钢结构稳定设计
钢结构稳定设计指南

钢结构稳定设计指南钢结构失稳形式存在多样性外,还应了解下列四个方面的特点:(1)稳定问题要考虑构件及结构的整体作用;(2)稳定计算要按二阶分析进行;(3)考虑初始缺陷的极值稳定计算正在取代完善构件的分岔点稳定计算;(4)稳定性不仅通过计算来保证,还需要从结构方案布置和构造设计来配合。
关键字:钢结构稳定,轴心压杆,计算长度,受弯构件,框架稳定一.钢结构稳定问题的待点失稳形式存在多样性外,还应了解下列四个方面的特点:(1)稳定问题要考虑构件及结构的整体作用;(2)稳定计算要按二阶分析进行;(3)考虑初始缺陷的极值稳定计算正在取代完善构件的分岔点稳定计算;(4)稳定性不仅通过计算来保证,还需要从结构方案布置和构造设计来配合。
二.轴心压杆的稳定计算(1)影响轴心压杆稳定承载力的最主要因素是残余应力,它是把稳定系数分成a、b、c三类的依据,残余压应力越大,位置距形心轴越远,值越低。
(2)轴心压杆不仅会发生弯曲失稳,也可能发生扭转失稳。
在采用单轴对称截面时.需要特别注意扭转的不利作用。
(3)设计格构柱时,需要了解几何缺陷的不利影响和柱肢压缩对缀条的影响。
三.轴心压杆的计算长度关于压杆计算长度的确定,需要明确以下几点:(1)确定杆系结构中的杆件计算长度时,应把它和对它起约束作用的构件一起作稳定分析。
这是稳定性整体计算的一种简化方法。
压杆一般不能依靠其他压杆对它的约束作用,除非两者的压力相差悬殊。
(2)节点连接的构造方式会影响杆件的稳定性能。
因此,杆件计算长度和构造设计有密切联系。
比如杆件在交叉点的拼接会影响它的出平面弯曲刚度并使计算长度增大。
又如起减小计算长度作用的撑杆的连接有偏心,会降低它的有效性。
(3)塔架杆件的计算长度有不同于平面桁架(屋架)的特点.主杆和腹杆都各有其特殊之处。
此外、塔架中单角钢杆件预期绕平行轴失稳时,需要考虑扭转的不利影响。
(4)桁架体系的支撑构件和塔架中的横隔构件都对杆件的计算长度有直接影响。
钢结构中稳定设计

钢结构中稳定设计研究摘要:钢结构失稳是建筑结构设计中的重要问题。
本文分析了钢结构失稳的主要原因,以及在设计阶段应该秉承的主要原则,最后分析了钢结构设计时候应该注意的一些要点。
关键词:钢结构;结构稳定;结构设计一、钢结构失稳问题分析1、具有平衡分岔的稳定问题钢结构中由于完善直杆轴心受压时的屈曲和完善平板中面受压时的屈曲就是造成钢结构失稳的一个主要原因。
2、无平衡分岔的稳定问题有些钢结构建材设计成偏心受压构件,这就使其在塑性发展到达了一定程度的时候造成结构失稳的问题,因此这类问题应该在结构设计阶段就尽可能的防治。
3、跃越失稳问题跃越失稳是由于前一个结构失去平衡后跳跃到另一个相对稳定平衡的状态,这种情况下对于结构的稳定承载分析就相对麻烦了一些。
有的钢结构在设计的时候本身无问题,但是在受到一定的荷载力量影响后就会发生一定的重心偏心问题,因此我们在设计这种构件的时候应该尽可能的了解其缺陷,从而最大限度的保证钢结构的稳定性。
二、钢结构设计的原则1、结构整体布置必须考虑整个体系以及组成部分的稳定性要求在钢结构设计过程中,应该加强按照整体平面体系设计意识,做好桁架和框架两方面的把关工作。
只要做好了这两个方面,平面失稳问题就能够减小到最低限度。
另外,从结构整体布置上来看,足够的支撑构件也是不可或缺的,在平面稳定计算问题上必须要考虑到稳定的结构布置,如平面桁架组成的塔架应该在杆件的稳定和横隔设置之间多注意一些,最大限度的保证钢结构的稳定性。
2、结构计算简图和实用计算方法所依据的简图相一致目前,在设计单层和多层框架结构时,经常不作框架稳定分折而是代之以框架柱的稳定计算。
