总结
一、转向系的功能和要求
1.汽车转弯行驶时,全部车轮应绕瞬时转向中心 旋转。
2.操纵轻便,作用于转向盘上的转向力小于 200N。
3.转向系的角传动比在23~32之间,正效率在 60%以上,逆效率在50%以上。
为了布置方便,减小由于装置位置误差及部件相 对运动所引起的附加载荷,提高汽车正面碰撞的 安全性以及便于拆装,在转向轴与转向器的输入 端之间安装转向万向节。(见后图)
采用柔性万向节可减少传至转向轴上的振动,但 柔性万向节如果过软,则会影响转向系的刚度。
重型货车转向阻力大,采用动力转向时,还应有 转向动力系统。

机械式转向器的设计和计算

机械式转向器的设计和计算

机械式转向器的设计和计算引言机械式转向器是一种用于转动或控制物体方向的装置。

它被广泛应用于汽车、航空器、工业设备等领域。

在本文档中,我们将探讨机械式转向器的设计和计算方法。

设计过程机械式转向器的设计过程可以分为以下几个步骤:步骤1: 确定需求和规格在设计机械式转向器之前,首先需要明确转向器的需求和具体规格。

这包括转向角度范围、转向速度、承载能力等。

步骤2: 选择适当的转向机构类型根据设计要求选择适当的转向机构类型。

常见的转向机构类型包括齿轮传动、滑块传动、曲柄杆机构等。

根据应用场景和性能要求选择合适的机构类型。

步骤3: 计算和优化在选择了合适的转向机构类型后,需要进行计算和优化。

这包括计算转向角度和转向速度的传递比例、计算承载能力和寿命等。

步骤4: 材料选择和制造确定了转向机构的设计参数后,需要选择合适的材料,并进行制造。

机械式转向器通常需要具备较高的强度和耐磨性能。

步骤5: 装配和调试制造完成后,进行转向器的装配和调试。

确保转向器能够正常工作,并进行必要的调整和修正。

计算方法在机械式转向器的设计中,有一些常用的计算方法可以帮助我们确定转向机构的参数和性能。

齿轮传动的计算如果选择了齿轮传动作为转向机构类型,可以使用以下公式进行计算:1.计算传动比例:传动比例公式传动比例公式其中,i为传动比例,z1和z2分别为输入齿轮和输出齿轮的齿数。

2.计算转矩传递比例:转矩传递比例公式转矩传递比例公式其中,τ为转矩传递比例,τ1和τ2分别为输入齿轮和输出齿轮的转矩,η为传动效率。

3.计算齿轮轴的弯曲应力:齿轮轴弯曲应力公式齿轮轴弯曲应力公式其中,σb为齿轮轴的弯曲应力,M为转矩,d为齿轮轴的直径。

这些计算方法可以帮助我们确定齿轮传动的参数和性能。

滑块传动的计算如果选择了滑块传动作为转向机构类型,可以使用以下公式进行计算:1.计算滑块的速度比例:滑块速度比例公式滑块速度比例公式其中,v1和v2分别为输入和输出滑块的速度,X1和X2为输入和输出滑块的行程。

齿轮齿条式转向器设计

齿轮齿条式转向器设计

1齿轮齿条式转向器简介1.1齿轮齿条式转向系转向系是通过对左、右转向之间的合理匹配来保证汽车能沿着理想的轨迹运动的机构,它由转向操纵机构转向器和专项传动机构组成。

齿轮齿条机械转向器是将司机对转向盘的转动变为或齿条沿转向车轴轴向的移动,并按照一定的角传动比和力传动比进行传递的机构。

机械转向器与动力系统相结合,构成动力转向系统。

高级轿车和中兴载货汽车为了使转向轻便,多采用这种动力转向系统。

采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。

1.2转向系设计要求通常,对转向系的主要要求是:(1)保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便;(2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑;(3) 传给转向盘的反冲要尽可能的小;(4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态;(5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员;(6) 转向器和专项传动机构因摩擦产生间隙时,应能调整而消除之。

