钢结构设计中稳定性研究

合集下载

钢结构稳定性设计研究

钢结构稳定性设计研究

2 4 4 ・
工程科 技
钢结构稳定性设计研究
王 丽 丽
( 黑 龙 江 省 林 业设 计 研 究 院 , 黑龙 江 哈 尔滨 1 5 0 0 0 1 )
摘 要: 钢结构 因其 自重轻 、 强度 高、 工业化程度 高等优点 , 被广泛应用在在建筑工程 中。但是必须注意的是 , 钢结构常常 由于其失稳 破坏致使人 员伤亡、 财产损 失 , 而通常情况下, 主要是 因为结构设计存在缺陷而导致 失稳破坏 。鉴于此 , 结合- 1 2 程设计的具体 实践 , 在论述 钢 结构 稳ቤተ መጻሕፍቲ ባይዱ定 性 的 内涵 、 钢 结 构 失稳 的 类 别 , 以及 分 析 方 法 、 设计原则的基础上 , 总结几点钢结构稳定性设计 的经验 , 以 期 能 为 业 界 提 供 一
定 的借 鉴 。
关键词 : 钢结构稳定性设计 ; 稳定性 内涵; 失稳 类别; 分析 方法 ; 设计原则 ; 设计经验 在钢结构工程设计中, 必须要重点考虑其稳定性 的问题。 在现实生 2 . 3动力法。 动力法的基本原理是, 当结构体系处于平衡状态 , 如果 活中, 很多工程事故案例都是因为钢结构失稳造成的。 例如 : 1 9 7 8 年, 美 对其进行微小的干扰使之发生振动,此时在结构上 已经产生作用 的荷 国哈特福特城的体育馆因为压杆屈曲失稳而突然坠落地面 ; 2 0 1 0 年, 昆 载将关系着结构的变形和振动加速度 。当稳定的极限荷载值大于荷载 明新机场钢结构桥跨因为桥下钢结构支撑体系突然失稳而突然垮塌 , 时, 变形和加速度是处于相反的方向 , 因此撤去干扰后运动趋于静止 , 等等。 而之所以频频出现钢结构失稳破坏, 通常主要是因为存在不合理 结构处于稳定 的平衡状态 ; 稳定的极限荷载值小于荷载时 , 变形和加速 的结构设计。所以 , 要想杜绝上述事故的发生 , 注重对钢结构的稳定性 度处在相同的方 向, 此时即使干扰撤去 , 运动仍是发散的 , l 此结构处 进行合理设计是根本和关键。 于不稳定的平衡状态 。 临界状态的荷载也就是结构 的屈 曲荷载 , 可以通 1钢结构稳定性的内涵和失稳的分类 过结构的振动频率为零的条件解得。 1 . 1钢结构稳定性的内涵讨论。钢结构稳定性的内涵 , 必须要了解 3进行钢结构稳定性设计应坚持的原则 . 强度与稳定的区别。所谓 的强度属于应力的问题, 即: 在稳定平衡的状 3 . 1必须按照整个体系以及组成部分的稳定性要求布置钢结构。 目 态下 , 由荷载所引起的结构或者单个构件的最大应力或内力 , 是否超过 前 , 如桁架和框架等大多是按照平面体系设计钢结构数。 对于这些平面 建筑材料的极 限强度。因为材料的特 『 生 不同, 所以极限强度的取值也不 结构而言, 要保证它们避免平面外失稳 , 需要通过如增加必要的支撑构 相同, 对钢材而言, 则取它 的屈服点 ; 所谓的稳定属于变形的问题 , 即: 件等方式 , 进行结构整体布置予以解决 。同时 , 要求结构布置要同平面 发现结构 内部抵抗力和外部荷载之间不稳定的平衡状态, 也就是说 , 变 结构构件的平面稳定计算保持一致 。 形开始急剧增长而需设法避免进入的状态 。举例说明 :当轴压柱失稳 3 . 2“ 两个简图” 要保持一致 。 所谓的“ 两个简图” 是指结构计算简图 时, 柱 的侧 向挠度使柱中的附加弯矩增加很大 , 致使柱子轴压强度大大 和实用计算方法所依据的简图 , 在进行钢结构稳定性设计时, 要求这两 高于它的破坏荷载 , 这时柱子破坏的主要原因便是失稳。 