在采用这种方法时,计算框架柱稳定时用到的柱计算长度系数,自应通过框架整体稳定分析得出,才能使柱稳定计算等效于框架稳定计算。
然而,实际框架多种多样,而设计中为了简化计算工作,需要设定一些典型条件。
gbjl7-88规范对单层或多层框架给出的计算长度系数采用了五条基本假定。
钢结构稳定性设计出现的问题与解决方法分析

钢结构稳定性设计出现的问题与解决方法分析引言伴随着我国经济的快速发展,我国的建筑工程要求越来越高,钢结构在工程当中的应用也越来越广泛,在钢结构设计当中稳定性设计是非常重要的组成部分,做好这一部分工作可以很好的减少不必要的经济损失。
目前来说,钢结构稳定性设计已经成为整个钢结构设计,甚至是结构设计领域当中比较热门的问题,也是整个行业的发展趋势和目标。
因此最大限度做好钢结构稳定性设计不仅仅节约资源,还能保证工程质量,减少工程事故的发生。
1、钢结构稳定性设计的重要性在目前存在的钢结构建筑当中有相当一部分存在稳定性差的问题,主要的问题关键就是设计者在进行设计时没有很好的将钢结构当中的材料和结构的相关性能弄清楚,同时缺乏稳定性设计概念。
包括施工企业在施工过程当中没有严格按照设计和规范要求进行,从而导致失稳现象的产生,往往造成巨大的经济损失。
因此在建筑工程设计与施工当中做好钢结构稳定性设计是至关重要的,不仅仅关系到整个建筑工程的质量,同时还关系到相关人员的生命财产安全。
因为钢结构失稳导致的是整个建筑物的倒塌,而不是某一个部位出现问题,造成的经济损失和人员伤亡是不可估量的。
在现阶段我国的工程实际当中做好钢结构稳定性设计已经是迫在眉睫了,在关注钢架构设计稳定性问题的同时,采取有针对性的措施,保证钢结构建筑物的安全稳定是具有重要意义。
2、稳定性的设计原则2.1细部构造和构件稳定性计算方法在进行钢结构设计时需要将设计的构造和对应的结构计算对应起來,在满足结构的稳定性的同时还需要满足结构的细部设计要求,是两者达到高度的一致性。
连接节点当中需要传递传递弯矩就需要设计足够的刚度和柔度;在桁架结构设计中,针对节点位置应该要尽量的减少杆件的偏心,对于钢结构设计来说,这也仅仅是构件的细部构造,但是在稳定性设计当中,对于细部的构造就会有很多其他的要求,例如对简支梁来说,其抗弯强度主要就是针对动铰支座是允许其在平面内转动的,但是在梁的整体稳定性当中,支座不仅仅需要满足上述要求满足梁绕纵轴扭转的要求,允许梁在平面内转动以及在梁端截面自由的翘曲。
钢结构稳定性设计原则及关键要点

钢结构稳定性设计原则及关键要点1前言在建筑工程技术漫长的发展历程中,钢结构占据重要地位,目前,作为一种主流的建筑结构形式,被广泛应用于各类建筑设计中,尤其是在厂房、桥梁、机场、剧院、超高层等大型建筑结构中。
在上世纪,由于钢材冶炼技术并不发达,建筑用钢材含碳量较高,其韧性和耐腐蚀性等缺点使得钢结构在建筑设计领域并不受重视,一度被边缘化,几乎淘汰。
近几年以来,随着金属冶炼科技的不断进步,高强度、高韧性、耐腐蚀的建筑用钢材被广泛生产,钢结构又重新受到建筑设计师的青睐,被越来越多地使用在各种工程建造中,在减轻建筑物总体结构重量,提高建筑物整体安全性方面起到了积极作用。
[1]随着建筑技术的不断发展,钢结构的使用也越来越广泛,各种复杂的使用条件对其稳定性提出了严峻的考验,本文将详细分析钢结构稳定性的设计在建筑工程使用的要点和原则,并总结相关经验和不足。
2钢结构的概念钢结构顾名思义就是以钢材作为结构搭建的主要原材料,通过钢梁、钢板、钢柱等不同的钢制组件,采用焊接、铆接等连接手段进行拼接组装,进行大型建筑物搭建的建筑结构类型。
钢结构以各类钢材作为主要材料,与普通混凝土等建筑材料不同,钢材具备重量轻,韧性强等特点,能够承受更大的力,因此在大中型建筑物设计中经常采用钢结构设计。
