(完整版)常用矢量公式

合集下载

大学物理矢量运算公式(一)2024

大学物理矢量运算公式(一)2024

大学物理矢量运算公式(一)引言概述:
大学物理中,矢量运算是一门重要的基础课程。

矢量运算公式是在处理矢量量的运算过程中所使用的关键工具。

本文将介绍大学物理矢量运算公式的一些基本概念和常见公式,以帮助读者更好地理解和应用矢量运算。

正文内容:
一、矢量的表示和性质
1. 矢量的定义和表示方法
2. 矢量的加法和减法运算
3. 矢量的数量积和矢量积定义及其性质
4. 矢量的分解和合成
5. 矢量的单位化和模长计算
二、矢量的坐标表示
1. 直角坐标系和矢量的坐标表示
2. 极坐标系和矢量的坐标表示
3. 球坐标系和矢量的坐标表示
三、矢量的运算公式
1. 矢量的加法和减法公式
2. 矢量的数量积公式和性质
3. 矢量的矢量积公式和性质
4. 矢量的混合积公式和性质
5. 矢量的分解和合成公式
四、应用举例
1. 矢量运算在力学中的应用
2. 矢量运算在电磁学中的应用
3. 矢量运算在波动学中的应用
4. 矢量运算在光学中的应用
5. 矢量运算在热学中的应用
五、矢量运算的常见错误和注意事项
1. 矢量运算中常见的错误类型
2. 矢量运算中需要注意的细节
3. 矢量运算的常见问题及解答
4. 矢量运算的常见应用技巧
5. 矢量运算的进一步深入学习建议
总结:
本文概述了大学物理矢量运算公式的基本概念和常见公式,包括矢量的表示和性质、矢量的坐标表示、矢量的运算公式、应用举例以及矢量运算的常见错误和注意事项。

矢量运算公式在物理学中有着广泛的应用,通过学习和掌握这些公式,读者可以更好地理解和应用矢量运算。

对于进一步深入学习,本文还提出了建议。

矢量运算公式范文

矢量运算公式范文

矢量运算公式范文矢量运算是对矢量进行运算的数学方法,包括矢量的加法、减法、数与矢量的乘法(数量积)、矢量与矢量的乘法(矢量积)等。

在物理学、工程学、计算机图形学等领域中,矢量运算被广泛应用。

下面将介绍一些常见的矢量运算公式:一、矢量的加法和减法:矢量的加法:对于两个矢量A和B,它们的加法可以表示为:C=A+B加法满足交换律:A+B=B+A加法满足结合律:(A+B)+C=A+(B+C)矢量的减法:对于两个矢量A和B,它们的减法可以表示为:C=A-B减法可以看作加法的反向操作:A-B=A+(-B)其中,-B表示B的反向矢量,即将B的大小保持不变,方向取反。

二、数与矢量的乘法(数量积):数与矢量的乘法是将一个数与一个矢量各分量相乘。

假设有一个矢量A和一个数k,则数与矢量的乘法可以表示为:B=kA乘法满足交换律:kA=Ak乘法满足结合律:(kl)A = k(lA)三、矢量与矢量的乘法(矢量积):矢量与矢量的乘法有两种形式,一种是叉乘(也称为矢量积或外积),另一种是点乘(也称为数量积或内积)。

1.叉乘:对于两个矢量A和B,它们的叉乘可以表示为:C=A×B矢量的叉乘满足右手法则:-若A和B的夹角θ小于180度,则C的方向垂直于A和B的平面,且由右手握住旋转方向由A转向B;-若A和B的夹角θ大于180度,则C的方向垂直于A和B的平面,且由右手握住旋转方向由B转向A;-若A和B的夹角θ等于180度,则C等于0。

2.点乘:对于两个矢量A和B,它们的点乘可以表示为:C=A•B点乘的结果是一个标量。

点乘的计算方法有两种:-一种是将两个矢量的各分量分别相乘,然后相加:C=A₁*B₁+A₂*B₂+...+An*Bn- 另一种是使用矢量的模和夹角公式:C = ,A, * ,B,* cos(θ)其中,A,表示矢量A的模,B,表示矢量B的模,θ表示A和B的夹角。