个简图要一致 。当进行单层或多层框架结构设计时 , 一般只进行框架柱 1 . 2钢结构失稳的原因类别。钢结构失稳的原因主要包括以下几 的稳定计算 ,而不对框架的稳定性进行分析。在进行框架柱稳定计算 类: 一是分支点失稳, 即平衡分岔的稳定问题。这一类问题主要表现在 时, 应该通过框架整体稳定分析 , 得出采用这种方法需要用到的柱计算 完善直杆轴心和平板中面受压时的屈曲; 二是极值点失稳 , 即无平衡分 长度系数 , 从而使柱稳定和框架稳定计算实现等效 。 对于单层或多层框 岔的稳定问题 。 这一类问题主要表现为 , 偏心受压构件由建筑钢材做 架给出的柱计算长度系数 , 《 钢结构设计规范》 中采用了五条基本假定 , 成, 其在塑性发展到一定程度时稳定能力丧失 ; 三是跳跃失稳 , 它与上 其中的一条假定是“ 框架中的 所有柱子是同时丧失稳定的, 即各柱同时 述两种稳定问题 的类型不 同, 其主要是指在稳定平衡丧失以后 , 跳跃到 达到其临界荷载” , 据此 , 设 汁者可 以依据一定的简化假设 , 或者典型情 另—个稳定平衡状态。 况得出框架各柱的稳定参数 、 杆件稳定计算的常用方法 , 而且要对所设 2分析钢结构稳定性的若干方法 计的结构完全与这些假设相符进行确认后才能正确应用。 般隋况下 , 要根据结构在外荷载作用下存在变形的条件下 , 分析 3 . 3钢结构的细部构造设计要与构件的稳定计算保持一致 。 在进行 钢结构稳定的问题。这一变形应该对应于研究的结构或构件失稳时出 钢结构设计的过程 中,要高度注意钢结构的细部构造设计与构件 的稳 现的变形。 结构变形与荷载两者之间的关系是非线性的 , 因此作为非线 定计算保持一致。 对要求传递和不传递弯矩的节点连接 , 对它们应该分 性的几何问题 , 稳定计算应该采用二阶分析方法。 在进行稳定计算的过 别赋予足够 的柔度和刚度, 并应尽量减少桁架节点的杆件偏心 , 然而如 程中确定的屈 曲荷载或者极限荷载 ,都可 以被看作是所计算 的结构或 果关系到稳定性能时 , 要在构造上提出不同于强度的要求 , 或者给予特 构件的稳定承载力。 殊 的考虑。 2 . 1静力法 即静 力平衡法。所谓的静力法是指, 在微小变形发生后 4在钢结构稳定性设计实践中的若干经验 结构的受力条件下 , 通过平衡微分方程的建立解出临界荷载。同时 , 应 一是 目 前在钢结构设计 中,进行结构受力计算多借助钢结构计算 根据以下基本的假定建立平衡微分方程。 一是基于等截面直杆构件 ; 二 机软件来完成 , 在这一过程 中, 可 以通过程序 自动计算结构和构件的平 是压力始终沿构件原来轴线作用;三是材料符合应力与应变成线性关 面内强度及整体稳定性 , 而对于平面外强度和稳定性 , 设计者需要另外 系, 即符合胡克定律 ; 四是构件与平截面假定相符 , 也就是说 , 构件的平 进行分析 、 设计和计算。这个时候 , 可 以按照标高把整个结构分解成多 截面在变形前后都是平截面 ; 五是构件的弯曲变形不大 , 可 以近似地用 个不 同布置形式的结构体系, 基于水平荷载作用的不同, 计算结构体 系 挠度函数的二阶导数表示曲率 。 在上述基本假定条件的基础上 , 通过平 的强度和稳定性。 衡微分方程 的建立 , 将相应的边界条件代入 , 就可以解得两端铰支的轴 二是受弯钢构件的板件局部稳定存在以下两种方式 : 第一 , 以屈曲

