长距离分布式光纤振动传感系统关键技术要点

长距离分布式光纤振动传感系统关键技术要点
长距离分布式光纤振动传感系统关键技术要点

长距离分布式光纤振动传感系统关键技术要点

发表时间:2018-10-22T14:09:53.943Z 来源:《防护工程》2018年第14期作者:李顺为

[导读] 分布式光纤传感器作为光纤传感器相关技术中较为重要的器件,其不仅具有普通光纤传感器所具有的无辐射干扰性

李顺为

身份证号码:45042119830530XXXX

摘要:分布式光纤传感器作为光纤传感器相关技术中较为重要的器件,其不仅具有普通光纤传感器所具有的无辐射干扰性,抗电磁干扰较好,化学稳定性良好等优势,而且还具有光纤所具有的一维空间实施连续性分布的特性,其最主要的作用就是能够进行长距离的监测,以及定位精确等相关优势。本文主要对长距离分布式光纤震动传感系统的关键技术进行相应分析。

关键词:分布式光纤感;偏振态控制;相位锁定;定位

一、前言

对于光纤传感技术而言,由于其具有较高的灵敏度,且定位精准,能够抗电磁干扰等优势,极其受人们欢迎,且已经成为传感领域当中研究的重点。所谓光纤传感器,主要就是指通过对光波的利用,并将其作为实施探测事件的承载,并将光纤当做传输承载的一种媒介,并利用光波进行监测,以此实现对相关事件的探测[1]。根据光纤在传感器当中所具有的作用,主要将光纤传感器分为两种,也就是功能型与非功能型;而依照光波在光纤当中进行调制的方式,主要分为强度调制型、偏振调制型、频率调制型和相位调制型;依照探测过程是否有光波干涉,主要分为干涉型以及非干涉型[2]。本文主要依据长距离振动传感系统所具有的特点,以光纤M-Z干涉仪的光相位传感方法,对其关键技术进行分析。

二、光相位检测与定位的基本原理

对于长距离分布式光纤振动传感系统而言,本文主要对光相位调制型的光纤M-Z干涉仪对相关振动时间实施相应的传感。当M-Z振动传感器通常是被埋藏在地下的相关管道以及电缆周围实施工作的时候,振动时间通常是根据应力,对光波的相位实施调制。对于光纤M-Z 当中的振动传感系统而言,其径向应力的实际检测灵敏度通常能够达到10-9rad/m.Pa。

对于探测系统当中总长度达到L的光纤,入射光波通常为Ain。当光纤没有受到应力作用的时候,出射的光波为:Aout=Ainexp(i2πnL/c)[3]。

当传感系统的某个位置受到相应径向力作用的时候,该位置的光纤长度,光纤直径、折射率等都会出现相应的变化,其参数的不断变化,就致使光波的相位产生相应的变化,假设外界产生的应力作用,出现的相位变化为Δφ,这时出射的光波为:Aout=Ainexp[i

(2πnL/c+Δφ)],光在光纤当中的相位为:φ=βL(β为光纤中光传播常数,L为光传播的距离)[4]。

三、长距离分布式光纤振动传感系统关键技术

(一)、系统的抗偏振衰落技术

所谓长距离分布式的光纤传感系统,主要就是通过对光纤M-Z干涉仪进行使用,并以此对振动的信号进行探测,其所输出的结果主要是指光所产生的干涉信号。干涉信号所具有的清晰度,主要是根据M-Z干涉仪两臂当中的光信号具体的偏振态所决定。其在实际运用过程中,主要根据光纤形变等相关因素,所导致的光纤双折射,就会使其光波出现偏振态变化,并致使干涉信号出现衰落,这对振动信号的有效定位以及识别具有严重影响。而所谓的光纤双折射,就是光纤由于其自身原因,以及外界环境等原因,都会是光纤出现形变,或者是受力不均匀的现象,这就使光纤转变为不同方向的异性介质,并导致光纤出现双折射的现象。

系统的抗偏振衰落技术,主要是依据光纤的双折射以及光偏振态所具有的变化之间的关系进行分,以此使偏振态控制器所产生的干扰信号的强度得以有效增强,并使长距离振动传感系统对振动信号所具有的探测能力得以有效提高。

对于长距离振动传感系统而言,其主要是通过对全光纤M-Z的干涉仪结构进行选用。而保偏光纤由于具有较高的成本,因此,系统就需要对普通的G652单模光纤进行使用。如图1所示,由于普通的单模光纤所具有的双折射能够使x与y方向上所具有的基模LP01或者

HE11,有着不同的传播常数,这就会使基模的偏振态能够沿着光纤所延伸方向产生相应变化。如果光的偏振态通过一个周期,变回成初始的状态,其所产生的光纤长度就是一个拍所具有的长度Lb:Lb=2π/Δβ,其中,Δβ是单模光纤当中两个互相正交的偏振基模,也就是HE11x 与HE11y沿着光纤的轴向实施传输过程中的传播常数差为:Δβ=βx-βy=2π(nx-ny)/λ[5]。以上所述的两个物理量当中,Δβ主要表现为单模光纤双折射主要原因为:拍长Lb主要表现为单模光纤双折射所具有的大小。

