电力电子课设
电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。
技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。
课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。
教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。
教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。
教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。
教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。
教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。
电力电子课程设计仿真图

电力电子课程设计仿真图一、教学目标本课程的教学目标是使学生掌握电力电子学的基本原理,学会使用电力电子仿真图进行分析和设计,培养学生解决电力电子实际问题的能力。
具体目标如下:1.知识目标:(1)了解电力电子器件的工作原理和特性;(2)掌握电力电子电路的基本拓扑结构和性能;(3)熟悉电力电子仿真图的绘制和分析方法。
2.技能目标:(1)能够运用电力电子仿真图对电路进行分析和设计;(2)具备使用电力电子仿真软件进行仿真实验的能力;(3)能够独立完成电力电子电路的搭建和调试。
3.情感态度价值观目标:(1)培养学生对电力电子技术的兴趣和热情;(2)增强学生的创新意识和团队合作精神;(3)培养学生关注社会、解决实际问题的责任感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电力电子器件:介绍电力电子器件的基本原理、特性及应用;2.电力电子电路拓扑:分析各种电力电子电路的拓扑结构、工作原理和性能;3.电力电子仿真图:讲解电力电子仿真图的绘制方法,分析仿真结果;4.电力电子仿真实验:利用仿真软件进行电力电子电路的仿真实验,掌握实验技巧;5.实际案例分析:分析电力电子技术在实际工程中的应用案例,提高解决实际问题的能力。
三、教学方法为实现教学目标,本课程将采用以下教学方法:1.讲授法:用于讲解电力电子器件、电路拓扑和仿真图的基本概念;2.讨论法:学生就电力电子技术的热点问题进行讨论,培养学生的创新思维;3.案例分析法:分析实际案例,使学生掌握电力电子技术在工程中的应用;4.实验法:利用仿真软件进行电力电子电路的仿真实验,培养学生动手能力和实际问题解决能力。
四、教学资源为实现教学目标,本课程将采用以下教学资源:1.教材:选用权威、实用的电力电子教材,为学生提供系统、全面的知识体系;2.参考书:提供相关领域的参考书籍,丰富学生的知识储备;3.多媒体资料:制作精美的课件,提高课堂教学效果;4.实验设备:配置电力电子仿真软件和实验设备,为学生提供实践操作的机会。
电力电子课程设计课本

电力电子课程设计课本一、教学目标本节课的教学目标是使学生掌握电力电子学的基本概念、原理和应用,培养学生对电力电子技术的兴趣和热情,提高学生的科学素养和创新能力。
具体目标如下:1.知识目标:学生能够了解电力电子学的基本概念、原理和主要器件,理解电力电子电路的工作原理和性能,掌握电力电子技术的应用领域。
2.技能目标:学生能够分析简单的电力电子电路,进行电力电子器件的选择和应用,具备设计简单的电力电子电路的能力。
3.情感态度价值观目标:学生能够认识电力电子技术在现代社会中的重要性和地位,培养对电力电子技术的兴趣和热情,提高科学素养和创新能力。
二、教学内容本节课的教学内容主要包括电力电子学的基本概念、原理和应用。
具体安排如下:1.电力电子学的基本概念和原理:介绍电力电子学的定义、特点和基本原理,讲解电力电子器件的分类、特性和应用。
2.电力电子电路:分析电力电子电路的工作原理和性能,介绍电力电子电路的常见应用领域,如电力变换、电力控制等。
3.电力电子技术的应用:介绍电力电子技术在现代社会中的应用案例,如变频调速、电动汽车、智能电网等,强调电力电子技术对现代社会的重要性和影响。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法相结合的方式进行教学。