对钢结构设计中稳定性的分析

对钢结构设计中稳定性的分析

11 . 兼顾 各 个 组 成部 分 以及 整 个 体 系对 于 稳 定性 的特 定要 求
目前 ,我 国大 部分钢结构 设计都 是 以平 面体系 为出发 点,比如 , 在框 架设计与桁架 设计 中都是如此 。为了防止这类平面 结构发生平面 失 稳 事 件 ,必 须 从 其 结 构 的 整 体 布 局 作 为 出 发 点 , 设计 有 针 对 性 的 支
【 摘
计特点和 需遵循的原则,及钢结构稳定性的分析 方法,以供 同行参考。
要 】 稳定 问 一直是钢结梅设计 的关键 问题之一,钢结构体 系的广泛应用凸显 了 定问题研 究的重要性和 紧迫性。阐述 了 题 稳 钢结构稳定设
结构设计
必 须 具 有 整 体 观 点 ,钢 结 构 构件 细 部 的 变 形 , 也会 影 响 到 内 力分 布 。 整 体 缺 陷 使 截 面 局 部 弱 化 ,局 部弱 化 反 过 来 又 对 整 体 承 载 能力 产 生 影
所 以一定 要把握好钢体 结构稳定设计 这一关 。
2 3 构 稳 定 问题 具有 相 关 性 .结
在结 构整体布置中 ,必须对整个 体系Байду номын сангаас 其组成部分 的稳定性要求 进行 考虑 。 比如:在确 定桁架 等杆件 处平 面稳 定时 ,应 考虑结 构布
置 方 案 能 否 对 桁 架 节 点提 供 平 面 外 约 束 。
1钢 结 构 稳 定 设 计 的原 则
依据钢 结构设计中的稳定性 问题 ,在实 际设 计时,为了使钢结构
稳 定 设 计 中 构 件 不 发 生 失 稳 , 必 须 遵 守 以下 三 项 原 则 。
24稳 定 设计 的其 他 特 点 .
分析 结构 的稳定 问题要对 结 构变形后 的位移和 变形对外 力效应 ( 阶 效应 )的影响进 行考 虑 ,这 对柔 性杆 件很 重要 。结构 变形 可 二 能 促 使 其 内 部 的 较 柔 板 件 、 杆 件 失 稳 , 即 变 形 激 发 失 稳 。变 形 对 结 构承载 力 起到 的作用 不可忽视 ,故稳 定 问题原 则上都 应该用 二阶分 析 ,应 力迭 加 原理不 适用 于稳 定计算 中。