图1 光纤双折射导致偏振态的改变示意图

(二)、相位锁定技术

对于长距离分布式的光纤传感系统而言,其主要对光纤M-Z的干涉仪结构进行选用,其所输出的信号,主要就是指干涉仪所产生的相位差。其在实际运用过程中,不仅需要对振动信号所导致形成的相位差变化进行感测,而且光纤应力与温度等相对的缓变也会使相位差产生变化。而对于这种较为缓慢的、出现的相位变化而言,其会对信号输出所具有的响应度以及灵敏度都具有严重影响。

相位锁定技术使用主要的检测方法为以下几点:(1)相位调制载波法。该法主要由A.Dandridge等人所提出的,其主要是对小相位进行检测,实际的测量范围主要为10-7rad[6]。对于长距离的M-Z振动传感系统而言,主要是对PGC进行利用,其实现探测灵敏度较高的主要原理就是,在M-Z干涉仪上面的探测臂上,对有规律的扰动实施相应的引入,以此产生相应的载波,并将需要进行探测的小相位信号在载波上实施加载,并通过载波的探测,对小相位实施相应的检测。(2)直流相位跟踪法。由于这种方法的实现较为简单,只需要使用模拟

文献综述——光纤振动传感器

中国计量学院 毕业设计(论文)文献综述 学生姓名:徐婷学号: 0800403238 专业:光电信息工程 班级: 08光电2 设计(论文)题目: 光纤振动传感器的设计 指导教师:李裔 二级学院:光学与电子科技学院 2011年 3 月07日

光纤振动传感器的设计 文献综述 一、概述: 光纤传感器的历史可追溯到上世纪70 年代,那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果。但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少。最近涌现的很多成果无论是在价位上还是技术上都有了新的突破。随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔。 光纤传感器作为一种优势明显的新型传感器不但在高、精、尖领域得到应用,而且在传统的工业领域被迅速推广,其本身产品也不断推层出新,显示出强大的生命力。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将在海洋、化工、土木工程、水利电力等各个领域显示其应用活力。 二、光纤传感器的特点和工作原理: a。光纤结构和种类: 光纤是一种光信号的传输媒介。 光纤的结构:最内层的纤芯是一种截面积很小、质地脆、易断裂的光导纤维,制造材料可以是石英、玻璃或塑料。纤芯的外层由折射率比纤芯小的材料制成。由于纤芯与包层之间存在着折射率的差异,光信号得以通过全反射在纤芯中不断向前传播。光纤的最外层是起保护作用的外套。通常是将多根光纤扎成束并裹以保护层制成多芯光缆。 图一光纤结构 光纤的种类:1)按纤芯和包层的材质:玻璃光纤、塑料光纤。2)按折射率的变化:阶跃型、渐变型(聚焦光纤)。3)按传播模式:单模光纤、多模光纤。 b。光纤传感器的特点 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

常用的五类光纤传感器基本原理解析

常用的五类光纤传感器基本原理解析 根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。 1)强度调制型光纤传感器 基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。 这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。 2)相位调制型光纤传感器 基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。 目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。

光纤振动传感技术综述

光纤振动传感技术综述 摘要:随着设备朝着大型化、高速化的发展,振动引起的问题更为突出,需要 解决的问题更为迫切,也对振动测试与振动分析技术的研究提出了越来越高的要求。用光纤振动传感器取代常规的振动传感器,尤其是在一些具有强电磁干扰等 环境恶劣的特殊场合,己成为发展的趋势,不同类型、不同原理的光纤振动传感 技术对于振动检测领域的发展有着非常重要的现实意义。本文对光纤振动传感技 术的全球专利申请脉络进行了详细梳理,并通过专利数据统计分析,认识了光纤 振动传感技术的专利申请状况、研究热点以及核心技术的发展,为光纤振动传感 技术的后续审查工作打下了坚实的基础。 关键词:光纤;光栅;振动;传感;解调;分布式 一、引言 振动问题是近代物理学和科学技术众多领域中的重要课题。目前比较成熟的 振动加速度传感器主要为动圈式、压电式、涡流式和微机电系统等电类传感器, 上述类型的传感器都存在易受电磁干扰的问题,应用受到一定的限制。由于光纤 不仅可以作为光波的传输介质,而且光波在光纤中传播的特征参量(振幅、相位、偏振态、波长等)会因外界因素(如温度、压力、磁场等)的作用而发生变化。 用光纤振动传感器取代常规的振动传感器,尤其是在一些具有强电磁干扰等环境 恶劣的特殊场合,己成为发展的趋势。本文旨在通过梳理光纤振动传感技术的全 球专利申请,通过专利数据统计分析,认识了解光纤振动传感技术的专利申请状况、研究热点以及核心技术的发展,为光纤振动传感技术的审查工作打下一定的 基础。 二、专利分析 本文在中国专利文摘数据库(CNABS)和世界专利文摘库(SIPOABS)中,筛 选从1969年6月25日至2017年12月22日申请的国内外专利申请。将从以下 三个方面对光纤振动传感技术的专利进行分析: (1)专利申请发展趋势状况分析 全球范围内关于光纤振动传感技术的专利申请共计1268项,其中向中国专利局提交的国内申请为857项。图1示出了光纤振动传感技术的全球、国内和国外 的专利申请量的发展趋势,从图中可以清楚地看到:光纤传感技术发展中经历了 主要三个阶段,即:1980年以前,光纤传感技术的研究主要停留在理论阶段,以强度调制型光纤传感器的研究为主;从1980年后,开始大规模研究光纤传感技术,出现了大量不同的光纤传感原理和光纤检测技术;进入2000后,各种技术 和器件的研究已基本成熟,光纤传感器开始进入了商业化的进程,光纤传感进入 实用阶段。 图1.专利申请量的发展趋势 对于国外申请而言,尽管他们对于光纤振动传感技术的研究起步很早,但是 总体来看其发展一直呈现较为平稳状态,起伏不大;对于国内申请而言,呈现出 的趋势与国外申请有很大的不同,尽管国内的第一件申请出现的时间较晚,但是 后期发展势头尤为迅猛。 (2)专利申请地域分布状况分析 图2示出了光纤振动传感技术专利申请的国别/地区分布情况,显而易见,中 国是该领域最大的申请来源国;日本是该领域的第二大申请来源国,剩余的部分

