光纤振动传感器详解

合集下载

光纤传感器的工作原理

光纤传感器的工作原理

光纤传感器的工作原理光纤传感器作为一种重要的光学传感器,广泛应用于各个领域,如光通信、工业自动化、医疗设备等。

本文将介绍光纤传感器的工作原理及其在实际应用中的特点。

一、工作原理光纤传感器是利用光学原理来实现物理量的检测和测量的装置。

它基于光的传输、反射、折射、散射等现象,通过改变光的强度、频率或相位来感知和测量被测物理量。

1. 光传输光纤传感器中的光信号通过光纤传输到被测物体或环境中。

光纤具有优异的光导传输特性,可以保证光信号在传输过程中的稳定性和可靠性。

2. 光的接收与反射被测物体或环境中的光信号与光纤发射的光信号相互作用后,一部分被反射回光纤。

这里的反射可以是由于光的散射、反射或折射等效应引起的。

3. 光的探测与解读通过光纤传感器接收到的反射光信号会被传感器内部的光电探测器接收并转换成电信号。

电信号会被后续的电路处理和解读,从而获取被测量的物理量信息。

二、特点和应用光纤传感器具有以下特点,使其在各个领域得到广泛应用:1. 高精度光纤传感器具有高分辨率和高灵敏度,可以对微小物理量进行准确测量。

同时,光纤传感器还能实现长距离的传输,适用于大范围的测量需求。

2. 免受干扰光纤传感器的信号传输是光学信号,不会受到电磁干扰,有较高的抗干扰能力。

这使得光纤传感器在工业自动化、电磁环境复杂的场合下具有稳定可靠的性能。

3. 多功能光纤传感器可以根据需求设计不同的传感结构,实现对不同物理量的测量。

如温度、压力、湿度等物理量都可以通过光纤传感器进行检测。

4. 实时性光纤传感器的工作响应快速,能够实时获取被测物理量的变化。

这使得在对实时监测和控制要求较高的应用领域,如工业生产过程中的物料流动监测等,光纤传感器发挥了极其重要的作用。

光纤传感器由于其独特的工作原理和优越的性能,在多个领域有广泛的应用。

以下是一些典型的光纤传感器应用案例:1. 环境监测通过光纤传感器,可以实时监测环境参数,如温度、湿度、气体浓度等。

这对于环境保护、工业安全等方面具有重要意义。

什么是光纤振动传感器?

什么是光纤振动传感器?

什么是光纤振动传感器?
一、什么是光纤振动传感器?
光纤振动传感器就是,用光波作为信号载体,用光纤作为光波传输通道,由光学感应单元响应外界振动后对光波进行调制,使反射光波的性质发生变化,经探测解调后获得振动信息的光纤传感器件。

光纤振动传感器与压电振动传感器的本质区别,就是信号导线由金属导线换成了光纤波导,信号载体由电子换成了光波,传感单元由压电元件换成了光学感应元件。

从原理上来讲,光纤振动传感器就具有极高的灵敏度、固有的本质安全性、抗电磁干扰、高绝缘强度、可远距离传输等优点。

二、光纤振动传感器的工作原理
基本的光纤振动传感器系统由光纤光源、分光器件、振动传感头、光电探测器等几部分组成。

根据传感机理的不同,光纤振动传感器还可能包括光纤调制器、光纤干涉仪、光纤光栅解调仪等元件或部分。

光纤振动传感器的基本工作原理是,将来自光源的光波经过光纤送入传感单元,传感单元响应被测振动信号,使其与光波相互作用,导致光波的光学性质(如光的强度、相位、波长、频率、偏振态等)发生变化,成为被振动信号调制的光波信号,光波信号在传感单元反射后经光纤进入光电探测器,转换成电信号后再进行信号解调处理,从而获得被测振动信号。