具体方法如下:1.讲授法:通过讲解电力电子学的基本概念、原理和应用,使学生掌握电力电子技术的基本知识。
2.案例分析法:通过分析具体的电力电子应用案例,使学生了解电力电子技术在实际工程中的应用和价值。
3.实验法:学生进行电力电子实验,使学生亲自操作和观察电力电子电路的工作原理和性能,提高学生的实践能力和创新能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课将采用以下教学资源:1.教材:选用权威、实用的电力电子学教材,为学生提供系统、科学的学习材料。
2.参考书:推荐学生阅读电力电子学相关的参考书籍,拓展学生的知识面。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,为学生提供直观、生动的学习资源。
电力电子技术课程设计范例

电力电子技术课程设计范例电力电子技术课程设计是电气工程专业的一门重点课程,该课程设计主要涉及到电力电子变流器的设计、控制和应用。
此外,该课程还包括功率半导体器件的选型、电路设计、控制系统设计以及电磁兼容等方面的内容。
本文主要介绍一种电力电子技术课程设计的范例,以期为电力电子技术课程设计的读者提供一些参考和借鉴。
1. 课程设计目标电力电子技术课程设计的主要目标是培养学生的电气设计能力、模拟仿真能力、实验操作能力和团队合作意识,以及使学生掌握电力电子变流器的设计和控制技术。
2. 课程设计主题设计具有稳定输出电压的电力电子变流器。
具体包括:(1)设计一个交流输入、直流输出的电力电子变流器。
(2)根据实际需要选择并计算所需的功率半导体装置。
(3)设计适当的电路保护和故障检测系统。
(4)编写控制程序实现变流器的开关控制。
(5)进行电路仿真和实验验证。
其中,电力电子变流器可以采用全桥式、半桥式、双向直流-直流变换器等常用拓扑结构。
3. 课程设计步骤(1)确定项目的范围和目标。
明确所需完成的技术任务和各个环节的时间计划,提前预估和解决可能遇到的技术问题。
(2)收集相关的技术资料。
包括相关电路设计资料和器件规格书等。
(3)根据设计需求进行选型计算,选择满足要求的元器件。
(4)进行电路仿真验证。
采用MATLAB/Simulink软件搭建电路模型,对所设计的电路进行仿真,进一步验证电路的性能和可靠性。
(5)设计控制系统。
采用单片机或FPGA等控制芯片,编写控制程序实现变流器的开关控制,并对控制程序进行仿真和验证。
(6)进行实验验证。
制作样品电路,进行实际测试和验证。
实验过程中,需要注意电路稳定性和安全性,防止短路等电路故障。
(7)编写课程设计报告。
对整个设计过程进行总结和评估,包括设计思路、设计过程、实验结果等方面内容。
4. 课程设计评分电力电子技术课程设计评分主要包括以下几个方面:(1)方案设计(20分)。
设计方案的完备性、实现难度、适用性和创新性等方面考虑。
电力电子课设总结与体会

电力电子课设总结与体会一、引言电力电子作为一门重要的电子学科,对现代电力系统的稳定性和可靠性有着至关重要的作用。
在我所学的电力电子课程中,我参与了一项课程设计,通过这个过程,我深刻体会到了电力电子的应用价值和实践意义。
二、课设背景我们的课程设计是设计一个功率因数修正的交流调压电路,它主要用于调整电源的输出功率因数,以提高电力系统的能效和稳定性。
这个项目对于我们来说是一个很好的机会,可以将我们在理论课上学到的知识应用到实际项目中。
三、设计过程1. 课设要求分析在开始设计之前,我们仔细分析了课设的要求,明确了需要实现的功能和性能指标。
这包括设计的输入和输出电压范围、效率要求、输出功率因数等。
通过对这些要求的分析,我们明确了设计的目标和思路。
2. 电路拓扑选择在选择电路拓扑时,我们综合考虑了多种因素,包括成本、功率因数调整范围、效率等。
最终,我们选择了升压型非隔离式交流调压电路。
这种拓扑结构相对简单,成本较低,同时能够满足我们的要求。
3. 元器件选择与参数设计在进行元器件选择和参数设计时,我们参考了各种资料和厂家的数据手册。
我们需要选择合适的功率开关器件、电感和电容等元器件,并根据设计要求计算出它们的参数。
这一步需要考虑元器件的损耗、效率和可靠性等方面的因素,确保设计的可行性和稳定性。
4. 电路仿真与调试在设计完成后,我们利用仿真软件对电路进行了仿真分析。
通过仿真,我们可以评估电路的性能,包括输出电压稳定性、效率、功率因数等。
同时,仿真还可以帮助我们发现潜在的问题,并进行相应的调整和优化。