分布式光纤传感技术报告-12.10

分布式光纤传感技术报告-12.10

摘要 分布式光纤传感技术是在70年代末提出的,在这十几年里,产生了一系列分布式光纤传感机理和测量系统,并在多个领域得以逐步应用。目前, 这项技术已成为光纤传感技术中最具前途的技术之一。本文主要介绍了光纤的相关特性,分布式光纤传感技术的特点、作用及其分类,详细论述了各种分布式光纤传感器的原理、分布式光纤传感技术的研究现状和具体应用。 关键字:光纤分布式光纤传感技术原理研究现状应用

目录 摘要 引言 1、分布式光纤传感技术简介 1.1光纤基础知识 1)光纤的结构特性 2)光纤的机械特性 3)光纤的损耗特性 2、分布式光纤传感技术原理 2.1 基于光纤后向散射的全分布式光纤传感技术 2.1.1 基于OTDR的微弯传感器 2.1.2 基于自发拉曼散射的光时域散射型(ROTDR)传感器 2.1.3基于受激拉曼效应的传感器 2.1.4基于自发布里渊散射的光时域反射型(BOTDR)传感器 2.1.5基于受激布里渊散射效应的传感器 1)基于布里渊散射的光时域分析型(BOTDA)传感器 2)基于布里渊散射的光频域分析型(BOFDA)传感器 3)基于布里渊散射的光相关域分析型(BOCDA)传感器 4)基于布里渊散射的光相关域反射型(BOCDR)传感 2.1.6基于瑞利散射的偏振光时域反射型(POTDR)传感器 2.1.7基于相位敏感的光时域反射型(Φ-OTDR)传感器 2.2 长距离干涉传感技术 2.3 基于光纤干涉仪的准分布式光纤传感技术 2.4 基于FBG的准分布式光线传感技术 3、分布式光纤传感技术国内外研究进展 4、分布式光线传感技术应用实例