钢结构构造稳定,不易变形,能够为建筑物提供良好的安全稳定性。
但是,在某些特殊情况下也有可能出现钢结构失稳的情况,常见的有以下两种情况:一种是过大的压力直接作用在受力平衡点上,造成结构整体受力不均导致失稳。
[2]另一种是钢结构构件由于长期使用,导致内部结构发生金属疲劳等问题,内部结构失去支撑作用,导致整体结构失稳。
在进行钢结构设计之前,有必要明确这种结构的稳定性特点,才能在设计过程当中有的放矢,避免结构弱点,发挥钢结构的优势,使得建筑物中的钢结构发挥更好的作用。
3钢结构提高设计稳定性的原则钢结构的稳定性是进行钢结构设计过程当中最重要的因素,在长期的工程实践和理论研究中,工程技术人员总结出了三条提高钢结构稳定性的设计原则。
钢结构稳定-理论与设计教学设计

钢结构稳定-理论与设计教学设计一、教学目标本教学设计旨在通过理论讲解和实践操作,让学生掌握钢结构稳定的相关理论知识和设计方法,能够独立完成简单的钢结构稳定计算和设计。
具体目标如下:1.掌握钢结构稳定的理论知识,包括稳定性基本概念、稳定失效形式、稳定分析方法等;2.掌握钢结构稳定设计的基本方法和相关规范,包括LRFD规范、ASD规范、中国国家标准等;3.能够独立完成钢结构稳定的计算和设计,包括稳定性分析、引伸性稳定、弯曲扭曲耦合稳定、局部稳定等。
二、教学内容1.钢结构稳定的基本概念和稳定失效形式稳定性定义和基本原理压杆稳定、压弯稳定、剪切稳定、扭转稳定等失效形式2.钢结构稳定的分析方法直接稳定分析方法引伸性稳定分析方法弯曲扭曲耦合稳定分析方法局部稳定分析方法3.钢结构稳定设计方法和规范 LRFD规范和ASD规范的基本概念和应用中国国家标准的应用钢结构稳定设计的实际应用案例三、教学方法1.案例研究法,通过案例分析练习,让学生了解稳定性分析和设计的具体应用。
2.现场实践教学法,通过参观工程现场和实地勘察,让学生了解结构实际施工的情况,更好地掌握设计方法和规范。
3.理论教学与实践操作相结合,通过讲解理论知识和操作实践,让学生深入理解稳定性分析和设计。
四、教学资源1.课件,包括对应章节的知识点总结、案例分析和练习题等。
2.相关规范和标准,包括LRFD规范、ASD规范、中国国家标准等。
3.案例分析中所涉及到的工程设计图纸和相关数据。
五、教学评估1.期中测试,测试平时所学的理论知识和实际应用方法。
2.稳定性分析与设计实验,让学生在指导下独立完成稳定性分析和设计工作,并据此评估学生的操作能力和技术水平。
3.总结性论文,让学生自己确定一个稳定性问题进行研究,并写一篇有一定深度的论文加以分析。
六、教学时长本教学设计涵盖了钢结构稳定的基本理论知识和设计方法,预计总时长为30学时,其中实践操作时间不少于1/3。
七、教学团队1.主讲人:一名具有丰富工程实际经验的教授或高级工程师,主要负责讲授理论知识和设计方法,指导学生完成实践操作和论文写作等。
钢结构稳定的概念设计

首先,我们来了解一下钢结构稳定设计的基本概念。钢结构稳定设计主要是 研究结构在受到外力作用下的稳定性,防止结构发生失稳或屈曲的现象。失稳是 指结构在受到外力作用后,没有发生整体变形,而是出现了局部弯曲或扭曲的现 象。屈曲则是指结构在受到外力作用后,发生了整体变形,并且这种变形是不可 恢复的。因此,钢结构稳定设计的主要目标是防止这两种现象的发生。
2、稳定安全系数:稳定安全系数是指在荷载作用下,结构所能承受的最大 应力与极限应力的比值。在钢结构稳定设计中,需要综合考虑各种因素的影响, 确定合理的稳定安全系数。
五、实际工程中的钢结构稳定设 计案例及设计原则解释