以上是矢量运算的一些基本公式,它们在物理学、工程学和计算机图形学中都有广泛的应用。

三个矢量和计算公式

三个矢量和计算公式

三个矢量和计算公式在物理学和工程学中,矢量是一种具有大小和方向的物理量。

矢量可以用来表示力、速度、位移和其他物理量,因此在许多领域都有重要的应用。

在本文中,我们将讨论三个常见的矢量和计算公式,它们分别是位移矢量、速度矢量和加速度矢量。

位移矢量是描述物体从一个位置移动到另一个位置的矢量。

它的大小等于物体从初始位置到最终位置的距离,方向则是从初始位置指向最终位置的方向。

位移矢量通常用符号Δr表示,它的计算公式为:Δr = r2 r1。

其中,Δr表示位移矢量,r2表示物体的最终位置,r1表示物体的初始位置。

这个公式告诉我们,位移矢量的大小等于物体从初始位置到最终位置的距离,方向则是从初始位置指向最终位置的方向。

速度矢量是描述物体在单位时间内移动的距离和方向的矢量。

它的大小等于物体在单位时间内移动的距离,方向则是物体在单位时间内移动的方向。

速度矢量通常用符号v表示,它的计算公式为:v = Δr / Δt。

其中,v表示速度矢量,Δr表示位移矢量,Δt表示时间间隔。

这个公式告诉我们,速度矢量的大小等于物体在单位时间内移动的距离,方向则是物体在单位时间内移动的方向。

加速度矢量是描述物体在单位时间内速度改变的矢量。

它的大小等于物体在单位时间内速度改变的大小,方向则是速度改变的方向。

加速度矢量通常用符号a表示,它的计算公式为:a = Δv / Δt。

其中,a表示加速度矢量,Δv表示速度改变的矢量,Δt表示时间间隔。

这个公式告诉我们,加速度矢量的大小等于物体在单位时间内速度改变的大小,方向则是速度改变的方向。

这三个矢量和计算公式在物理学和工程学中有着广泛的应用。

它们可以用来描述物体的运动状态,帮助我们理解物体的运动规律。

通过计算位移矢量、速度矢量和加速度矢量,我们可以预测物体的运动轨迹,分析物体的运动规律,从而为工程设计和科学研究提供重要的参考依据。

除此之外,这三个矢量和计算公式还可以应用于许多实际场景中。

比如,在汽车行驶过程中,我们可以利用位移矢量和速度矢量来描述汽车的运动状态,通过计算加速度矢量来评估汽车的加速性能。

常用矢量公式

常用矢量公式

常用矢量公式矢量是具有大小和方向的物理量,它在许多领域中都有广泛的应用,包括物理、数学、工程学和计算机科学等等。

在处理矢量运算时,使用一些常用的矢量公式可以使计算更加简便高效。

本文将介绍一些常用的矢量公式,包括向量运算、向量分解和向量积分等等。

1.向量运算(1)向量加法:对于两个矢量A和B,其加法定义为:A+B=(A_x+B_x,A_y+B_y,A_z+B_z),其中A_x,A_y和A_z分别表示A的x、y和z分量。

(2)向量减法:对于两个矢量A和B,其减法定义为:A-B=(A_x-B_x,A_y-B_y,A_z-B_z),其中A_x,A_y和A_z分别表示A的x、y和z分量。

(3)向量数乘:对于一个矢量A和一个标量k,其数乘定义为:kA=(kA_x,kA_y,kA_z),其中A_x,A_y和A_z分别表示A的x、y和z分量。

2.向量分解(1) 向量的投影:对于一个矢量A和一个单位向量u,其投影的大小定义为:A_u = ,A,cosθ,其中,A,表示A的模长,θ表示A与u的夹角。

(2) 向量的分解:对于一个矢量A和一个单位向量u,其分解定义为:A = A_uu + A_⊥,其中A_uu表示A在u方向上的分量,A_⊥表示A在u方向垂直的分量。

3.向量积分(1) 线积分:对于一个曲线C和一个矢量场F,其线积分定义为:∮C F·ds = ∮C (F_xdx + F_ydy + F_zdz),其中F_x, F_y和F_z分别表示F的x、y和z分量,ds表示曲线C上的元素位移矢量。

(2) 曲面积分:对于一个曲面S和一个矢量场F,其曲面积分定义为:∬S F·dS = ∬S (F_xdS_x + F_ydS_y + F_zdS_z),其中F_x, F_y和F_z分别表示F的x、y和z分量,dS表示曲面S上的元素面积矢量。