5. 实验验证与优化经过仿真验证后,我们进行了电路的实际搭建和调试。
在搭建电路的过程中,我们注意了各种电路连接和元器件的安装要求。
在调试过程中,我们积极探索和解决了一些问题,通过调整电路参数和控制策略,最终达到了设计要求。
四、成果与收获通过这个课程设计,我不仅学到了电力电子相关的理论知识,也掌握了实际应用的技能。
我深刻认识到电力电子在电力系统中的重要性和广泛应用的前景。
电力电子毕业课程设计

电力电子毕业课程设计一、课程目标知识目标:1. 学生能理解电力电子技术的基本原理,掌握常见电力电子器件的工作原理及应用。
2. 学生能掌握电力电子装置的设计方法,包括器件选型、参数计算和电路搭建。
3. 学生了解电力电子技术在新能源、电力系统和工业控制中的应用。
技能目标:1. 学生具备分析和解决实际电力电子工程问题的能力,能运用所学知识进行电路设计与调试。
2. 学生能运用相关软件(如PSPICE、MATLAB等)进行电力电子电路的仿真分析,提高实际操作能力。
3. 学生具备查阅相关技术文献、资料的能力,提高自学能力和团队协作能力。
情感态度价值观目标:1. 学生通过课程学习,培养对电力电子技术的兴趣,激发创新意识和探索精神。
2. 学生能够关注电力电子技术的发展趋势,认识到其在国家能源战略和节能减排中的重要性。
3. 学生在课程实践中,培养严谨、负责的工作态度,提高沟通与协作能力。
本课程针对电力电子专业毕业生,结合学生特点和教学要求,注重理论与实践相结合,提高学生的实际操作能力和工程素养。
通过课程学习,使学生具备电力电子技术的基本知识和技能,为未来的职业发展打下坚实基础。
同时,培养学生对电力电子技术的兴趣和责任感,为我国电力电子行业的发展贡献力量。
二、教学内容1. 电力电子器件原理及特性:包括二极管、晶体管、晶闸管、场效应晶体管等常见器件的工作原理、特性参数和应用领域。
教材章节:第1章 电力电子器件2. 电力电子变换电路:介绍AC-DC、DC-AC、DC-DC等基本电力电子变换电路的原理、拓扑结构及其应用。
教材章节:第2章 电力电子变换电路3. 电力电子装置设计:讲解装置设计方法、步骤,包括器件选型、参数计算、电路搭建等。
教材章节:第3章 电力电子装置设计4. 电力电子电路仿真:运用PSPICE、MATLAB等软件进行电力电子电路的仿真分析,提高学生实际操作能力。
教材章节:第4章 电力电子电路仿真5. 电力电子技术在新能源、电力系统和工业控制中的应用:分析各类应用实例,让学生了解电力电子技术的实际应用。
电力电子课程设计任务书

电力电子课程设计任务书一、课程目标知识目标:1. 理解电力电子器件的基本原理、分类及其在电路中的应用;2. 掌握电力电子变换器的工作原理、电路构成及其控制方法;3. 了解电力电子技术在能源转换、电机调速等领域的应用。
技能目标:1. 能够分析并设计简单的电力电子电路,进行电路仿真与实验操作;2. 学会使用相关软件(如PSPICE、MATLAB等)对电力电子电路进行性能分析与优化;3. 能够针对实际问题,运用电力电子技术提出解决方案,并进行初步设计与评估。
情感态度价值观目标:1. 培养学生热爱科学、积极探索电力电子技术发展的精神;2. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要性;3. 培养学生的团队协作能力和沟通表达能力,使其在学术交流中能够积极参与、互相学习。
课程性质:本课程为高年级专业课程,旨在帮助学生将理论知识与实际应用相结合,提高解决实际问题的能力。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手实践能力,但可能对电力电子技术在实际应用中的具体问题缺乏深入了解。
教学要求:结合课本内容,注重理论与实践相结合,强调实际操作能力的培养。
通过课程学习,使学生能够将所学知识应用于实际工程问题,提高其创新能力和实践能力。
在此基础上,分解课程目标为具体的学习成果,以便进行后续的教学设计和评估。
二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 电力电子器件原理及其特性- 教材章节:第一章- 内容:晶闸管、GTO、MOSFET、IGBT等器件的工作原理、特性参数及选型。
2. 电力电子变换器及其控制技术- 教材章节:第二章- 内容:AC-DC、DC-AC、DC-DC等变换器的工作原理、电路拓扑及其控制策略。