钢结构设计中的强度与稳定性分析

钢结构设计中的强度与稳定性分析

钢结构设计中的强度与稳定性分析钢结构作为一种重要的建筑构造形式,在现代建筑中得到了广泛的应用。

其独特的特点使其成为了建筑设计师们的首选,然而,正确理解和分析钢结构的强度与稳定性是确保其安全性和可靠性的关键。

本文将深入探讨钢结构设计中的强度与稳定性分析,以期对读者有所启发。

一、强度分析钢结构的强度分析是确保建筑结构能够承受正常和异常荷载的重要步骤。

在设计过程中,工程师需要考虑到以下几个关键因素。

1.1 材料强度钢材作为钢结构的主要构造材料,其强度参数决定了整个结构的抗力能力。

工程师需要详细了解所选用的钢材的性能指标,包括屈服强度、抗拉强度、弹性模量等,以确保设计结构的强度能够满足要求。

1.2 荷载计算在设计过程中,荷载计算是非常重要的一环。

工程师需要根据建筑的用途和具体情况,准确计算出可变荷载、恒载和地震荷载等,以保证设计的结构能够承受这些荷载。

当荷载不均匀分配时,还需要进行统一系数的计算。

1.3 结构稳定钢结构的稳定性是强度分析中不可忽视的一部分。

当结构受到垂直或水平方向的外力作用时,其稳定性要求结构能够保持稳定。

工程师需要根据实际情况,采用适当的稳定性分析方法,确保设计的结构能够满足要求。

二、稳定性分析稳定性分析是钢结构设计中非常重要的一环,它主要考虑结构在受荷时的稳定性能。

以下是一些常见的稳定性分析方法。

2.1 弯曲稳定性分析在弯曲稳定性分析中,工程师需要计算并分析结构受弯矩作用下的稳定性。

通过计算结构的屈曲系数和容许屈曲荷载,可以确定结构的弯曲稳定性是否得到满足。

2.2 屈曲稳定性分析屈曲稳定性分析主要考虑结构在压力作用下的稳定性。

工程师需要计算结构的临界荷载和理论强度,以保证结构在受压力作用时不发生屈曲。

2.3 应力稳定性分析应力稳定性分析是为了保证结构在受荷时不发生破坏。

工程师需要计算结构的应力集中系数和容许应力,以确保结构在实际使用条件下能够稳定且不发生破坏。

三、结构设计的实践在实际结构设计中,强度与稳定性分析是紧密相连的。

钢结构柱稳定性分析

钢结构柱稳定性分析

钢结构柱稳定性分析钢结构柱作为支撑结构的重要组成部分,在工程设计中扮演着至关重要的角色。

稳定性是评估钢结构柱性能的一个关键指标,本文将从理论分析和实例应用两个方面,对钢结构柱的稳定性进行深入探讨。

一、理论分析1.1 稳定性定义和影响因素钢结构柱的稳定性指其抵抗压力的能力,并且在承受荷载时不会产生无法可靠预测的变形和破坏。

稳定性分析时,需要考虑以下因素:- 材料特性:如钢的弹性模量、屈服强度等,这些参数直接影响柱的稳定性。

- 断面形状:柱截面的几何形状和尺寸也会对稳定性产生影响。

- 受力条件:荷载类型、受力方式和作用点位置等都会对柱的稳定性产生影响。

1.2 稳定性分析方法稳定性分析方法包括理论分析和数值分析两种。

理论分析是基于材料力学原理和结构力学原理,通过推导公式和方程,对稳定性进行计算和分析。

而数值分析则是通过使用计算机软件,根据给定的模型和方程,模拟柱的应力和变形情况。

常用的数值分析方法有有限元法、弹塑性分析法等。

1.3 稳定性失效模式钢结构柱在受力过程中可能发生不同的失效模式。

常见的失效模式有以下几种:- 屈曲失效:柱产生弹性屈曲,继而变形,无法承受更大的荷载。

- 局部失稳:柱截面的一部分,在受到较大荷载作用时出现局部弯曲或局部压扁现象。

- 全局失稳:柱整体失去稳定性,发生侧扭、屈曲或倒塌等现象。

二、实例应用为了进一步说明钢结构柱稳定性分析的实际应用,以下将以某工程项目中的一根钢结构柱为例,进行稳定性分析。

2.1 工程项目背景描述某高层建筑项目中,需要设计一根用于支撑楼层的钢结构柱,该柱高15米,使用普通碳素结构钢材料。

2.2 稳定性分析过程根据柱的高度、材料特性和受力条件,可以采用理论分析和数值分析相结合的方法进行稳定性分析,具体步骤如下:- 步骤一:确定柱的截面形状和尺寸。

根据楼层布置和受力要求,确定柱截面选择为矩形截面,尺寸为300mm * 500mm。

- 步骤二:理论分析计算。

利用材料力学和结构力学理论,计算柱的截面惯性矩、截面模量和截面的屈服强度。

钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计钢结构的应用已经广泛应用于工业、民用、桥梁等各个领域。

其中,钢结构柱作为承载重要纵向荷载的主要构件之一,在结构设计中起着至关重要的作用。

本文将对钢结构柱的稳定性进行分析与设计,以确保其在使用过程中的安全可靠性。

1. 稳定性分析在进行钢结构柱的稳定性分析之前,首先需要了解柱的受力情况和设计参数。

柱的受力主要包括压力、弯矩和轴向力三个方面。

同时,还需要确定柱的几何参数,如截面形状、截面尺寸、材料等。

基于这些基本参数,可以进行稳定性分析。

1.1 基本理论:稳定系数与屈曲强度稳定性分析的核心理论是稳定系数和屈曲强度。

稳定系数是指柱在受力情况下的稳定性能,通常以稳定性安全系数来衡量,数值一般大于1。

屈曲强度是指柱在受力超过一定临界值时,发生屈曲破坏的承载能力。

1.2 欧拉公式欧拉公式是钢结构柱稳定性分析中最常用的公式之一,公式表达如下:Pcr = (π² × E × I) / L²其中,Pcr为柱的临界压力,E为钢材的弹性模量,I为截面二阶矩,L为柱的长度。