长距离分布式光纤振动传感系统关键技术要点

长距离分布式光纤振动传感系统关键技术要点 发表时间:2018-10-22T14:09:53.943Z 来源:《防护工程》2018年第14期作者:李顺为 [导读] 分布式光纤传感器作为光纤传感器相关技术中较为重要的器件,其不仅具有普通光纤传感器所具有的无辐射干扰性 李顺为 身份证号码:45042119830530XXXX 摘要:分布式光纤传感器作为光纤传感器相关技术中较为重要的器件,其不仅具有普通光纤传感器所具有的无辐射干扰性,抗电磁干扰较好,化学稳定性良好等优势,而且还具有光纤所具有的一维空间实施连续性分布的特性,其最主要的作用就是能够进行长距离的监测,以及定位精确等相关优势。本文主要对长距离分布式光纤震动传感系统的关键技术进行相应分析。 关键词:分布式光纤感;偏振态控制;相位锁定;定位 一、前言 对于光纤传感技术而言,由于其具有较高的灵敏度,且定位精准,能够抗电磁干扰等优势,极其受人们欢迎,且已经成为传感领域当中研究的重点。所谓光纤传感器,主要就是指通过对光波的利用,并将其作为实施探测事件的承载,并将光纤当做传输承载的一种媒介,并利用光波进行监测,以此实现对相关事件的探测[1]。根据光纤在传感器当中所具有的作用,主要将光纤传感器分为两种,也就是功能型与非功能型;而依照光波在光纤当中进行调制的方式,主要分为强度调制型、偏振调制型、频率调制型和相位调制型;依照探测过程是否有光波干涉,主要分为干涉型以及非干涉型[2]。本文主要依据长距离振动传感系统所具有的特点,以光纤M-Z干涉仪的光相位传感方法,对其关键技术进行分析。 二、光相位检测与定位的基本原理 对于长距离分布式光纤振动传感系统而言,本文主要对光相位调制型的光纤M-Z干涉仪对相关振动时间实施相应的传感。当M-Z振动传感器通常是被埋藏在地下的相关管道以及电缆周围实施工作的时候,振动时间通常是根据应力,对光波的相位实施调制。对于光纤M-Z 当中的振动传感系统而言,其径向应力的实际检测灵敏度通常能够达到10-9rad/m.Pa。 对于探测系统当中总长度达到L的光纤,入射光波通常为Ain。当光纤没有受到应力作用的时候,出射的光波为:Aout=Ainexp(i2πnL/c)[3]。 当传感系统的某个位置受到相应径向力作用的时候,该位置的光纤长度,光纤直径、折射率等都会出现相应的变化,其参数的不断变化,就致使光波的相位产生相应的变化,假设外界产生的应力作用,出现的相位变化为Δφ,这时出射的光波为:Aout=Ainexp[i (2πnL/c+Δφ)],光在光纤当中的相位为:φ=βL(β为光纤中光传播常数,L为光传播的距离)[4]。 三、长距离分布式光纤振动传感系统关键技术 (一)、系统的抗偏振衰落技术 所谓长距离分布式的光纤传感系统,主要就是通过对光纤M-Z干涉仪进行使用,并以此对振动的信号进行探测,其所输出的结果主要是指光所产生的干涉信号。干涉信号所具有的清晰度,主要是根据M-Z干涉仪两臂当中的光信号具体的偏振态所决定。其在实际运用过程中,主要根据光纤形变等相关因素,所导致的光纤双折射,就会使其光波出现偏振态变化,并致使干涉信号出现衰落,这对振动信号的有效定位以及识别具有严重影响。而所谓的光纤双折射,就是光纤由于其自身原因,以及外界环境等原因,都会是光纤出现形变,或者是受力不均匀的现象,这就使光纤转变为不同方向的异性介质,并导致光纤出现双折射的现象。 系统的抗偏振衰落技术,主要是依据光纤的双折射以及光偏振态所具有的变化之间的关系进行分,以此使偏振态控制器所产生的干扰信号的强度得以有效增强,并使长距离振动传感系统对振动信号所具有的探测能力得以有效提高。 对于长距离振动传感系统而言,其主要是通过对全光纤M-Z的干涉仪结构进行选用。而保偏光纤由于具有较高的成本,因此,系统就需要对普通的G652单模光纤进行使用。如图1所示,由于普通的单模光纤所具有的双折射能够使x与y方向上所具有的基模LP01或者 HE11,有着不同的传播常数,这就会使基模的偏振态能够沿着光纤所延伸方向产生相应变化。如果光的偏振态通过一个周期,变回成初始的状态,其所产生的光纤长度就是一个拍所具有的长度Lb:Lb=2π/Δβ,其中,Δβ是单模光纤当中两个互相正交的偏振基模,也就是HE11x 与HE11y沿着光纤的轴向实施传输过程中的传播常数差为:Δβ=βx-βy=2π(nx-ny)/λ[5]。以上所述的两个物理量当中,Δβ主要表现为单模光纤双折射主要原因为:拍长Lb主要表现为单模光纤双折射所具有的大小。 图1 光纤双折射导致偏振态的改变示意图 (二)、相位锁定技术 对于长距离分布式的光纤传感系统而言,其主要对光纤M-Z的干涉仪结构进行选用,其所输出的信号,主要就是指干涉仪所产生的相位差。其在实际运用过程中,不仅需要对振动信号所导致形成的相位差变化进行感测,而且光纤应力与温度等相对的缓变也会使相位差产生变化。而对于这种较为缓慢的、出现的相位变化而言,其会对信号输出所具有的响应度以及灵敏度都具有严重影响。 相位锁定技术使用主要的检测方法为以下几点:(1)相位调制载波法。该法主要由A.Dandridge等人所提出的,其主要是对小相位进行检测,实际的测量范围主要为10-7rad[6]。对于长距离的M-Z振动传感系统而言,主要是对PGC进行利用,其实现探测灵敏度较高的主要原理就是,在M-Z干涉仪上面的探测臂上,对有规律的扰动实施相应的引入,以此产生相应的载波,并将需要进行探测的小相位信号在载波上实施加载,并通过载波的探测,对小相位实施相应的检测。(2)直流相位跟踪法。由于这种方法的实现较为简单,只需要使用模拟

分布式光纤传感技术

光纤光栅传感器是一种常用的光学传感器件,分布式光纤光栅就属于准分布式光纤传感器件中的一种。选题方向合理。请尽快确定课题完成方式,明确研究内容,尽快开展课题调研论证工作。75 分布式光纤光栅传感技术 光纤传感技术是一种以光纤为媒介,光为载体,感知和传输外界信号(被测量)的新型传感技术,是伴随着光导纤维及光纤通信技术发展而逐步形成的。在光通信系统中,光纤被用作远距离传输光波信号的媒质,在这类应用中,光纤传输的光信号受外界因素的影响越小越好,但是,在实际的光传输过程中,光纤容易受到外界环境因素的影响,如温度、压力、应变等外界条件的变化将引起光纤中传输光波的特征参数如频率、相位、光强、偏振态等的变化,通过测量这些参数的变化,就可以得到外界作用于光纤的物理量,这就是光纤传感技术。光纤传感技术的基本原理是:将光源的光入射进光纤,当光在光纤中传输的过程中受到外界物理量影响,使得被测参数与光纤内传输的光相互作用,进行调制,从而使其光学性质如光的频率、波长(颜色)、强度、相位、偏振态等发生变化成为被调制的信号光,然后将这一调制的信号光送入光探测器中进行解调,经信号处理后就可获得被测参数。 光纤传感器与传统传感器相比具有许多明显优势: 1)体积小、重量轻,几何形状具有多方面的适应性,可以做成任意形状的传感器和传感器阵列。 2)抗电磁干扰能力强、耐高温、耐腐蚀,在易燃、易爆环境下安全可靠。 3)光纤传感器件多是无源器件,对被测对象影响较小。 4)便于复用,便于成网。它既可以作为信息的传递媒介,又可以作为信号测量的传感装置。 5)光纤传感器传输频带宽,动态范围大,测量距离长。 光纤传感器的种类很多,按照其工作方式可分为:点式、准分布式和分布式三类。其中,准分布式光纤传感器是使用传感网络系统进行测量的,其光纤不作为传感元件,只作为传输元件,其敏感元件为多个点式的传感器,它们采用串联或各种网络结构形式连接起来,利用波分复用、时分复用或频分复用等技术形成分布式网络系统,进而可以较精确地分时或同时得到被测量信息的空间分布,也可同时得到某一点或某些空间点上不同被测量的分布信息。 光纤光栅传感器除了具有一般光纤传感器耐高温、耐腐蚀等优点之外,还具有波长编码,抗干扰能力强等特性。另外,它较易于在一根光纤中连续写入多个光栅,以制成分布式光纤光栅传感,制得的光栅阵列轻巧柔软,可与渡分复用或时分复用技术等相结合,且十分适于作为分布式传感兀件贴于结构表面或埋人到材料和结构的内部,以实现对结构应变、温度以及压力等的多点监测,这对于目