2转向系主要性能参数2.1转向器的效率功率P1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号η+表示,η+=(P1—P2)/Pl;反之称为逆效率,用符号η-表示,η-=(P3—P2)/P3。

式中,P2为转向器中的摩擦功率;P3为作用在转向摇臂轴上的功率。

为了保证转向时驾驶员转动转向盘轻便,要求正效率高。

为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。

为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手又要求此逆效率尽可能低。

2.1.1转向器正效率η+影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。

(1)转向器类型、结构特点与效率在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。

汽车转向器的设计毕业论文

汽车转向器的设计毕业论文

汽车转向器的设计毕业论文目录摘要 ...................................... 错误!未定义书签。

Abstract .................................... 错误!未定义书签。

1绪论 (1)2汽车转向系的组成及分类 (3)2.1汽车转向系的类型和组成 (3)2.1.1 机械式转向系 (6)2.1.2 动力转向器 (7)2.2 转向系主要性能参数 (8)2.2.1转向器的效率 (8)2.2.2传动比的变化特性 (10)2.2.3转向盘自由行程 (13)2.3 转向操纵机构及转向传动机构 (13)2.3.1转向操纵机构 (13)2.3.2转向传动机构 (14)3转向器总成方案分析 (15)3.1转向器设计要求 (15)3.2转向器总成方案设计 (16)4循环球式转向器主要尺寸参数的选择 (19)5 转向器输出力矩的确定 (23)6 轴的设计计算及校核 (24)6.1 转向摇臂轴(即齿形齿扇轴)的设计计算 (24)6.1.1材料的选择 (24)6.1.2结构设计 (24)6.1.3轴的设计计算 (24)6.2 螺杆轴设计计算及主要零件的校核 (28)6.2.1材料选择 (28)6.2.2结构设计 (28)6.2.3轴的设计计算 (29)6.2.4钢球与滚道之间的接触应力校核 (31)参考文献 (33)致谢 (34)附录 (36)1绪论循环球式转向器的英文名称是Recirculating Ball Steering Gear。

循环球式转向器由两对传动副组成,一对是螺杆、螺母,另一对是齿条、齿扇或曲柄销。

在螺杆和螺母之间装有可循环滚动的钢球,使滑动摩擦变为滚动摩擦,从而提高了传动效率。

循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向,这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力转向装置所应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 机械式转向器的设计与计算一、转向系计算载荷的确定为了保证行驶安全,组成转向系的各零件应有.足够的强度。

欲验算转向系零件的强度,需首先确定作用在各零件上的力。

影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。

为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的摩擦阻力等。

精确地计算出这些力是困难的。

为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩R M (mm N •)p G f M R 313= (7-9)式中,f 为轮胎和路面间的滑动摩擦因数,一般取O.7;1G 为转向轴负荷(N);p 为轮胎气压(a MP )。

作用在转向盘上的手力为+ωη=i D L M L F sw Rh 212 (7-10)式中,1L 为转向摇臂长;2L 为转向节臂长;sw D 为转向盘直径;ωi 为转向器角传动比;+η为转向器正效率。