以某桥梁工程为例,该桥梁为钢箱梁结构形式,跨度为30米。在桥梁设计中, 需要考虑到车辆通行、风载、地震等多种荷载因素的影响。为保证桥梁的稳定性, 设计时采用了以下措施:
1、杆件强度:选用高强度钢材作为桥梁的主要构件材料,以提高其承载能 力和稳定性。
2、支座形式:采用四氟板式橡胶支座作为桥梁的支撑形式,以减小支座对 结构稳定性的影响。
3、荷载分布:通过对桥面进行合理的配重和分布设计,使桥梁在不同荷载 作用下的稳定性得到保证。
4、长细比控制:在设计中严格控制桥梁的截面尺寸和长细比,使其符合规 范要求,以保证结构的稳定性。
二、钢结构稳定的定义及相关概 念
在钢结构稳定分析中,通常需要考虑两种类型的稳定问题:平面稳定和空间 稳定。平面稳定是指结构在某一平面内的稳定性,而空间稳定则是指结构在三个 维度上的稳定性。
1、简支梁:简支梁是一种常见的简单结构形式,其稳定性是钢结构稳定分 析中的重要内容之一。简支梁的稳定性主要受到荷载作用位置和支撑条件的影响。
2、固支梁:固支梁是一种两端固定支撑的结构形式。在固支梁的稳定性分 析中,需要考虑支撑条件和荷载作用位置的影响。
建筑工程中钢结构设计的稳定性原则及设计

建筑工程中钢结构设计的稳定性原则及设计摘要:在建筑工程中,钢结构设计的稳定性原则是确保结构在受力条件下不会发生失稳和破坏。
为此,设计人员需要考虑结构的整体稳定性、局部稳定性和变形控制等因素,并采取相应的设计措施,如设置剪力墙、调整构件尺寸、加强节点设计等,以保证钢结构的稳定性和安全可靠性。
关键词:建筑工程;钢结构设计;稳定性原则引言钢结构在建筑工程中具有广泛的应用,其高强度、轻质化和可塑性等特点使其成为一种优秀的结构材料。
然而,在钢结构设计过程中,稳定性是一个至关重要的考虑因素。
稳定性问题可能导致结构失效和破坏,对人身安全和财产造成巨大威胁。
1.结构稳定性的重要性和影响因素1.1结构稳定性的重要性(1)人身安全保障建筑结构稳定性的确保是为了保护人们在其内部生活、工作和活动的安全。
如果结构失去稳定性,会导致部分或整个建筑发生破坏或倒塌,对居民和工作人员的生命安全构成严重威胁。
(2)财产保护建筑物往往是人们重要的资产之一,如果结构不稳定,会导致房屋损毁、财产损失,给住户和业主带来经济上的重大损失。
(3)建筑品质和功能保证:稳定的结构设计可以保证建筑物长时间内保持原有的形态和功能,并具备正常使用条件。
只有结构稳定,建筑才能耐久、安全地发挥其所需的功能。
1.2结构稳定性影响因素(1)结构几何形状结构的几何形状对其稳定性有重要影响。
一般来说,更高、更狭长、更不规则的结构更容易受到稳定性问题的困扰。
(2)材料特性材料的强度和刚度也对结构的稳定性产生影响。
材料的抗压、抗拉、抗弯等特性决定了结构在受力时的稳定性。
(3)荷载类型和施加位置结构在受到不同类型荷载的作用下,其稳定性表现会有所不同。
例如,水平荷载(如风荷载和地震荷载)会产生横向推力,而垂直荷载(如重力荷载)会产生压缩力。
荷载施加的位置也会对结构稳定性产生重要影响。
(4)支撑和连接方式结构中支撑和连接的方式对稳定性起到重要作用。
适当的支撑和合理的连接设计可以增加结构的稳定性。
谈谈钢结构稳定性设计原则及要点

谈谈钢结构稳定性设计原则及要点随着钢结构的广泛应用,人们对其结构工程设计的合理性及安全性要求也越来越高。
我们知道稳定性设计是钢结构工程设计中重点考虑项目之一,同时也是最能威胁钢结构安全性的重要影响因素。
然而,我们却看到因建筑钢结构稳定性不强而引起的安全事故却屡屡出现,社会各界对建筑钢结构稳定性设计的关注日益凸显。
失稳事故的发生与设计者有着很大的关系,因此,要想从根本上避免失稳事故的发生,设计者必须把好钢结构稳定性设计这一关。
由此可见,研究钢结构的稳定性设计具有一定的现实意义及重要价值。