3. 电力电子技术应用- 教材章节:第三章- 内容:电力电子技术在电力系统、新能源、电机调速等领域的应用案例。
4. 电力电子电路设计与仿真- 教材章节:第四章- 内容:电路设计方法、仿真软件使用及电路性能分析。
电力电子技术课程设计

电力电子技术课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及功能,理解不同器件在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,掌握常见电力电子电路的原理及分析方法。
3. 帮助学生掌握电力电子装置的控制策略,了解电力电子技术在节能、环保等方面的应用。
技能目标:1. 培养学生运用所学知识分析、设计简单电力电子电路的能力。
2. 提高学生动手实践能力,能正确搭建、调试和优化电力电子实验装置。
3. 培养学生运用电力电子技术解决实际问题的思维方法和创新能力。
情感态度价值观目标:1. 激发学生对电力电子技术学科的兴趣,培养其探索精神和求知欲。
2. 培养学生具备良好的团队合作意识,学会在团队中沟通交流,共同解决问题。
3. 增强学生的节能环保意识,使其认识到电力电子技术在未来可持续发展中的重要性。
课程性质:本课程为专业核心课程,旨在让学生掌握电力电子技术的基本理论和实践技能,培养学生具备分析和解决实际问题的能力。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和实践操作能力,对新技术和新事物充满好奇心。
教学要求:注重理论与实践相结合,强调学生的主体地位,鼓励学生主动参与、积极思考,提高其分析问题和解决问题的能力。
通过课程学习,使学生达到预定的学习成果,为后续相关课程的学习和实际工作打下坚实基础。
二、教学内容1. 电力电子器件原理及分类:包括半导体器件、二极管、晶体管、晶闸管等基本原理、特性及应用。
教材章节:第一章《电力电子器件》2. 电力电子电路拓扑结构:分析常见电力电子电路如整流电路、斩波电路、逆变电路的原理及性能。
教材章节:第二章《电力电子电路拓扑》3. 电力电子装置控制策略:学习PID控制、PWM控制等在电力电子装置中的应用。
教材章节:第三章《电力电子装置的控制》4. 电力电子技术应用:介绍电力电子技术在工业、家电、新能源等领域的应用案例。
教材章节:第四章《电力电子技术的应用》5. 实践教学:组织学生进行电力电子电路搭建、调试和优化实验,提高学生动手能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要整流电路是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。
整流电路的应用十分广泛,例如直流电动机,电镀,电解电源,同步发电机励磁,通信系统电源等。
本次研究的就是交流电经过整流电路,变成直流电,供给直流电动机负载。
采用并联多重12脉冲联结(两个三相桥式全控整流电路并联)和顺序控制的方法,减少交流输入的电流谐波,同时减少直流输出电压中的谐波幅值,提高纹波频率。
由于晶闸管的导通,必须有触发脉冲,所以整流电路外加触发电路,由于集成电路可靠性高,体积小,功耗低,调试方便,所以触发电路由KJ004和KJ041集成电路组成。
本文通过理论分析、仿真研究和实验验证,证实了该电路的合理性、可靠性,实用性。
关键词:12脉并联;整流电路;KJ004;KJ041目录第1章绪论 (3)1.1电力电子技术概况 (3)1.2本文设计容 (4)第2章电路设计 (5)2.1总体设计方案 (5)2.2.1主电路设计 (5)2.2.2触发电路设计 (8)2.3元器件型号选择 (10)第3章课程设计总结 (17)参考文献 (18)第1章绪论1.1电力电子技术概况电力电子器件应用与电力电子系统,它是利用电力电子器件对电能进行变换和控制的新兴学科。
电力电子技术主要应用于电力变换。
电力电子器件的发展是以电力电子器件为核心,伴随着变换技术和控制技术的发展而发展。
电力电子技术可以理解为功率强大,可供诸如电力系统那样的大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它运行效率问题。
为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式,这种开关方式就是电力电子器件运能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、行的特点。