对给定的汽车,用式(7-10)计算出来的作用力是最大值。

因此,可以用此值作为计算载荷。

然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘上的最大瞬时力,此力为700N。

二、齿轮齿条式转向器的设计齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。

齿轮模数取值围多在2~3mm之间。

主动小齿轮齿数多数在5~7个齿围变化,压力角取20º,齿轮螺旋角取值围多为9º~1 5º。

齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。

变速比的齿条压力角,对现有结构在12º~35º围变化。

此外,设计时应验算齿轮的抗弯强度和接触强度。

主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。

为减轻质量,壳体用铝合金压铸。

三、循环球式转向器设计(一)主要尺寸参数的选择1、螺杆、钢球、螺母传动副(1)钢球中心距D、螺杆外径D、螺母径2D尺寸D、1D、1D如图7-19所示。

钢球中心距是基本尺寸,螺杆外径1D、2螺母径D及钢球直径d对确定钢球中心距D的大小有影响,2而D又对转向器结构尺寸和强度有影响。

在保证足够的强度条件下,尽可能将D值取小些。

选取D值的规律是随着扇齿模数的增大,钢球中心距D 也相应增加(表7—1)。

设计时先参考同类型汽车的参数进行初选,经强度验算后,再进行修正。

螺杆外径1D 通常在20~38mm 围变化,设计时应根据转向轴负荷的不同来选定。

螺母径2D 应大于1D ,一般要求()D D D %10~%512=-。

图7—19 螺杆、钢球、螺母传动副(2)钢球直径d 及数量n 钢球直径尺寸d 取得大,能提高承载能力,同时螺杆和螺母传动机构和转向器的尺寸也随之增大。

钢球直径应符合国家标准,一般常在7~9mm 围选用(表7-1)。

增加钢球数量n ,能提高承载能力,但使钢球流动性变坏,从而使传动效率降低。

因为钢球本身有误差,所以共同参加工作的钢球数量并不是全部钢球数。

经验证明,每个环路中的钢球数以不超过60粒为好。

为保证尽可能多的钢球都承载,应分组装配。

每个环路中的钢球数可用下式计算 d DW d DW n π≈απ=0cos式中,D 为钢球中心距;W 为一个环路中的钢球工作圈数;n 为不包括环流导管中的钢球数;0α为螺线导程角,常取0α=5º~8º,则cos 0α≈1。

(3)滚道截面 当螺杆和螺母各由两条圆弧组成,形成四段圆弧滚道截面时,见图7-20,钢球与滚道有四点接触,传动时轴向间隙最小,可满足转向盘自由行程小的要求。

图中滚道与钢球之间的间隙,除用来贮存润滑油之外,还能贮存磨损杂质。

为了减少摩擦,螺杆和螺母沟槽的半径2R 应大于钢球半径d /2,一般取2R =(O.51~O.53)d 。

(4)接触角θ 钢球与螺杆滚道接触点的正压力方向与螺杆滚道法面轴线间的夹角称为接触角θ,如图7-20所示。

θ角多取为45º,以使轴向力和径向力分配均匀。

(5)螺距P 和螺旋线导程角0α 转向盘转动ϕ角,对应螺母移动的距离s 为πϕ=2P s (7-11) 式中,P 为螺纹螺距。

图7—20 四段圆弧滚道截面与此同时,齿扇节圆转过的弧长等于s ,相应摇臂轴转过p β角,其间关系可表示如下r s p β= (7-12)式中,r 为齿扇节圆半径。

联立式(7-11)、式(7-12)得p Pr βπ=ϕ2,将ϕ对p β求导得循环球式转向器角传动比ωi 为Pr i π=ω2 (7-13) 由式(7-13)可知,螺距P 影响转向器角传动比的值。

在螺距不变的条件下,钢球直径d 越大,图7-19中的尺寸b 越小,要求b=P-d>2.5mm 。

螺距P 一般在8~llmm 选取。

前已述及导程角0α对转向器传动效率有影响,此处不再赘述。

(6)工作钢球圈数W 多数情况下,转向器用两个环路,而每个环路的工作钢球圈数w 又与接触强度有关:增加工作钢球圈数,参加工作的钢球增多,能降低接触应力,提高承载能力;但钢球受力不均匀、螺杆增长而使刚度降低。

工作钢球圈数有1.5和2.5圈两种。

一个环路的工作钢球圈数的选取见表7-1。

表7—1 循环球式转向器主要参数2、齿条、齿扇传动副设计如图7-21所示,滚迨相对齿扇作斜向进给运动加工齿扇齿,得到变厚齿扇。

如图7—22所示,变厚齿扇的齿顶和齿根的轮廓面是圆锥的一部分,其分度圆上的齿厚是变化的,故称之为变厚齿扇。

图7-22中,若0-0截面的原始齿形变位系数ξ=O,且I—I剖面和Ⅱ—Ⅱ剖面分别位于0-0剖面两侧,则I—I剖面的齿轮是正变位齿轮,Ⅱ—Ⅱ剖面中的齿轮为负变位齿轮,故变厚齿扇在整个齿宽方向上,是由无数个原始齿形位移系数逐渐变化的圆柱齿轮所组成。