三、光纤振动传感器的分类
根据被调制的光波参数不同,光纤振动传感器可分为强度调制型、相位调制型、波长调制型、偏振调制型等几种不同类型。

华驰微电子光纤传感事业部
版权所有,未经授权严禁转载。

光纤传感器原理及应用技术

光纤传感器原理及应用技术

光纤传感器原理及应用技术其中,光弹性原理是利用光纤在传输时会受到外力作用而发生形变而产生的光衰减现象。

通过监测光纤的衰减程度,可以测量出外力的大小。

光拉曼散射原理是利用光纤中的分子振动和转动引起的光的散射现象。

通过监测光纤中的散射光的强弱及频率变化,可以得到被测量物质的温度、压力等信息。

光纤布拉格光栅原理是利用在光纤中制造出周期性折射率改变的结构,从而产生回波光路,当光波通过这种结构时,会发生衍射现象,产生特定的波长回波。

通过监测这些特定波长的光信号,可以测量出物理量的变化。

光纤传感器的信号处理技术主要包括光谱分析技术、光纤光栅的解调技术、时间域反射法等。

光谱分析技术是利用光纤传感器接收到的光信号的光谱特征进行数据处理和分析,从而得到被测量物理量的信息。

光纤光栅的解调技术是利用光纤布拉格光栅的回波信号对输入信号进行解调,得到被测量物理量的信息。

时间域反射法是利用光纤传感器接收到的回波信号的时间延迟来计算被测量物理量的信息。

光纤传感器的结构设计技术主要包括光纤的材料选择和尺寸设计、光纤传感器的外包装设计等。

光纤的材料选择和尺寸设计是考虑到光纤在传输过程中的损耗和变形问题,选择适合的材料和尺寸来提高传感器的灵敏度和可靠性。

光纤传感器的外包装设计是为了保护光纤免受外界环境的损害,并提供有效的信号传输通道。

总之,光纤传感器是一种基于光纤的物理特性进行测量和监测的传感器。

其应用技术涵盖了光谱分析、光纤光栅解调、时间域反射等多种信号处理技术和光纤材料选择、尺寸设计、外包装设计等多种结构设计技术。

通过不断研究和发展,光纤传感器在工业生产、环境监测、医疗卫生等领域具有广泛的应用前景。

光纤位移传感器原理

光纤位移传感器原理

光纤位移传感器原理光纤位移传感器是一种利用光学原理来测量物体位移的传感器。

它通过光纤的变化来实现对物体位移的测量,具有高精度、抗干扰能力强等优点,在工业自动化、航空航天、医疗等领域有着广泛的应用。

光纤位移传感器的原理主要基于两种光学效应,拉曼散射效应和布里渊散射效应。

拉曼散射效应是指当光线通过光纤时,由于光的频率与光纤内部的分子振动频率不同,会发生光子与分子之间的相互作用,使得光子的频率发生变化。

而布里渊散射效应则是指当光线通过光纤时,由于光的频率与光纤内部的声子振动频率不同,会导致光子与声子之间的相互作用,使得光子的频率发生变化。

基于以上两种光学效应,光纤位移传感器的工作原理可以简单描述为,当外界物体发生位移时,会导致光纤的长度或形状发生变化,从而影响光纤内部的光子与分子或声子之间的相互作用,最终导致光子的频率发生变化。