新型电力电子器件呈现出许多优势,它使得电力电子技术发生了突变,进入了现代电力电子技术阶段。
现代电力电子技术的主要特点是:(1)全控化是由半控型普通晶闸管发展到各类自关断器件,是电力电子器件在功能上的重大突破。
自关断器件实现了全控化,取消了传统电力电子器件的复杂换相电路,使电路大大简化。
(2)集成化与传统电力电子器件的分立方式完全不同,所有的全控型器件都是由许多单元器件并联在一起,集成在一个基片上。
(3)高频化是指随着器件集成化的实现,同时也提高了器件的工作速度,例如GTR可工作在10kHz频率以下,IGBT工作在几十千赫兹以上,功率MOSFET 可达数百千赫兹以上。
(4)高效率化体现在器件和变换技术这2个方面,由于地电力电子器件的导通压降不断减少,降低了导通损耗;器件开关的上升和下降过程加快,也降低了开关损耗;器件处于合理的运行状态,提高了运行效率;变换器中采用的软开关技术,使得运行效率得到进一步提高。
(5)变换器小型化是指随着器件的高频化,控制电路的高度集成化和微型化,使得滤波电路和控制器的体积大大减小。
电力电子器件的多单元集成化,减少了主电路的体积。
控制器和功率半导体器件等,采用微型化的表面贴技术使得变换器的体积得到了进一步减少,功率为10kV 。
1.2本文设计容本设计的主要容是采用多脉整流,以减小输出直流的脉动,为1台额定电压220V、功率为42kW的直流电动机提供直流可调电源,以实现直流电动机的调速。
课题对带三相 PFC 的AC / DC变换器进行一些有益的研究,重点对传统的12脉波整流电路进行了改进,加入辅助电路有效的减小了流入电网的谐波电流,在并且在较宽的围可以调节输出电压。
交流电源三相380V经过整流输出电压Ud 0~220V连续可调,同时整流输出电流最大值为200A,向直流电动机负载供电。
根据实际工作情况最小控制角α取20~300左右。
220V/200A并联多重12脉可控整流电路的设计包括方案的经济技术论证、设计并联多重可控整流电路的主电路设计、通过计算选择整流器件的具体型号、确定变压器变比及容量、触发电路设计和选择绘制相关电路图。
第2章 电路设计2.1总体设计方案对于输入交流电流,采用多重联结不仅可以减少交流输入电流的谐波,同时也可以减少直流输出电压中的谐波幅值并提高纹波频率,因而可减少平波电抗器。
初选并联6脉可控整流、串联12脉可控整流、并联12脉可控整流。
12脉冲整流器在多项性能指标优于6脉整流器,同时并联和串联整流器效果是相同的。
但根据本次设计的主要容、技术要求和经济支持下,采用并联12脉可控整流。
电路设计构想方案如下:图2.1电路方框图2.2具体电路设计2.2.1主电路设计随着整流装置功率的进一步加大,它所产生的谐波、无功功率等对电网的干扰也随之加大,为了减轻干扰,可采用多重化整流电路。
即将几个整流电路多重联结可减少交流侧输入电流的谐波,而对晶闸管多重整流电路采用顺序控制的方法可提高功率因数。
根据此次设计的要求,采用将两个三相桥式全控整流电路(带阻感负载)并联多重12脉波整流电路,并且连接一个额定电压为220V 、额定功率为42KW 的直流电动机的负载,还有一个电感L,平衡电抗器Lp。
电路采用平衡电抗器来平衡各组整流器的电流,其原理与双反星型电路中采用平衡电抗器是一样的。
变压器二次侧的两绕组的机型相反可消除贴心的直流磁化,设置电感量为Lp 的平衡电抗器是为了保护两组三相全控桥式整流电路同时导电,每组承担一半负载。
依据题意控制角取30º,利用变压器的二次绕组不同,使两组三相交流电源间相位错开30º,从而使输出整流电压Ud,在每个交流电源周期中脉动12次,故该电路是12脉冲整流电路。
整流变压器二次绕组分别采用星形和三角形接法构成相位差30º、大小相等的两组电压,接至相互并联的两组整流桥。
因绕组接法不同,变压器一次绕组和两组二次绕组的匝比为。
L LP50 %12a1c1b1c2b2a2M K2TT id VT1VT3VT5VT4VT6VT2VT7VT9VT11VT10VT12VT8图2.1并联多重12脉冲可控整流电路主电路原理图此次设计采用多重联结电路顺序控制,使得各整流电桥交流二次输入电压错开一定此相位,但工作是各桥的控制角。
这样可以使输入电流谐波含量大为降低。
根据总直流输出电压从低到高的变化,按顺序依次对各桥进行控制,虽然不能减少输入电流的谐波,但是各组桥中只有一组在进行相位控制,其余各组或不工作,或位移因数为1,因此总的功率因数提高。