1.3 弯扭和细长柱对于弯扭和细长钢结构柱,需要引入额外的参数进行分析。

弯扭柱的主要特点是在受力过程中不仅产生弯曲,还会发生扭转变形。

细长柱则是指其长径比较大,易产生扭转屈曲失稳。

针对这两种特殊情况,需要进行详细的计算和分析。

2. 柱的设计在进行钢结构柱的设计时,需要根据结构的实际需求和使用条件,综合考虑稳定性、经济性和施工性等因素。

2.1 确定截面形状和尺寸根据实际情况和设计要求,选择合适的截面形状和尺寸。

常见的截面形状包括矩形、圆形、H型等,不同形状有其各自的优缺点。

同时,根据受力情况和设计参数,确定截面的尺寸。

2.2 材料选择钢结构柱的材料选择与整个结构的设计息息相关。

常见的钢材种类包括普通碳素钢、低合金高强度钢等,根据实际的使用情况和设计要求,选用合适的材料。

2.3 考虑稳定性安全系数在设计过程中,需要合理考虑稳定性安全系数的取值。

钢结构设计中稳定性分析探讨

钢结构设计中稳定性分析探讨


_ o— ~
C ia N w T c n lge n rd cs h n e e h oo isa dP o u t
建 筑 技 术
钢 结构设 计Leabharlann 中稳 定性 分析探讨 孙 菁 丽
( 亨特建筑构件( 厦门) 有限公 司, 建 福
厦 门 3 10 ) 60 0
摘 要: 在钢 结 构设 计 中 , 定是较 为 重要 的一 个环 节 , 铜 结构 框 架理论 分 析计 算 中往 往 将 结构进 行 基本 假 定 建立 力 学模 型 , 稳 在 但 是在 实际 工程 中结构 与假定 力 学模 型 并不 完全一 致 , 导致 计算 结果 与 实际情 况存 在偏 差 口。对钢框 架计 算结果 产 生影响 的主要 因 素有荷 载条 件 、 点连接 刚度 、 间相互作 用 等 , 文分析 了结 构体 系的 结构布 置及 影响稳 定性 的几 种主要 因素。 节 层 本 关键 词 : 结构设计 ; 构布 置 ; 定性分 析 钢 结 稳 1结构体系的结构布置 铰接 , 而应称为半刚性连接。 半刚性节点连接是 1 . 1框架一支撑 体系 部分约束连接 , 有刚性连接和理想铰接 的优 兼 多层住宅框架体系和框架一支撑体系的梁 点 , 如果将 半刚性连接简化为理想铰接 , 会高 则 柱截 面可采用轧制或焊接 H形截 面、 方钢管等 , 估框 架的侧移 量而增 大 P △效应的影 响 , _ 低估 支撑构件多采用角钢或部分 T型截 面 , 7抗 了梁 柱的连接刚度 ,使柱的稳定极 限承载 力理 在 。 震 设防区多层 住宅 的用钢量 多在 3 - 0 g : 论值偏低 。 5- K / o , 4 m 如果将半刚性连接简化为刚接 , 则结 在结构平 面布置上宜采用 大柱 网 、 大开 间的结 果相反 。 构 布置形式 , 柱距 5 8 m较 常见. 框架柱 在房屋 如图1 所示 ,考虑 A、 B两节点刚度变化对 横 向 、 向成列 布置 、 纵 不宜错 开太多 , 若设置 支 框架 的稳定承载力加以分析 ,视 A B两节点 的 、 撑构件时 , 应注意避让 门窗洞 口或设在无孔 口 刚度 相 同。梁柱 的钢材均 为 Q 3 钢 ,=- × 25 E 2 6 0 的分户墙中。 1 aI8 3 1 m ;当 A B 点为刚接时 0 MP , . x 0 m -3 、节 1 . 2交错桁架结构体系 稳定承载力特征值为 7 0 7 . 1 ;当 A、 9 B节点为铰 交错桁架结 构体系 的基 本组成是 柱子 、 桁 接时稳定承载力特 征值为 Z 4 3 分析结 果如 66 ; 所示 , 可以较明了地看 出, 节点 的半 刚性连 架、 梁和板。柱 子仅布置在房屋周围 , 没中间 图 2 不 柱。桁架跨度等于建筑全宽 ,高度等于楼层高 接对钢框架的稳定承载力有显著 的影 响 ,当节 图 1单层 多跨框 架 示意 图 度 , 两端支 ̄: l 桁架 f - # 围柱上 , 相邻柱轴线上 点 刚 度 为 1 185 1 N・ 在  ̄ 0- x 0 为上 、 下层交错 布置 , 而楼板一端支 承在 桁架的 1 ] ' l 表 1 其对钢框架 的 m时( ) , 上弦杆 , 另~端悬挂在相邻桁架 的下弦杆 。 