(3) 体积积分:对于一个区域V和一个矢量场F,其体积积分定义为:∭V F·dV = ∭V (F_xdV_x + F_ydV_y + F_zdV_z),其中F_x, F_y和F_z分别表示F的x、y和z分量,dV表示区域V内的元素体积矢量。

(完整版)常用矢量公式

(完整版)常用矢量公式
, 场线进入的少,穿出得多,称 面内有源。
, 场线进入的与穿出得同样多,称 面内无源。
, 场线进入的少,穿出得少,称 面内有负源。
意义: 用来描述空间某一范围内场的发散或会聚,它只具有局域性质,不
能反映空间一点的情况。
二、高斯定理
一种面积分与体积分的变换关系,有时称为高斯公式(证明略)
三、矢量场的散度
注:方程组若有解,则该解在上述条件下不必唯一,但该方程组是否有解与 和 有关,只有当它们满足下述条件时才有解存在,
由 及
得:
§7. “三度”在各种坐标系中得表示式
一、矢量微分算子(哈密顿算子)
直角坐标
柱坐标
球坐标
二、柱坐标、球坐标与直角坐标的关系
1. 柱坐标与直角坐标
2.球坐标与直角坐标
三、“三度”在三种坐标系中的表示形式
格林公式:
第一公式
第二公式
一般规则
其他规则
一般变换规则证明:
1.
证: 任取常矢量 点乘上式两端
左 用
用混合积公式
2.
ห้องสมุดไป่ตู้证: 左
三. 算符常用公式
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
证:
6. 微分运算
去掉角标。
7.
利用
微分运算
用 代替 , 代替 , 代替
矢量运算
同样
§6. 有关矢量场的一些定理
一、关于散度旋度的四个定理
1.标量场的梯度必为无旋场, 即
2.矢量场的旋度必为无散场, 即
3.无旋场必可以表示为某一标量场的梯度。
即若 ,则 , 称为无旋场 的标势函数。