下面介绍三相桥式全控整流电路:a1c1b1TVT1VT3VT5VT4VT6VT2负载nL图2.3 三相桥式全控整流电路原理在图2.3中阴极连接在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组,阳极连接在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组。
晶闸管的导通顺序为VT1-VT2-VT3-VT4- VT5-VT6.整流输出电压Up的波形早一周期波动六次,且每次脉动的波形相同,所以计算器平均值时,只需要对一个脉波(即1/6周期)进行计算即可,当整流输出电压连续时,(即带阻感负载时,或带电阻负载α≤60º)的平均值为:(因为是并联两个三项全控整流电路的电压相等)同时输出电流平均值.。
同理只有当两个电源的电压平均值和瞬时平均值相等时,才能使负载电流平均分配。
所以变压器二次侧电流为:2.2.2触发电路设计使晶闸管开始导通,必须施加触发脉冲,在晶闸管触发电路中必须有触发电路,触发电路性能的好坏直接影响晶闸管电路工作的可靠性,也影响系统的控制精度,正确设计触发电路是晶闸管电路应用的重要环节。
由于集成电路可靠性高,技术性能好,体积小,功耗低,调试方便。
所以此次触发电路是由六片继承触发电路芯片KJ004和两片继承双脉冲发生器芯片KJ041组成。
三片继承触发电路芯片KJ004和一片继承双脉冲发生器芯片KJ041就可形成六路双脉冲,再由六个晶体管进行脉冲放大,即构成完整的三相桥式全控整流电路的集成触发电路,两个完整的三相桥式全控整流电路的集成触发电路并联即是此次设计的触发电路。
锯齿波的斜率一致,各晶闸管的触发脉冲间隔是60º。
同理,角接三相桥式全控整流电路触发电路的电路和星接三相桥式全控整流触发电路相似,至VT1变为至VT7,依次类推。
如图2.4所示触发电路均为模拟的,其优点是结构简单、可靠、但缺点是易受电网电压影响,触发脉冲的不对称度较高,可达,精度低,在对精度要求较高的大容量变流装置中,越来越多的采用数字触发电路,可获得很好的触发脉冲对称度。
但以上触发电路应用于此次设计可以。
2.3元器件型号选择一个额定功率为42kW的,额定电压为220V的直流电动机,12个晶闸管,一个可调的变电感,一个电感,星接变压器,交接变压器,若干导线。
具体参数计算如下:u的波形在一个周期脉动6次,且每次脉动的波形相同,因此在计算其平dα=所均值时,只需对一个脉波(即1/6周期)进行计算即可。
此外,因为030以电压输出波形是连续的,以线电压的过零点为时间坐标的零点,可得整流输出α=和电压连续时的平均值为。
030输出电流平均值为:U1KJ412345678910111213141516U2KJ412345678910111213141516U3KJ412345678910111213141516U4KJ0411234567891111213141516V15VR10C1R11C2R12C3R1R7R4R2R8R5R3R9R6 C7C8C9Uco50 %up50 %RP450 %RP550 %RP650 %RR0R01至VT1至VT2至VT3至VT4至VT5至VT6R19R20R21R16R17R18C4C5C6RP150 %RP250 %RP350 %V1-15VR13R14R15Usa Usb Usc图2.4星接三相桥式全控整流电路触发电路的电路原理图代入式计算有:变压器二次侧电流为:代入数值计算得:将电流波形分解为傅里叶级数,以a相为例,将电流正、负半波的中点作为时间零点,则有所以解电流基波和各次谐波有效值分别为:有上述式子可得基波因数为:可明显看出电流基波与电压的相位差仍为а,故位移因数仍为功率因数即为α=代入计算得把030交流输入相电压有效值:Boost 开关频率: 50KHz输出额定电压:输出最大电流:输出额定功率:Boost电感的参数设计:Boost 电路输入电流峰值为输入相电流峰值式中,为输入相电压有效值,假设效率为 0.95。
设计电路中电流纹波的峰峰值为电流峰值的 15%,占空比为计算出电感值为开关电源的变压器、电感磁心一般是低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
可用作磁心的软磁材料有很多种,但适合作高频条件下的 Boost 电感的只有几种。
铁氧体电阻率高,高频损耗小,温升低,价格便宜,但有防饱和问题,要开气隙后才能使用,还有 EMI 产生。