建筑 稳定承载力 变化影 响较显 趔 纵向外 围各柱 通过 连梁连接 , 建筑 水平荷 载主 著 。 要被桁架 中斜腹 杆轴力 的水平分量 所平衡 , 水 3不 同荷 载 况 的影 [ 平荷载最终通过落地桁架 的斜腹杆 或底层 斜撑 响 传 至基 础。桁架杆件截面可采 用角钢 、焊接 T 文献 【在 条文说 明 中 3 】 3 型、 H型或方管截 面,柱截面通常采用 H型 、 钢 对 单层 或多层 框架给 出的 。 管等 。 交错桁 架结构体 系中杆件受力合理 , 大部 计算长 度系数 采用 了 5 条 分杆件 以受轴心力为 主, 用钢量节约 , 7抗震 基本假 定 ,其 中 l 在 。 条是 框 节点 刚度 序 设防区 , 其用钢量较框架结构节约 1%左右 , O 当 架 中所 有的柱子是 同 时失 图 2 节点 刚度 对稳 定承载 力的影 响示 意 建筑横 向尺寸较大 , 这一优势将更 明显 ; 桁架结 稳 ,即各 柱同时达 到其 临 构抗 侧移刚度大 , 位移也 较小 , 轴可布置在 界荷载 。但 实际结 构常常 柱强 40 0 0 40 0 0 40 0 0 40 0 0 纵向 , 以加大结构纵向侧 移刚度 。 错桁架结构 是结构不 对称或荷 载不对 交 体系结 构布置时注意使一层桁架的斜腹 杆落地 称 甚 至 两者 都不 对 称 , 如 基 础梁 连接减 通过底层斜撑 传至基础 , 否则 图 3 所示 ,当失稳柱 侧移 结构水平位移过大 , 以满足规范要求 。 难 还应注 时带动其他未 达到 临界状 意水平 、 竖向结构 布置要做到规则对称 。 从结构 态 的柱子一起 侧移 ,将对 布置上说 ,交错桁架结构体系可 以提供 两倍 于 侧移产 生 阻碍 作用 , 而 从 框架结构体系 的更大开 间 , 进深也大 大增 加 , 可 使 此柱 推迟失 稳。 由于整 图 3单层 多跨 框 架 以提供更大的使用面积 。 此外 , 错桁架结构体 体性 ,该柱的稳 定承载力 交 系柱子数 目较少 , 所以基础数量较少 , 能够进一 值有所 提高 ,其 值大 于规 步节约材料。 范给 出的数值 , 结果是 其 在钢结构设计 中采用何种结构体系 ,应综 两根相 同的柱在 不同 的荷 嚣 合考虑多种影 响因素 ,而对钢结构设计 巾稳定 载作用下同时失稳 。 如图 3 柩 性产生影响的主要因素有节点连接刚度 、荷载 所 示 ,梁 柱 的钢 材 均 为 懒 条件 、 层间相互作用等。 Q3 2 5钢 , = .  ̄ O M a 嚣 E 261 P , 0 I 27 ×1 = .6 0mm4 2节点连接刚度的影响 在传 统的设 计和分 析中 ,为了简化结 构没 如 图 4 示 ,梁 柱的 所 单层俐 框架跨 数 计分析过程 ,通常将钢结构梁柱节点 的连接 假 钢 材 均 为 Q 3 2 5钢 , E= 图 4 同层 柱相 互作 用对稳 定承 载力 的影响 定为理想铰接或完全 刚接 。理想铰接 意味着 梁 206 xl . 0 MPa I _2 x . . 76 O m 同层柱相互作用在 5 前的作用较为 明 影响 跨 柱不能传递弯矩 ,完全刚接则认为框架在受荷 lsm, 框架结 构中柱 子并 不是独立存在的 , 而且 变形后 , 梁柱夹角保持不变。 随着钢结构节 点连 显 ,为 l 3 。运用有限元分析软件 A S S %一% N Y 铰接 自由等理想 接形式 的增多 , 试验结果 证 明 , 在荷载作 用下 , 对止 单层框架进行分析 ,求得各荷载工 况下的 柱子的边界条件也不是 固接 、 、 匕 有些节点连接不能单纯归类为刚性连接或理想 稳定承载力列于表 2 。对 比可知 , 架各节点 的情 况 ,柱子的端部要受到与它相连 的其他构 当框 框架有侧移失稳时 , 单根柱总是 的承载力不同时 , 钢框 架 件 的弹眭约束 。 对 表 1节 点刚度值 不会单独失稳 , 即 的稳定承载力有着较大的影 与同一层 的其他柱同时失稳 , 同一层柱 的柱 间存 在相互作用 ,该方面 已有相 响。 , 4 同层 间 相 互 作用 的 关研究 并在此基 础上改进 了钢 框架稳定承载