光纤光栅传感器及其发展趋势详解

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

基于瑞利散射的分布式光纤传感技术

光纤中的散射光 当光(电磁)波射入介质时,若介质中存在某些不均匀性(如电场、相位、粒子数密度n、声速v等)使光(电磁)波的传播发生变化,有一部分能量偏离预定的传播方向而向空间中其他任意方向弥散开来,这就是光散射。光的散射现象的表现形式是多种多样的,从不同的角度出发,可有不同的分类,但从产物的物理机制来看,可以分为两大类: 第一类是非纯净介质中的光散射,该散射现象不是介质本身所固有的,而强烈地依赖于掺杂进来的散射中心的性质或介质本身的纯净度。其规律主要表现为:散射光的频率与入射光的频率相同;散射光的强度与入射波长成一定关系。 第二类是纯净介质中的散射,即使所考虑的介质是由成分相同的纯物质组成,其中不含有外来掺杂的质点、颗粒或结构缺陷等,仍然有可能产生光的散射现象,这些散射现象是介质本身所固有的,与介质本身的纯净度没有本质上的关系。属于这类纯净介质的散射现象有如下几种: 1)瑞利散射设介质是由相同的原子或分子组成,由于这些原子或分子空间分布的随机性的统计起伏(密度起伏),造成与电极化特性相应的随机性起伏,而形成入射光的散射。这种散射现象的特点是频率与入射光频率相同,在散射前后原子或分子内能不发生变化,散射光强度与入射光波长的四次方成反比。 2)拉曼散射这种散射现象通常发生在由分子组成的纯净介质中,组成戒指的分子是由一定的原子或离子组成的,它们在分子内部按一定的方式运动(振动或转动),分子内部粒子间的这种相对运动将导致感生电偶极矩随时间的周期性调制,从而可以产生对入射光的散射作用;在单色光入射的情况下,这将是散射光的频率相对于入射光发生一定的移动,频移量正好等于上述调制频率,亦即与散射分子的组成和内部相对运动规律有关。 3)布里渊散射对于任何种类的纯净介质来说,由于组成介质的质点群连续不断的做热运动,使得在介质内始终存在着不同程度上的弹性力学振动或声波场。连续介质的这种宏观弹性力学振动,意味着介质密度(从而也是折射率)随时间和空间的周期性起伏,因而可对入射光产生散射作用,这种作用类似于超声波对光的衍射作用,并且散射光的频移大小与散射角及介质的声波特性有关。

光纤振动传感器的研究

第三章光纤振动传感器的研究 随着光纤和光电子器件技术研究的不断深入,光纤传感技术得到了突飞猛进的发展。由于光纤传感器的体积小、质量轻、精度高、响应快、动态范围宽、响应快等优点,并且它具有良好的抗电磁干扰、耐腐蚀性和不导电性,所以在很多领域都应用广泛。光纤传感器发展到现在,已经可以探测很多的物理量,给人们的生活带来了极大的益处。其中探测的物理量有电压、电流、加速度、流速、压力、温度、位移、生物医学量及化学量等等。光纤振动传感器就是这些中的一员。光纤振动传感器的出现已有30来年的历史,它是测量振动信号的。最初的光纤振动传感器是采用干涉式的结构[2],利用振动产生的光纤应变导致干涉仪信号臂的相位发生变化,但这种传感器结构比较复杂,不利于复用。 由于振动在自然界、人们生活中及各个重大工程中普遍存在,所以研究人们对振动的测量十分关注。本章将对几种常用的光纤振动传感器的结构设计、信号解调方法所存在问题,进行分析与讨论,继而可以更好的设计新的振动传感器,为设计做好准备工作。 3.1几种典型的光纤振动传感器的设计 查阅了众多文献资料,归纳了几种典型的光纤振动传感器的结构原理,主要有光强调制型、相位调制型、光纤布拉格光栅波长调制型、偏振态调制型等几种形式。 3.1.1相位调制型光纤振动传感器的原理及结构 利用外界因素引起的光纤中光波相位变化来探测各种物理量的传感器,称为相位调制传感型光纤传感器。由于位相调制传感器具有非常高的灵敏度,它是所有光纤传感器中最为人所知的。一般地说,这种传感器运用一个相干激光光源和两个单模光纤。光线被分束后入射到光纤。如果干扰影响两根相关光纤的其中一根、就会引起位相差,这个位相差可精确地检测出。位相差可用干涉仪测量。有四种干涉仪结构。它们包括:马赫—泽德尔、迈克尔逊、法布里—帕罗和赛格纳克干涉仪,其中马赫—泽德尔和赛格纳克干涉仪分别在水听器和陀螺上应用非常广泛。 下面是基于光纤Sagnac干涉原理。A和B是干涉仪的两个传感臂,起到传输光的作用。C是一段被绕成圆环状的光纤,是用来接收或感应外接信息的变化,2 2光纤3dB耦合器被用来分解和合成干涉光束。注入的光经过耦合器被分为两束,一束光由A到C再到B,最后传回到耦合器中;另一束由B到C再到A,最后传回到耦合器中,两束光相遇产生干涉。