通过检测光子频率的变化,就可以得知外界物体的位移情况。

光纤位移传感器的工作原理虽然看似简单,但其中涉及到的光学原理和信号处理技术却十分复杂。

在实际应用中,需要考虑光纤的材料和结构、光源的稳定性、光谱分析技术等多个方面的因素,才能确保传感器的精准度和稳定性。

除了上述的原理外,光纤位移传感器还有一些特殊的工作原理,比如基于光纤光栅原理的传感器。

光纤光栅是指在光纤内部加入周期性的光栅结构,当外界物体位移时,会导致光栅的周期发生变化,从而改变光纤内部的光场分布,最终影响光的传输特性。

通过检测光的传输特性的变化,就可以实现对外界物体位移的测量。

总的来说,光纤位移传感器的原理是基于光学效应来实现对物体位移的测量,具有高精度、抗干扰能力强等优点。

在实际应用中,需要综合考虑光学原理、信号处理技术等多个方面的因素,才能确保传感器的稳定性和可靠性。

随着光学技术的不断发展,相信光纤位移传感器在未来会有更广泛的应用和更高的性能表现。

振动光纤传感器的研究

振动光纤传感器的研究

基于银薄膜的微型光纤压力传感器的研究光纤传感器技术是随着光纤的发展和光纤通信的出现而慢慢形成的一门新兴技术。

它是以光作为载体,并且以光作为传输介质,对被测参数实现传感。

由于它是一种光学的传感器,在传感方式传感原理、信号探测、信号传输方法和信号处理等方面都与传统的电子传感器完全不同,因此出现了很多种不同种类的光纤传感技术,引起了全世界的广泛的关注和研究。

光纤传感技术和传统的电子传感器相比,有以下主要特点:抗电磁干扰;不产生电磁干扰;灵敏度更高;可以在很多危险和强电磁场干扰的场合使用:传输和传感集为一体;能够容易实现传感器的分布式测量等。

传统传感器在应用中的诸多限制正是由于光纤的这些独特优点的存在得到了弥补。

满足了现代测量技术的需要,也极大的促进了传感技术的发展。

与此同时,光纤传感器在国防工业和军事领域也有重要的应用价值,光纤传感技术在现代的先进的设备中无处不在。

光纤传感技术的发展和应用主要分为四个大的阶段:上世纪八十年代以前,强度调制型光纤传感器的研究占主要地位;八十年代以后,干涉型光纤传感技术开始了大规模的研究;进入九十年代后光纤光栅被发明,因此出现了大批基于光纤光栅的传感技术。

进入新世纪后,各种各样的新型的光纤技术都逐步的完善,光纤传感技术从此步入商业化的进程,进入了实用阶段。

目前,一方面,多种多样的新器件的出现推动了这一技术的进步;另一方面,新的需求也牵引着光纤传感技术向前发展。

十九世纪初,用干涉实验证明了光具有波动这一特性,也就是著名的杨氏干涉实验。

从此以后,人们开始对各种干涉测量技术的研究,并且逐步形成了高灵敏度的测量方法。

激光的出现,高强度的相干光源也能很容易的得到,因此这-N量技术得到了快速的发展和应用。

光纤的出现,使干涉仪中的光不必在空间中传播,可以在弯曲的损耗很低的波导中进行传播。

全光纤系统可以使干涉仪变得更加可靠稳定,也更加紧凑,省去了麻烦的调节过程,也很大程度的降低了外界干扰形成的噪声,测量的灵敏度因此得到了大幅度的提高。

光纤振动传感器原理及其特点是什么

光纤振动传感器原理及其特点是什么

光纤振动传感器原理及其特点是什么在这个过程中,传感器家族的新成员光纤传感器受到青睐。

光纤具有许多优异的性能,如:抗电磁干扰和原子辐射,直径小,柔软,机械性能轻;绝缘和无感电气性能;耐水性、耐高温性和耐腐蚀性的化学特性可以在人们无法到达的地方(如高温区)或对人有害的地方(例如核辐射区)发挥眼睛和耳朵的作用,也可以超越人们的生理极限,接收人们无法感知的外部信息。