钢结构稳定的概念设计

钢结构稳定的概念设计

首先,我们来了解一下钢结构稳定设计的基本概念。钢结构稳定设计主要是 研究结构在受到外力作用下的稳定性,防止结构发生失稳或屈曲的现象。失稳是 指结构在受到外力作用后,没有发生整体变形,而是出现了局部弯曲或扭曲的现 象。屈曲则是指结构在受到外力作用后,发生了整体变形,并且这种变形是不可 恢复的。因此,钢结构稳定设计的主要目标是防止这两种现象的发生。
2、稳定安全系数:稳定安全系数是指在荷载作用下,结构所能承受的最大 应力与极限应力的比值。在钢结构稳定设计中,需要综合考虑各种因素的影响, 确定合理的稳定安全系数。
五、实际工程中的钢结构稳定设 计案例及设计原则解释
以某桥梁工程为例,该桥梁为钢箱梁结构形式,跨度为30米。在桥梁设计中, 需要考虑到车辆通行、风载、地震等多种荷载因素的影响。为保证桥梁的稳定性, 设计时采用了以下措施:
1、杆件强度:选用高强度钢材作为桥梁的主要构件材料,以提高其承载能 力和稳定性。
2、支座形式:采用四氟板式橡胶支座作为桥梁的支撑形式,以减小支座对 结构稳定性的影响。
3、荷载分布:通过对桥面进行合理的配重和分布设计,使桥梁在不同荷载 作用下的稳定性得到保证。
4、长细比控制:在设计中严格控制桥梁的截面尺寸和长细比,使其符合规 范要求,以保证结构的稳定性。
二、钢结构稳定的定义及相关概 念
在钢结构稳定分析中,通常需要考虑两种类型的稳定问题:平面稳定和空间 稳定。平面稳定是指结构在某一平面内的稳定性,而空间稳定则是指结构在三个 维度上的稳定性。
1、简支梁:简支梁是一种常见的简单结构形式,其稳定性是钢结构稳定分 析中的重要内容之一。简支梁的稳定性主要受到荷载作用位置和支撑条件的影响。
2、固支梁:固支梁是一种两端固定支撑的结构形式。在固支梁的稳定性分 析中,需要考虑支撑条件和荷载作用位置的影响。