新型光纤光栅振动传感器测试斜拉索索力

第28卷 第8期 2006年8月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNI VERSITY OF TECHNOLOGY Vol.28 No.8 Aug.2006 新型光纤光栅振动传感器测试斜拉索索力 刘胜春,姜德生,李 盛 (武汉理工大学光纤传感技术研究中心,武汉430070) 摘 要: 介绍了一种新型的基于光纤光栅振动传感器的索力测试系统,并与传统的基于压电式加速度传感器的索力测试系统进行了对比试验研究。结果表明,二者的测试精度相差不大,由于压电式加速度传感器的固有缺陷无法实现索力的远程监测,只适用于索力的定期监测;而基于光纤光栅振动传感器的索力测试系统能够对索力进行实时监测。 关键词: 斜拉桥; 索力测试; 传感器; 光纤光栅 中图分类号: TH 74文献标志码: A 文章编号:167124431(2006)0820110203 Application of Optic Fiber Grating Vibration Sensor to Cable Tension Measuring of Cable 2stayed Bridges LI U Sheng 2chun,JIANG De 2sheng ,LI Sheng (F iber Optical Sensing Technology Research Center ,Wuhan University of Technology,Wuhan 430070,China) Abstract: A new cable tension measuring system based on optic fiber grating vibration sensor is introduced.For testing its performance,we made a exper iment in which two cable tensions measuring system,the forenamed one and t he ot her one based on piezoelectr icity accelerometer,were both used to measure the tension of a stayed cable as the same time.The result showed that t he precision of the two methods had little discrepancy.On account of the inherent limitation of the inherent limitation of the piezoelectr icit y accelerometer,t he system based on piezoelectricity accelerometer usually applies to the inspect of the cable tension,but the system based on optic fiber grating vibr at ion sensor can apply to the real time monitoring of the cable tension as well. Key wor ds: cable 2stayed bridges; cable tension measuring; fiber Br agg grating; vibration sensor 收稿日期:2006203211. 基金项目:国家自然科学基金(50179029). 作者简介:刘胜春(19732),博士生,讲师.E 2mail:liusc@https://www.360docs.net/doc/5415696643.html, 斜拉索是斜拉桥的一个重要组成部分,斜拉桥桥跨结构的重量和桥上的活载绝大部分或全部都通过斜拉索传递到塔柱上,索力是衡量斜拉桥健康状态的重要参数之一。因此,若能在线实时监测斜拉所的索力,不仅能为斜拉桥系统的维护、保养提供可靠的依据,而且可以及时处理可能出现的故障,避免事故的发生,同时还可以积累有用的参考依据。 在工程实践中,频率法是应用最为广泛的索力测试方法。然而,由于电信号无法远距离准确传输的固有缺点,当前应用的基于压电式加速度传感器的频率法还无法满足索力监测的要求,只能用来进行索力检测。针对这一弱点,作者采用了中心研制的光纤光栅振动传感器来代替压电式加速度传感器并重新设计了索力测试系统。文章将介绍这一新型的索力测试系统,并与传统的频率法索力测试系统作对比试验研究。1 索力与频率的关系 在频率法中,以环境振动或者强迫激励拉索,传感器记下时程数据,并由此识别出索的振动频率。由拉