下面笔者对钢结构的稳定性设计进行了简要探讨。
一.建筑钢结构的稳定性设计基本概念我们知道,钢结构失稳可以分为分支点失稳、极值点失稳和跳跃失稳三种。
而钢结构构件强度是容易引起失稳现象破坏建筑结构的一个重要因素,因此人们常常把稳定与强度相挂钩,认为稳定问题就是强度问题。
然而值的注意的是,强度实质上是应力方面问题,而稳定是变形方面问题,两者概念范畴不一样。
所谓稳定实质上它是指钢结构构件内部所承受的抵抗力与外部承受的荷载处于不平衡的受力状态时,寻找相对平衡的契合点,来避免钢结构发生急剧变形,避免一系列建筑结构破坏;而强度问题强调的是处于稳定平衡状态下的钢结构或单个构件承受荷载的最大应力作用时抵抗破坏的一种能力,两者存在很大差异。
二.钢结构稳定性设计原则及要点2.1 钢结构整体布置必须以整个体系以及组成部分的稳定性要求为前提我们知道现在绝大多数的钢结构都是以平面体系来设计的,桁架和框架就是如此。
为了保证平面结构不出现平面失稳等状况往往需要设计者从结构整体布置出发,设计一些必要的支撑构件等等。
换句话说,平面结构构件的平面稳定计算必以整个体系以及组成部分的稳定性要求为前提,与结构布置相一致。
2.2结构计算简图应与实用计算方法所依据的简图相一致结构计算简图和实用计算方法所依据的简图相一致,在框架结构的的稳定计算中得到了很好的应用。
如今,设计单层及多层框架结构时,往往用框架柱的稳定计算来代替框架稳定分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈钢结构稳定设计
【摘要】:钢结构稳定问题是钢结构设计的关键问题之一,钢结构体系的广泛应用更显示了稳定问题研究的重要性。
由于钢结构体系设计以及使用当中存在着许多不确定性因素,本人结合工作中的设计经验对钢结构体系的稳定性问题进行了总结。
关键词:钢结构,稳定性,可靠,失稳。
中图分类号:tu391文献标识码: a 文章编号:
钢结构稳定设计具有和强度问题不同的特点,在以往的设计中,遇到的问题多是小型钢平台,因荷载较小,高度较低,只要满足强度要求,一般不会失稳。
在近几年的接触的工业工程设计实践中,认识到保证结构整体的稳定及其构件自身的稳定是钢结构设计中极其重要的内容。
经过查阅大量钢结构资料,对钢结构稳定性设计的特点建立起了明确概念,认为保证钢结构在设计中的稳定主要包括三方面的原则。
1. 钢结构布置时,应考虑各个环节的稳定性要求。
目前结构大多数是按照平面体系来设计的,如桁架和框架都是如此。
保证这些平面结构不致出现平面外失稳,需要通过结构整体布置来解决,亦即设置必要的支撑构件。
这就是说,平面结构构件的平面外稳定计算必须和结构布置相一致。
例如,大跨度过路管架,一般需要做成桁架的型式,而用pkpm进行桁架的设计时,一般只是拿出桁架的一榀来进行平面内构件的强度和稳定计算,桁架的平
面外稳定则需要通过在上下弦分别加设钢横梁及水平支撑来保证。
2.结构计算简图和实用计算方法所依据的简图相一致。
《钢结构设计规范》中很大一部分条文都与稳定问题有关,遵循这些条文规定,对防止出现结构失稳,当然是必不可少的。
然而,仅按规范条文来处理稳定问题还很不够,我们尚需对条文的规定有一定深度理解,并且各种因素对结构和构件稳定性能的影响也应进行考虑。
结构计算简图和实用计算方法所依据的简图相一致,这对框架结构的稳定计算十分重要。
在设计单层和多层框架结构时,经常不作框架稳定性分析,而是代之以框架柱的稳定性计算。
在采用这种方法时,计算框架柱稳定时,用到的柱计算长度系数μ,自应通过框架整体稳定分析得出,才能使柱稳定计算等效于框架稳定计算,然而,实际框架多种多样,而设计中为了简化计算工作,需要设定一些典型条件。