关于钢结构稳定性的探讨

关于钢结构稳定性的探讨
材 料 的 的检 测 方 法 和各 种 仪 器 的操 作 规 程 有 了进

步 的 了解 和认 识 。 3 教 师给 学 生生 布 置开 放 型实 验 课题 , ) 学生 带
师 针对 学 生 的试 验 情 况 给 出一 些 指 导 性 的 意见 和 建议 . 取在 以后 的实验 中能够有 所改进 和创 新 。 争
文针 对 这 些 问题介 绍 了钢 结 构 稳 定 性研 究 中存 在 的 问题及 稳 定设 计特 点 , 且提 出了应 该懂 得 如何 并
解 决这 些 问题 。只有 这样 我们 在设计 中才 能更好 处
理钢结 构稳 定 问题 。
2钢 结 构 稳 定 性 研 究 中存 在 的 问题
1 目前 在 网壳 结 构 稳 定性 的研 究 中 , 一 单 ) 梁 柱 元 理 论 已成 为主 要 的研究 工具 。但 梁 一 柱单 元是 否
善, 目前 还 没有 一 个完 整 合理 的理论 体 系来 分 析 预 张拉 结 构体 系 的稳定 性 。
1 物 理 、 何 不确定 性 : 材料 ( ) 几 如 弹性 模量 , 服 屈 应 力 . 松 比等 )杆 件 尺寸 、 面积 、 泊 、 截 残余 应 力 、 初
始变 形 等 。 2 统 计 的不 确 定 性 : 统 计 与稳 定 性 有关 的物 ) 在 理 量 和几何 量 时 , 总是 根据 有 限样本 来 选择 概率 密 度 分布 函数 , 因此带 有一 定 的经验 性 。 这种 不确 定性
生就 需 要进 行 多次 的重 复 实验 . 出大 量 的实 验 数 得
据 , 过 对 实 验 数 据 的 分析 . 结 出试 验 成 功 的地 通 总
14 3
[] 立 久 . 筑 材 料 学 ( 1王 建 3版) . 京 : 国电 力 出版 社 , 0 [ 北 M】 中 2 8 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构设计中稳定性研究
稳定性是钢结构设计中一个重要的研究领域,它是指在荷载作用下,钢结构能够保持稳定的能力。

稳定性研究包括对结构整体稳定性和构件稳定性的研究,通过对结构的稳定性分析,可以确保钢结构在使用过程中能够承受荷载并保持安全。

钢结构的稳定性研究主要包括以下几个方面:
1. 钢结构的整体稳定性分析:这是钢结构设计中的一项重要内容,通过对结构整体稳定性的分析,可以确定结构在荷载作用下是否会发生失稳。

主要的方法包括静力分析、动力分析和非线性分析等。

静力分析是最常用的分析方法,通过计算结构的抗弯刚度和撑压刚度,确定其稳定性。

动力分析主要用于计算结构在地震荷载作用下的响应,非线性分析主要用于考虑结构在超过弹性阶段时的非线性行为。

2. 钢结构构件的稳定性分析:钢结构中的构件在压力作用下容易发生屈曲失稳,因此对构件的稳定性进行研究是十分重要的。

主要包括对轴心受压构件、曲板构件等的稳定性分析。

常用的方法包括欧拉公式、约束于斜率法等。

3. 钢结构的稳定系统研究:钢结构的稳定性不仅与单个构件有关,还与整个结构的支撑系统有关。

对于跨度较大的钢结构,稳定性的研究需要考虑横向稳定和纵向稳定两个方面。

横向稳定主要包括钢结构在侧向荷载作用下的稳定性,纵向稳定主要包括钢梁在挠度约束系统中的稳定性。

为了研究钢结构的稳定性,需要进行一系列的试验和计算。

试验可以通过悬垂试验、压缩试验、弯曲试验等手段来获取结构和构件的稳定性参数。

通过试验结果和理论分析相结合,可以得出钢结构稳定的安全边界。

在钢结构设计中,稳定性的研究是非常重要的,它直接关系到结构的安全性和使用寿命。

对于大跨度、高层、曲板、薄壁等特殊结构,其稳定性研究更为复杂,需要采用更加细致的分析方法和试验手段。

随着计算机技术的发展,有限元分析、计算流体力学等方法的应用也为稳定性研究提供了更多的手段和工具。

相关文档
最新文档