分布式光纤传感技术在地震监测中的应用探讨

分布式光纤传感技术在地震监测中的应用探讨 刘文义 (中国地震局第二监测中心,陕西西安 710054) 1 分布式光纤传感技术 分布式光纤传感利用光导纤维具有的传感、传输双重特性,实现对被测量对象沿光纤分布的多点甚至连续测量,以达到取代多台独立点传感器的目的。它既具有光纤的抗电磁场干扰、大信号传输带宽等优点,又突破了点式光纤传感的限制,可以同时获得被测量对象测量参数的空间分布及其随时间变化的信息,并使之能够进行远距离遥测监控,在许多工程领域有重大的应用价值。 分布式光纤传感技术主要有3个方面的突破:①基于瑞利散射的分布式光纤传感技术;②基于拉曼散射的分布式光纤传感技术;③基于布里渊散射的分布式光纤传感技术。基于布里渊散射的分布式传感技术的研究起步较晚,但由于它在温度、应变测量上所达到的测量精度、测量范围以及空间分辨率均高于其他传感技术,因此,这种技术在目前得到广泛关注与研究。 2 布里渊分布式光纤传感系统研究现状和产品性能分析 (1)传感方案的研究现状。目前,基于布里渊散射的分布式光纤传感系统从方案上分主要有三种:时域反射计(BOTDR)的光纤传感技术、时域分析(BOTDA)的光纤传感技术、光频域分析(BOFDA)的光纤传感技术。由于基于BOTDR的传感方式最大的优点是只需要单端入射,结构简单,从而在实际应用中会很方便,所以,目前国内外对此方案的研究投入相对较多,是技术与产品最成熟的光纤传感器。 (2)传感系统性能的研究现状。对传感系统的性能的研究成果比较突出的主要集中在以下4个方面:温度或应变传感系统的研究;温度和应变同时传感系统的研究;提高系统空间分辨率的研究;提高系统传感距离的研究。 (3)主要分布式光纤传感器产品。目前主要有日本、英国、瑞士、加拿大等国的公司生产商用产品。 3 分布式光纤监测技术的最新进展 (1)国际研究进展。近年来,光纤传感器研究现状和发展趋势呈现出以下几个方面的特点:传感监测的解调技术更加先进,性能和指标更加精确和准确;分布式监测越来越受重视,已成为地质、岩土和土木工程监测的发展方向;应用技术的研究在不断加强,包括光纤传感器的封装技术,特种传感光纤的研制,传感光纤的铺设和安装技术等;相关技术的应用领域和范围迅速扩大。 (2)我国研究应用现状。近几年,我国在研究和应用方面有了长足的发展,新型传感技术不断涌现,工程的应用面不断扩大。与国际上一些先进国家相比还存在着一定的差距,主要体现在一些核心的传感解调技术还掌握在少数国家手中,监测仪器昂贵导致这些先进技术的推广和应用受到了很大影响。 4 在地震监测中的可行性研究 与目前地震监测的方法相比,分布式光纤传感器除具有结构简单、灵敏度高、耐腐蚀、电绝缘、防爆性好、抗电磁干扰、光路可挠曲、易于与计算机连接、便于遥测等优点外,其最显著的优点就是可以测出光纤沿线任一点上的应变、温度和损伤等信息,实现对监测对象的全方位立体监测。因此,引进、研究和开发分布式光纤应变/温度观测技术对活动块体边界带(或断裂带)的监测具有重要意义。 (作者信箱:sf55@https://www.360docs.net/doc/5415696643.html,) 101

浅谈振动探测振动光纤报警系统

探测振动光纤报警系统

北京三安古德针对泄漏电缆安装及使用方法做详细讲解 1、主控设备的选择和安装 1)报警主机的选择和安装 报警主机的选择:本系统对报警主机的选配没有特殊要求,只要能够接收和处理开关量信号即可。如霍尼韦尔、博士或国产报警主机。报警主机的安装:严格按照国家相关规范标准安装。可以安装在中心控制室内墙面上或控制机柜里。 泄漏电缆警戒系统控制器的安装 控制器可以安装在周界防范区域内背阴处的墙面或支架上,引线端子要朝下,离地至少50公分,并要做好控制器的防水处理。控制器也可以安装在中心控制室内墙面上或控制机柜里。要做好控制器外壳的接地。一个控制器只能控制一个防区。防区泄漏电缆警戒长度不应超过105米。

防水事项:控制器外壳引出线端子朝下安装时,外壳具有防水功能,可以直接固定到室内或室外的墙壁或机柜中。室外采取其它方式安装时,为了防水,控制器机箱外需再加装防水罩或箱。 供电:控制器采用交流220V供电。“火线”和“零线”可直接连到控制器内部电源板左下角标有“L”、“N”的端子上,接地线不要接错,否则会烧坏控制器。 2、电缆的敷设 振动光纤示意图 由于系统采用的是高频电路设计,外界强电磁场及活动物体对它有直接影响,而且探测、接收、报警的强弱质量与两根探测电缆敷设的工

艺质量直接关联,所以我们在敷设探测电缆之前要做好现场勘查,要选择合理的布线路由。在施工中,北京三安古德提醒我们要注意以下几点: 1)要避开强磁场源(动力变压器、380伏动力电线、变电柜、电源柜、抽水泵、鼓风机、大排风扇、高频电磁信号传输线、高压电线架、电磁信号发射接收塔或系统等)、活动的金属网、和电线杆至少2m。2)距离人行道和汽车道至少2m。 3)两根泄漏电缆只要相对平行,间距控制在35cm~1.2m左右分布即可。 4)两根泄漏电缆敷设的深度要根据地表层介质情况而定。水泥地、砖地或其它硬质板地的敷设深度应控制在3~7cm;松软的泥土地敷设深度应控制在3~15cm(包括草坪的土质厚 北京三安古德科技发展有限公司是一家专业从事周界入侵防盗产品的研发、生产、销售、以及工程设计、工程施工于一体的安防企业。有着雄厚的科研背景和技术实力。 2012年,公司与加拿大技术公司合作,对现有的产品进行全面技术升级,产品稳定性居于国内前列。 2013年,公司进一步拓展国内及海外市场,产品远销海内外。 产品认证:通过ISO9001质量管理体系认证 公司销售产品:脉冲电子围栏、振动光纤、埋地泄漏电缆、红外射线、刀片电子围栏