《钢结构设计规范》对单层和多层框架给出的长度系数μ采用了五条基本假定,其中,包括:“框架中所有柱子是同时丧失稳定的,即各柱同时达到其临近荷载。
”按照这条假定,框架各柱的稳定参数应保持常数。
对于最简单的单层单跨框架来说,就是以对称框架作为典型框架。
如果结构不对称,或者荷载不对称,甚至二者都不对称,柱的实际计算长度将不同于典型框架。
在非对称情况下,以单层单跨框架来说,左柱受力为,右柱受力为,当>时,左柱趋于先失稳。
但是,左柱失稳而侧移时,必然要带动右柱一起侧移,而右柱这时还未达临界状态,必将对侧移起阻止作用,从而使左柱推迟失稳。
这就是说,框架失稳是结构的总体问题。
由于整体性,左柱得到右柱的支持,它的计算长度系数小于规范给出的数值。
另一方面,右柱要对左柱提供约束,它的任务加重,计算长度系数大于规范给出的数值,其结果是两根相同的柱在不同荷载作用下,同时失稳。
非对称的单层单跨框架的计算长度系数可以由把规范给出的μ系数
乘以一个修正系数的办法来获得。
对单层多跨等高框架来说,φ为常数,相当于各柱的p/i相同,图1所示各柱的不相同的框架,按规范算得的各柱的μ系数就不能完全反映框架失稳的实际情况,需要作出适当的修正。
简化的修正方法是,对按规范得出的系数乘以修正系数β,从而得出各柱的计算长度系数式中
p1 p2 p3
i1i2i3
图1 参数φ不同的单层框架
多层框架在柱φ不相等时也有μ系数修正问题,框架计算简图和实用方法所依据的简图不一致的情况,还有摇摆柱的框架,这种情况若按规范μ系数计算都会导致不安全的后果。
3.设计结构的细部构造和构件的稳定计算必须相互配合。
结构计算和构造设计应相符,对要求传递弯矩和不要求传递弯矩的节点连接,应分别赋予它足够的刚度和柔度,当涉及稳定性能时,构造上时常有不同于强度的要求或特殊考虑。
对简支粱就抗弯强度
来说,对不动铰支座的要求仅仅是阻止位移,同时允许在平面内转动。
然而在处理梁整体稳定时上述要求就不够了。
支座还需能够阻止粱绕纵轴扭转,同时允许梁在水平平面内转动和梁端截面自由翘曲,以符合稳定分析所采取的边界条件。
支座采用端板式,上翼缘有窄板连于支承结构,从而有效防止扭转。
为了使梁端在自身平面内少受约束,可以把窄板的螺栓孔做成长圆型。
梁端虽有端板,对该截面翘曲的约束作用不大。
高度不大的梁端加劲肋能够有效防止梁端的扭转,可以省去上翼缘的连接板。
但是,既无上翼连接板又无端加劲肋,梁产生侧移和扭转时,梁端不能保持不扭,则梁的整体稳定承载能力要比按规范系数算地要低。
《钢结构设计规范》规范在第4.2.1和第4.2.2条都注明“应采取措施以防止梁端截面的扭转”。
正确进行梁整体稳定计算,涉及的构造问题很多。
《钢结构设计规范》规范所规定的整体稳定系数适用于等截面的梁包括简支梁和悬臂梁。
因此,凡截面变化的梁和端部(或其他部位)有削弱的梁规范的系数系数都不适用。
从梁的抗弯强度来说,当弯矩图变化时梁截面可以相应变化,但是,如果设计时是梁整体稳定控制截面,则梁截面不宜变化。
在梁格系中,当次梁和主梁表面平齐时,次梁端部需要切去一部分上翼缘和腹板。
这种端部削弱的连接方式不仅使梁端一段内截面积减小,并且还造成上翼缘端部可以侧向移动的局面。
如果次梁跨度小而削弱范围相对较长,则次梁整体稳定承载力下降相当多。
虽
然,工程中常见的情况是梁格上面铺有钢筋混凝土板并与梁牢固连接,使梁整体稳定得到保证,但有时遇到不设钢性铺板的梁格的可能性。
在实际设计中,我们设计人员应该明确知道结构构件的稳定性能,以免在设计过程中发生不必要的失稳损失。
总之,熟悉这些特点对于我们设计人员来说是十分有益的,深入理解这些特点有助于设计出既能保证稳定而又经济合理的结构。