光纤振动传感器原理及其特点是什么? 1.光纤传感器原理根据传感原理,光纤传感器可分为两类:一类是透光(非功能)传感器,另一类是传感(功能)传感器。

在光纤传感器中,光纤仅用作光传输介质,通过其他传感元件完成对被测信号的传感。

传感器中的输出光纤和输入光纤是不连续的,它们之间的调制器是光谱变化传感元件或其他传感元件。

在传感光纤传感器中,光纤对被测信号和光信号的传输敏感。

传感器中的“传感”和“传输”光纤是连续的。

由于其高频响应特性,这种结构是计算机磁盘驱动器、磁带、超声波设备和生产线的理想解决方案。

在传感器中,发射和接收光纤束相对排列。

光纤通过测量目标的边缘到达接收光纤。

根据光纤调制的不同原理,光纤传感器可分为强度调制、相位调制、偏振调制、频率调制、波长调制等。

迄今为止,光纤传感器可以测量70多个物理量。

2.光纤传感器的特点(1)高灵敏度由于光是一种波长很短的电磁波,它的光学长度是通过光的相位获得的。

以光纤干涉仪为例。

由于所用光纤的直径很小,当外部机械力或温度变化很小时,光学长度会发生变化,从而导致较大的相位变化。

如果使用10m光纤,l℃的变化将导致1000ard检测到最小相位变化0.。

01ard,因此可以测量的最小温度变化为10℃,这表明它具有较高的灵敏度。

(2)测量速度快光传输速度最快,可以传输二维信息,因此可以用于高速测量。

雷达和其他信号。

分析需要很高的检测率,这很难通过电子方法实现。

这可以通过光衍射的高速光谱分析来解决。

(3)适合恶劣环境光纤是一种耐高压、耐腐蚀和抗电磁干扰的介质,可以在其他传感器无法适应的恶劣环境中使用。

振动光纤方案原理

振动光纤方案原理
真正三维立体空间防护 可探测三维立体空间目标的大小、距离、方位、移动速 度等 身份识别 测距,定位,身份识别 多用途 可根据需要扩展多种用途,如站区巡检系统,站场 第三方施工管理,移动布置成要地防护系统等; 抗干扰 不受高温、低温、强光、灰尘、雨、雪、雾、霜等自然气候影响,具有极 低的漏报率;
类型
光纤方式 视频监控
监控范围
呈线形,面广 ,有盲区 广,存在盲区
隐蔽性
不高/ 高(埋 地) 低
安全性
高 高
可靠性
普通
自动化程度
较高
成本
低/较高/高
低,受环境干扰大 低,需要人员 较高 值守
红外对射
智能雷达
有限,存在盲 区
广,无盲区
不高

较高

低,误报率高,受 较高 外部环境影响大
振动光纤方案原理
一、振动光纤原理
振动光纤原理,是当光纤传感器受到外界干扰影响时,光纤中传输光的 部分特性就会改变,通过配置特殊的感测设备,经过信号采集与分析。
二、振动光纤报警原理
当光纤传感器受到外界干扰影 响时,光纤中传输光的部分特 性就会改变,通过配置特殊的 感测设备,经过信号采集与分 析,就能检测光的特性(即衰 减、相位、波长、极化、模场 分布和传播时间)变化。光的 特性变化通过报警控制器的特 殊算法和分析处理,区分第三 方入侵行为与正常干扰,实现 报警及定位功能
三、系统结构:
光缆振动传感报警系统由监 控器、主控仪、传感器、传 感光缆和外部组件这五大部 分组成。其中,系统监控器、 主控仪位于监控室内,引导 光缆、传感光缆和外部组件 安装于室外
四、振动光纤安装方式
四、振动光纤安装方式
四、振动光纤安装方式

光纤微振动传感器原理

光纤微振动传感器原理

光纤微振动传感器原理朱磊(机械与电子工程学院电子信息工程)指导教师:许海峰摘要:利用光纤共振原理设计和实现了一种光纤微振动传感器。

光纤微振动传感器主要有两种结构形式:带电的微振动传感器和不带电的微振动传感器, 以适应不同环境的在线检测。

关键词:光纤传感器光纤共振在线检测Abstract: using fibre resonant design principles and realize a fiber optic micro vibration sensor. Fiber optic micro vibration sensor to basically have two kinds of structure form: charged micro vibration sensor and uncharged micro vibration sensor to adapt to different environment of on-line detection.Keywords: optical fiber sensor fiber resonance on-line detection1.引言光纤具有传输损耗小、抗电磁干扰等优点, 在传感器领域内已得到广泛应用。