常用矢量公式

常用矢量公式

常用矢量公式矢量是物理学中常常用到的工具,它能够表示一个物理量的大小和方向。

在研究物体运动、力学和电磁学等方面,常常需要使用矢量公式。

以下是一些常用的矢量公式。

1.矢量的加法:如果有两个矢量A和B,它们的和矢量C可以通过将两个矢量的对应分量相加得到:C=A+B。

2.矢量的减法:如果有两个矢量A和B,它们的差矢量C可以通过将第二个矢量的对应分量取相反数,再与第一个矢量相加得到:C=A-B。

3.矢量的数量积:两个矢量A和B的数量积可以通过将两个矢量的对应分量乘积相加得到:A·B=AxBx+AyBy+AzBz。

4.矢量的向量积:两个矢量A和B的向量积可以通过以下公式计算:C=A×B,其中C是结果矢量,Ax、Ay和Az是矢量A的分量,Bx、By和Bz是矢量B的分量。

向量积的结果是一个垂直于两个矢量的平面,并且它的大小等于两个矢量张成的平行四边形的面积。

5.矢量的标量三重积:三个矢量A、B和C的标量三重积可以通过以下公式计算:(A×B)·C,其中×表示向量积,·表示数量积。

标量三重积的结果是一个标量,它可以用来计算三个矢量张成的平行六面体的体积。

6.矢量的分解:一个矢量A可以被分解为垂直于另一个矢量B的分量和平行于矢量B的分量。

平行分量可以通过数量积来计算:A\,B=(A·B)B/,B,^2,其中\,表示平行于。

垂直分量可以通过减去平行分量得到:A⊥B=A-A\,B。

7.矢量的模长:一个矢量A的模长可以通过以下公式计算:,A,=√(Ax^2+Ay^2+Az^2),其中Ax、Ay和Az是矢量A的分量。

8.矢量的单位矢量:一个矢量A的单位矢量可以通过以下公式计算:Ā=A/,A,其中Ā是单位矢量。

9. 矢量的投影:一个矢量A在另一个矢量B上的投影可以通过以下公式计算:Proj_A(B) = (A · Ā)Ā,其中Ā是单位矢量。

10. 矢量的夹角:两个矢量A和B之间的夹角可以通过以下公式计算:cosθ = (A · B)/(,A,B,),其中θ是夹角。

(完整版)向量公式汇总

(完整版)向量公式汇总

向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

矢量的运算法则

矢量的运算法则
线元: dl dRaR Rd a R sinda 面元:
dSR R2 sin d daR dS R sin dRda
dS RdRd a
体元:
dV R2 sin dRd d
工程电磁场
在不同旳坐标系中,梯度旳计算公式:
在直角坐标系中:
x
aˆx
y
aˆ y
z
aˆz
在柱坐标系中:
r
aˆr
r
工程电磁场
主要旳场论公式
1. 两个零恒等式
(1) () 0 任何标量场梯度旳旋度恒为零。
(2) ( F ) 0
任何矢量场旳旋度旳散度恒为零。
工程电磁场
2. 拉普拉斯算子 2 ()
在直角坐标系中:
2
2
x 2
2
y 2
2
z 2
在圆柱坐标系中:
2
1 r
(r )
r r
( )
( A) A A
(A) A A
(A B) (A)B (B )A A( B) B( A)
(A B) B A A B (A B) A B B A (B )A (A)B
球坐标系中:
F
1 R2
(R2FR ) R
1
R sin
(F sin )
1
R sin
F
正交曲线坐标系中:
F
1
Fu1h 2 h 3
( Fu2
h1h3
)
(Fu3 h1h2
)
h1h2h3 u1
u2
u3
工程电磁场
旋度公式:
F
Fz y
Fy z
aˆx
Fx z
Fz x
aˆ y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
格林公式:
第一公式
第二公式
一般规则
其他规则
一般变换规则证明:
1.
证: 任取常矢量 点乘上式两端
左 用
用混合积公式
2.
证: 左
三. 算符常用公式
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
证:
6. 微分运算
去掉角标。
7.
利用
微分运算
用 代替 , 代替 , 代替
矢量运算
同样
§6. 有关矢量场的一些定理
一、关于散度旋度的四个定理
证:⑴

§2. 场的概念和标量场的梯度
一、场的概念:
描述一定空间中连续分布的物质对象的物理量。或说:若在一定空间中的每一点,都对应着某个物理量的确定值,就说在这空间中确定了该物理的场。如:强度场、速度场、引力场、电磁场。
描述场用一个空间中和时间坐标的函数:
当 与 无关时称为稳恒场(稳定场、静场),有关则称为变化场(时变场)。当已知场函数则可以了解场的各种性质:如 随时空的变化关系(梯、散、旋度)。同样已知梯、散、旋度场函数可以确定场函数(以后主要讨论的问题)。
为了反映空间某一点发散与会聚的情况,可以将 面缩小到体元 ,体元仅包围一个点,此时,高斯定理可以改为 ,我们
用单位体积的通量来描述,则有 ,取极限 称为矢量 的散度。(>0,有源;=0,无源,<0,负源)。有时表示成 (divergence)。若空间各点处处 ,则称 为无源场。
例题:
1. 求 ,其中
1.标量场的梯度必为无旋场, 即
2.矢量场的旋度必为无散场, 即
3.无旋场必可以表示为某一标量场的梯度。
即若 ,则 , 称为无旋场 的标势函数。
4.无源场必可表示为某个矢量场的旋度。
即若 ,则 , 称为无源场 的矢量势函数。
二、亥姆霍兹定理
任意的矢量场( )均可以分解为无旋场 和无源
场 之和,即 , 。 又称为 的横场部分,可引入标势 , 。 又称为 的纵场部分,可引入矢势 , 。
三、一个矢量场被唯一确定的条件——唯一性定理
定理: 在空间某一区域内给定场的散度和旋度以及矢量场在区域边界上的法线分量,则该矢量场在区域内是唯一确定的。
证明: 假定有两个矢量场 均满足上述条件


引入 ,

∵ ,引入 , ,
(在 面上)。
根据格林第一公式(含 )
得 (∵在 面上 )
由于被积函数 ,故上式成立,必有 ,即 。
, 场线进入的少,穿出得多,称 面内有源。
, 场线进入的与穿出得同样多,称 面内无源。
, 场线进入的少,穿出得少,称 面内有负源。
意义: 用来描述空间某一范围内场的发散或会聚,它只具有局域性质,不
能反映空间一点的情况。
二、高斯定理
一种面积分与体积分的变换关系,有时称为高斯公式(证明略)
三、矢量场的散度
证: 对等值面上一点,沿等值的方向导数为零。
即 的 为 ,所以 与等值面垂直。
三、 矢量微分算子 (直角坐标系中的表示形式)
具有矢量性质,分量是微分符号。
, ,不能互换
它可以作用在矢量上,可以作点乘、叉乘。
四、举例
(1)求半径 的数值 的梯度。此例中 点均可变动。一般称 为源点(一后电场中电荷所在点)。 为场点(观测点)。
1.直角坐标系:
2.柱坐标系:
3. 球坐标系:
§8. 函数及其性质
一、 函数定义
一维:
三维:
( 在 内),导数 。
例如对于点电荷密度分布