光纤微振动传感器原理

光纤微振动传感器原理 朱磊(机械与电子工程学院电子信息工程)指导教师:许海峰 摘要:利用光纤共振原理设计和实现了一种光纤微振动传感器。光纤微振动传感器主要有两种结构形式:带电的微振动传感器和不带电的微振动传感器, 以适应不同环境的在线检测。 关键词:光纤传感器光纤共振在线检测 Abstract: using fibre resonant design principles and realize a fiber optic micro vibration sensor. Fiber optic micro vibration sensor to basically have two kinds of structure form: charged micro vibration sensor and uncharged micro vibration sensor to adapt to different environment of on-line detection. Keywords: optical fiber sensor fiber resonance on-line detection 1.引言 光纤具有传输损耗小、抗电磁干扰等优点, 在传感器领域内已得到广泛应用。以往的传光型光纤振动传感器, 光纤只用于传输光而本身并不振动, 主要是利用与被测物相连的探头振动来进行检测的。本光纤振动传感器有别于传统的光纤振动传感器, 光纤是随着被测物的振动而振动的, 在谐振时, 利用共振原理对微小振动能够放大50~100 倍, 最小测量精度为0. 01mm, 还具有在线实时检测的功能。可用于测量大型发电机、房屋以及桥梁等的微振动。光纤微振动传感器主要有两种结构形式: 带电的微振动传感器和不带电的微振动传感器。带电的微振动传感器适用于弱磁场和低电压的环境下, 如检测房屋以及桥梁的微振动, 并且成本和造价都比较低; 不带电的微振动传感器适用于强磁场和高电压的环境下, 如检测大型发电机的微振动。这两种微振动传感器对温度都是不敏感的。 2.振动原理 按照横向振动理论, 光纤的固有振动频率为: ωr=βr2EIρA=βr?2EIρπR2?2=K r2EI/ρπR2(r=1,2,3…) 1

基于分布式光纤振动监测系统的综合管廊人员定位解决方案

基于分布式光纤振动监测系统的综合管廊 人员定位解决方案 单位:山东微感

目录 1 背景 (1) 2 光纤传感技术介绍 (2) 3 系统优势 (2) 4 技术支撑 (3) 4.1 分布式光纤传感原理 (3) 4.2 精确定位原理 (4) 4.3 设备及性能 (4) 4.4 试验案例 (7) 5 施工 (7) 6 服务 (8)

1 背景 城市综合管廊又称共同沟,是建于城市地下用于敷设市政公管线的公用设施,将电力电缆、信息电(光)缆,热力管道、给排管道水、燃气管道等各种政工程管线集中设置,并且一定距离的管廊都会设相应的检修口和投料口,还有配套完善的测系统,实行统一地规划、设计、建设和管理,是保证城市日常运行的重要基础设施。城市综合管廊工程是重要的生命线工程,其安全运行在一定程度上影响到一个城市的安全运行与功能保障。大量综合管廊工程建设实践表明,综合管廊的结构安全性能、防淹、防火、防人为破坏等关键要素,直接影响到综合管廊的安全运行。 我国的综合管廊工程大多建造在新城区,由于新城区处于建设阶段,相对人员较少。由于综管廊内部有大量的电缆和金属物,因此人为盗窃造成综合管廊安全运行事故时有发生,而设备设施被偷盗后仅仅让非法入侵人员获得极少的利益,但给管廊内部正常运营带来的安全隐患和直接经济损失将不可估量。地下管廊应用之后,管理部门及各管线单位会安排人员定期去管廊内部巡查及检修,由于地下管廊情况复杂,工作人员下到井下可能会有危险,基于人员的安全方面考虑,实时了解管廊内人员位置分布情况对管廊的安全生产工作有重要意义。 随着光纤传感技术在各行各业的广泛应用,基于光纤传感技术而开发的系统设备已经达到了实际应用的要求,并在实际应用中效果明显。本方案中采用的光纤分布式振动监测系统具有抗电磁干扰,耐腐蚀,

光纤振动传感器

第一章绪论 1.1 引言 自20世纪70年代美国Corning公司制造出第一根低损耗光纤至今,光纤通信技术从实验室走向产业,迅速壮大,并发展成为年产值逾千亿元、当今信息时代的支柱之一。与之相伴生的光纤产业链的另一个分支——光纤传感技术产业,在经历了由零星研究走向集中开发、由军用步入民用、由单点监测走向分布式网络监测之后,近年来正大踏步地走向产业腾飞之路。 随着当今军事、工业、民用等领域自动控制系统的飞速发展,作为系统核心的传感技术在人们的生活中得到了越来越广泛的应用。而伴随对传感性能的不断提高的要求,许多新型的传感器件和方法被不断研制出来。 作为传感器件应用的光纤传感器,具备了灵敏度高、动态范围大、不受电磁干扰等突出的优点。在包括强度、频率、波长、偏振调制等多种光纤传感形式当中,相位调制型具有最高的灵敏度,而分布式相位调制型光纤振动传感器则可以实现连续高精度定位传感,具备广阔的应用前景。 1.2 光纤传感技术简介 光纤传感器的历史可追溯到上世纪70 年代,那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果。但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少。最近涌现的很多成果无论是在价位上还是技术上都有了新的突破。随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔。 1.3 光纤传感器的应用 光纤传感器作为一种优势明显的新型传感器不但在高、精、尖领域得到应用,而且在传统的工业领域被迅速推广,其本身产品也不断推层出新,显示出强大的生命力。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将

相关文档
最新文档