以往的传光型光纤振动传感器, 光纤只用于传输光而本身并不振动, 主要是利用与被测物相连的探头振动来进行检测的。

本光纤振动传感器有别于传统的光纤振动传感器, 光纤是随着被测物的振动而振动的, 在谐振时, 利用共振原理对微小振动能够放大50~100 倍, 最小测量精度为0. 01mm, 还具有在线实时检测的功能。

可用于测量大型发电机、房屋以及桥梁等的微振动。

光纤微振动传感器主要有两种结构形式: 带电的微振动传感器和不带电的微振动传感器。

带电的微振动传感器适用于弱磁场和低电压的环境下, 如检测房屋以及桥梁的微振动, 并且成本和造价都比较低; 不带电的微振动传感器适用于强磁场和高电压的环境下, 如检测大型发电机的微振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


马赫一泽德干涉型光纤传感器的原理
这种传感器是由两根光纤即信号光纤和参考光纤组成。 激光器发出的光经过光纤耦合器分两路至参考光纤和信号光 纤中。当有振动或者压力信号作用于光纤信号臂时,会引起 信号臂光纤的几何尺寸和折射率等参数发生变化,导致在其 中传输的光波相位产生变化,从而两束光再次相遇时发生干 涉形成干光,干涉光再经光电转换变为与被测量成比例的电 信号。
②采用自聚焦透镜的光纤振动传感器 工作原理:在 1/4节距的自聚焦透镜的一端镀反射膜 , 其上 套敏感质量块,并由弹性膜支撑于壳体上。在自聚焦透镜的另 一端相对的壳体上并置关于 GRIN 透镜中心轴对称的发射光 纤和接收光纤,所以入射光经GRIN透镜反射后,进入到接受光 纤当中,弹簧膜振动的时候带动GRIN透镜振动,耦合光功率发 生了变化,其耦合光功率的大小与位移X有关,从而利用这个耦 合关系实施对微位移X的测量,进而间接地测量出加速度的数 值。
2018/10/19
7
光弹效应原理:
光纤振动传感器的简介 光纤振动传感器的原理 光纤振动传感器的分类
光纤振动传感器的应用和展望
2018/10/19
9
模式 调制
强度 调制 光纤振 动传感 器
偏振 态调 制
相位 调制
2018/10/19
波长 调制
10
①光纤悬臂梁结构
其工作原理是从光纤传来的光经过梯度透镜光被梯度透 镜准直 , 成为平行光 , 出射后光被置于前方的悬臂梁上的平弹 片挡住一部分 , 其余部分光经反射镜反射回梯度透镜 , 聚焦于 光纤上。外壳与外部刚性连接 , 外部振动时外壳也振动 , 悬臂 梁和质量块因惯性力的作用 , 相对外壳位置发生上下变化 , 使 遮挡光的面积变化,反射回的光强也就发生变化。通过检测接 收光纤的光强可以获得光斑位置的变化,从而得到加速度的信 息。
波长调制传感原理:
被测场(参量)与敏感光纤相互作用,引起光纤中传输光 的波长改变,进而通过测量光波长的变化量来确定被测参量。 由于波长调制技术对其引起光纤或连续损耗增加的某些器件 的稳定性不敏感,广泛用于液体浓度的化学分析,磷光和荧 光现象分析,黑体辐射分析等方面。
光纤布拉格光栅传感器工作原理
29
光纤振动传感器在安防周界的应用
光纤振动传感器在电缆故障中的应用
北京地铁一号线健康监测
土木工程中安全检测
管道安全防御系统传感示意图
以光纤振动传感器应用在安防周界做详细介绍