图7—21 用滚刀加工变厚齿扇的进给运动图7—22 变厚齿扇的截面对齿轮来说,因为在不同位置的剖面中,其模数优不变,所以它的分度圆半径厂和基半径b r 相同。

因此,变厚齿扇的分度圆和基圆均为一圆柱,它在不同剖面位置上的渐开齿形,都是在同一个基圆柱上所展出的渐开线,只是其轮齿的渐开线齿形相对基圆的位置不同而已,所以应将其归人圆柱齿轮的畴。

变厚齿扇齿形的计算,如图7-23所示,一般将中间剖面1-1规定为基准剖面。

由1-1剖面向右时,变位系数ξ为正,向左则由正变为零(O-0剖面),再变为负。

若0-0剖面距1-1剖面的距离为0a ,则其值为γξ=tan /0m a ,γ是切削角,常见的有6º30¹和7º30¹两种。

在切削角γ一定的条件下,各剖面的变位系数ξ取决于距基准剖面1-1的距离a 。

进行变厚齿扇齿形计算之前,必须确定的参数有:模数m ,参考表7-2选取;法向压力角0α,一般在20º~30º之间;齿顶高系数1x ,一般取O.8或1.O ;径向间隙系数,取O.2;整圆齿数z ,在12~15。

之间选取;齿扇宽度B ,一般在图7—23 变厚齿扇齿形计算简图22~38mm 。

表7-2 循环球式转向器齿扇齿模数四、循环球式转向器零件强度计算1、钢球与滚道之间的接触应力σ用下式计算钢球与滚道之间的接触应力σ()()3222223r R r R E F k -=σ式中,k 为系数,根据A /B 值从表7—3查取,()()[]2//1/12R r A -=,()()[]2//1/11R r B +=;2R 为滚道截面半径;r 为钢球半径;1R 为螺杆外半径;E 为材料弹性模量,等于25/101.2mm N ⨯;3F 为钢球与螺杆之间的正压力,可用下式计算 θα=cos cos 023n F F式中,0α为螺杆螺线导程角;θ为接触角;n 为参与工作的钢球数;2F 为作用在螺杆上的轴向力,见图7—24。

当接触表面硬度为58~64HRC 时,许用接触应力[σ]= 25002/mm N 。

图7-24 螺杆受力简图表7-3 系数k 与A /B 的关系2、齿的弯曲应力w σ 用下式计算齿扇齿的弯曲应力26Bs Fhw =σ 式中,F 为作用在齿扇上的圆周力;h 为齿扇的齿高;B 为齿扇的齿宽;s 为基圆齿厚。

许用弯曲应力为[w σ]=5402/mm N 。

螺杆和螺母用20CrMnTi 钢制造,表面渗碳。

前轴负荷不大的汽车,渗碳层深度在O.8~1.2mm ;前轴负荷大的汽车,渗碳层深度在1.05~1.45mm 。

表面硬度为58~63HRC 。

此外,应根据材料力学提供的公式,对接触应力进行验算。

3、转向摇臂轴直径的确定 用下式计算确定摇臂轴直径d32.0τRKM d =式中,K 为安全系数,根据汽车使用条件不同可取2.5~3.5;R M 为转向阻力矩;0τ为扭转强度极限。

摇臂轴用20CrMnTi 钢制造,表面渗碳,渗碳层深度在O.8~1.2mm。

前轴负荷大的汽车,渗碳层深度为1.05~1.45mm。

表面硬度为58~63HRC。

相关文档
最新文档