二、几个常用的性质
, 为连续函数。
三、 函数的几种具体形式
电动力学中一个重要的函数形式为:
证明:① 即
(∵ )
② ,显然

数学准备知识小结
矢量代数中的公式:
算符常用公式:
解:固有两个变量 和 我们可求 和

(2)求 。
解: , ,
§3. 高斯定理与矢量场的散度
一、矢量场的通量
1.矢量族:在矢量场中对于给定的一点,有一个方向,它沿某一曲线的切线方向,这条曲线形成一条矢量线,又叫场线(对静电场称为电力线),无穷多条这样的曲线构成一个矢量族。
2. 通量: 称为 通过面元 的通量,记作 ,记作 ,有限面积 ,通量上 ,闭合曲面 ,通量上 , 方向,由面内指向面外。
二、标量场的梯度
在 两点全微分:
( , 方向上的单位矢量)
( 为 与 之间的夹角)
在 点方向上导致有无穷多个,其中有一个最大,即
,定义梯度
意义:空间某点上标量场函数的最大变化率,刻画了标量场的空间分
布特征。已知梯度即可求出 沿任一方向的方向导致。
等值面: 常数的曲面称为等值面。
梯度与等值面的关系:梯度 等值面。
2. 求 ,
3. 求证: 。
证:
§4 斯托克斯公式与矢量场的旋度
一、矢量场的环量(环流)
矢量 沿任一闭合曲线 的积分
表明在区域内无涡旋状态,不闭合,
表明在区域内有涡旋状态存在,闭合,
意义:用来刻画矢量场在空间某一范围内是否有涡旋存在,具有局域性质。
二、斯托克斯公式(定理)
(证明略)
三、矢量场的旋度
当 无限缩小,它用的面积化为 时,
会用:
熟记:
复合函数公式:
; ;
有关位移矢量 的几个运算公式:
, ,
, ,

积分变换公式:(熟练使用)
几个定理: 1.
2.
3.
4.
5.
6. 唯一性定理内容。
, ,
, 为法线上单位矢。
定义 为矢量场的旋度,它在 法线方向上的分量为单位面积上的环量。刻画矢量场场线在空间某点上的环流特征。若空间各点 ,则 称为无旋场。
例:1.
解: 它的 分量为
,同理,
2.证明
证:
§5. 常用的运算公式
一、复合函数的“三度”运算公式
, ,
二、 积分变换公式
高斯公式:
斯托克斯公式:
数学准备知识
§1 矢量代数
一.矢量定义
(单位矢量)
在坐标系中 直角系
方向余弦:
二.矢量运算
加法: 交换律
结合律
满足平行四边形法则
标量积:
交换律
分配律
矢量积:
分配律
不满足交换律
混合积:
双重矢积:
(点3乘2,点2乘3)
三.矢量微分
四.并矢与张量
并矢: (一般 ),有九个分量。
若某个量有九个分量,它被称为张量
为单位并矢,张量的九个基。
矢量与张量的矩阵表示: 或
单位张量:
张量运算:
与矢量点乘:
与矢量叉乘:
两并矢点乘: (并矢:
课堂练习(15-20分钟)
1.计算
2.求证, 与矢量 垂直。(求 )。
3.计算下列各式:
⑴ ⑵ ⑶ ⑷
(0, ,-1,1)
4.证明下列各式:


注:方程组若有解,则该解在上述条件下不必唯一,但该方程组是否有解与 和 有关,只有当它们满足下述条件时才有解存在,
由 及
得:
§7. “三度”在各种坐标系中得表示式
一、矢量微分算子(哈密顿算子)
直角坐标
柱坐标
球坐标
二、柱坐标、球坐标与直角坐标的关系
1. 柱坐标与直角坐标
2.球坐标与直角坐标
三、“三度”在三种坐标系中的表示形式
相关文档
最新文档