用作周界安防技术时,用光缆埋设于地下,或 者敷设在监控区域周界的篱色、围栏、墙壁上,通 过对各种进入周界的侵入行为引起的振动,实现监 测。
2018/10/19
1
光纤振动传感器的简介 光纤振动传感器的原理 光纤振动传感器的分类
光纤振动传感器的应用和展望
2018/10/19
2
振动是自然界中的一种常见现象,在工程实践中对于振 动问题的合理解决方案,具有重要的工程应用价值。从居民 小区安全保障到输油管线维护以及地震监测、海啸监测到处 都可以看到振动传感器的身影。
光纤光栅的反射或透射峰的波长与光栅的折射率调制周 期以及纤芯折射率有关,而外界温度或应变的变化会影响光 纤光栅的折射率调制周期和纤芯折射率,从而引起光纤光栅 的反射或透射峰波长的变化,这就是光纤光栅传感器的基本 工作原理。
光纤光栅传感器的光路原理图
光纤光栅振动传感器工作原理:
它是由机械悬臂梁一端固定在封装壳上,与待测的物台 连接。在测量振动时,振动源和物台同时振动,而引起悬臂 梁振动。由振动惯性力的作用下,悬臂梁发生机械振动,带 动两个光栅产生周期性的应变拉伸或收缩,从而引起FBG的 布拉格波长发生变化,通过探测波长的信息前后是否一致, 就能实现振动测量。
光纤振动传感器
分布式光纤振动传感器
电缆光纤振动传感器
高精度光纤振动传感器
光纤振动传感器的简介 光纤振动传感器的原理 光纤振动传感器的分类
光纤振动传感器的应用和展望
2018/10/19
6
光纤振动传感器应用了“光弹效应”的机理。当有外界扰动 作用在光缆上时,将引起光缆中光纤的长度和折射率等光学 传输特性发生变化,从而引起感应光纤中传输光相位、波长 等参量的变化。
光纤光栅振动传感器原理图
工作原理:这是一种基于光弹效应的偏振型光纤振动传感 器。光源发出的光经过起偏器后变为线偏振光,线偏光经过 光弹性元件后成为椭圆偏振光,椭圆偏振光经过检偏器(是 由偏振片组成的)、光探测器后即可以得到被测振动信息。
偏振态调制型光纤振动传感器
基本原理是 : 相千光源(在此为激光束)发出的光进入一 段多模光纤 , 光纤中将有许多模式相互干涉 , 并在输出端产生 一种随机的干涉图像,称为散斑。输出端的干涉图像对外界环 境非常敏感 , 当有振动信号施加在多模光纤上时 , 将改变光纤 中各模式之间的干涉,最终改变散斑的分布。通过测量散斑分 变化情况,即可获知外界被为一种全新的安全监控的技术,光纤振动报 警系统在安装更加方便、防电磁干扰和智能化等方 面具有不可替代的优势,有望成为新一代的安全监 控技术。
2018/10/19
36
模式调制型光纤振动传感器
光纤振动传感器的简介 光纤振动传感器的原理 光纤振动传感器的分类
光纤振动传感器的应用和展望
2018/10/19
28
一、应用 光纤振动传感己成为现代化传感领域的一个重要研究方 向,在大型建筑、航空、船舶、电力、煤矿和石油等领域的安 全健康监测方面有着广阔的应用前景。
2018/10/19

光纤相位调制原理
光纤的相位调制是指当传感光纤受到外界机械振动作用 时,外界信号通过光纤的力应变效应、热应变效应、弹光效 应及热光效应使传感光纤的几何尺寸和折射率等参数发生变 化,从而导致光纤中的光传输延迟引起相位变化,以实现对 光相位的调制。光纤的相位调制中的通常用来测量振动的为 马赫-泽德型光纤干涉仪。
相关文档
最新文档