光纤振动传感器的研究

合集下载

光纤传感器的制作工艺及工程应用研究共3篇

光纤传感器的制作工艺及工程应用研究共3篇

光纤传感器的制作工艺及工程应用研究共3篇光纤传感器的制作工艺及工程应用研究1光纤传感器的制作工艺及工程应用研究光纤传感器是一种基于光学原理的传感器, 具有高精度、高灵敏度、抗电磁干扰、体积小、重量轻等优点, 在工业、生产、医疗、环保等领域具有广泛的应用前景。

本文主要介绍光纤传感器的制作工艺及其在工程应用中的研究进展。

光纤传感器的制作工艺光纤传感器的基本结构是由一个光纤和一块传感器结构件组成。

其原理是将光纤与要测量的物理量之间产生的变化, 转换成光传输过程中的物理量变化。

光纤传感器的制作工艺由以下几个步骤完成:1.光纤的制备光纤是光纤传感器的核心部件, 必须制备精度高、质量良好的光纤。

光纤的制备工艺包括选择适宜的材料、加工制备光纤预制棒、拉丝成型等环节。

常用的光纤材料有石英、硅藻土、硅等。

2.光纤的剪切将制好的光纤按需求长度剪开, 剪口应光滑整齐, 避免产生破损和纤维群。

3.光纤的套管将光纤插入传感器结构件中, 用套管固定, 避免光纤被损坏和外界干扰。

4.传感器结构件的加工选用适宜的传感器结构件材料, 经过机械加工或其它加工工艺完成。

5.传感器结构件和光纤的耦合将光纤端面与传感器结构件相接触, 保证光的传输。

以上工序完成后, 即得到了基本结构完整的光纤传感器。

但是, 光纤传感器的使用还需根据应用需求进行进一步设计和优化。

光纤传感器在工程应用中的研究进展光纤传感器由于其特有的性能优势, 近年来在消防、监测、故障诊断等领域得到广泛的应用。

下面分别介绍几个应用案例:1.消防灭火火灾是人们生产和生活中不可避免的事故, 有效的消防灭火是防止火灾蔓延的重要手段之一。

光纤传感器具有高温、高压、高湿等环境下不易受损的优点, 可用于火灾现场的实时监测和报警。

此外, 光纤传感器还可用于红外探测和视频监控等应用中。

2.矿山监测矿山作为重要的资源开发领域, 其生产过程中安全问题也是必须要考虑的。

光纤传感器可以应用于矿山内部的监测, 如瓦斯浓度、地应力、地震等, 保证工人的生命安全和设备的正常工作。

什么是光纤振动传感器?

什么是光纤振动传感器?

什么是光纤振动传感器?
一、什么是光纤振动传感器?
光纤振动传感器就是,用光波作为信号载体,用光纤作为光波传输通道,由光学感应单元响应外界振动后对光波进行调制,使反射光波的性质发生变化,经探测解调后获得振动信息的光纤传感器件。

光纤振动传感器与压电振动传感器的本质区别,就是信号导线由金属导线换成了光纤波导,信号载体由电子换成了光波,传感单元由压电元件换成了光学感应元件。

从原理上来讲,光纤振动传感器就具有极高的灵敏度、固有的本质安全性、抗电磁干扰、高绝缘强度、可远距离传输等优点。

二、光纤振动传感器的工作原理
基本的光纤振动传感器系统由光纤光源、分光器件、振动传感头、光电探测器等几部分组成。

根据传感机理的不同,光纤振动传感器还可能包括光纤调制器、光纤干涉仪、光纤光栅解调仪等元件或部分。

光纤振动传感器的基本工作原理是,将来自光源的光波经过光纤送入传感单元,传感单元响应被测振动信号,使其与光波相互作用,导致光波的光学性质(如光的强度、相位、波长、频率、偏振态等)发生变化,成为被振动信号调制的光波信号,光波信号在传感单元反射后经光纤进入光电探测器,转换成电信号后再进行信号解调处理,从而获得被测振动信号。

三、光纤振动传感器的分类
根据被调制的光波参数不同,光纤振动传感器可分为强度调制型、相位调制型、波长调制型、偏振调制型等几种不同类型。

华驰微电子光纤传感事业部
版权所有,未经授权严禁转载。

分布式光纤振动传感技术

分布式光纤振动传感技术

“分布式光纤振动传感技术”资料合集目录一、分布式光纤振动传感技术及其重要安防应用二、基于OTDR的分布式光纤振动传感技术的研究三、高性能分布式光纤振动传感技术的研究四、基于干涉和OTDR复合的分布式光纤振动传感技术的研究五、分布式光纤振动传感技术研究六、基于瑞利散射的分布式光纤振动传感技术研究分布式光纤振动传感技术及其重要安防应用随着科技的进步,我们的生活和工作方式发生了翻天覆地的变化。

其中,分布式光纤振动传感技术作为一项新兴技术,其在安防领域的应用已经引起了广泛的关注。

分布式光纤振动传感技术是一种基于光纤的传感技术,它利用光纤中光信号的散射和干涉效应来检测和测量光纤周围环境的振动。

由于光纤具有抗电磁干扰、耐腐蚀、高灵敏度等优点,因此分布式光纤振动传感技术在长距离、大范围的安防监控系统中具有非常广阔的应用前景。

能源管道是现代社会中不可或缺的基础设施,其安全运行对于保障人民生活和经济发展具有重要意义。

分布式光纤振动传感技术可以实时监测管道的振动情况,通过分析振动信号来判断管道是否受到外界干扰或破坏,从而及时发现安全隐患并采取相应措施。

铁路和公路是交通运输的重要方式,其安全监测对于保障人民生命财产安全具有重要意义。

分布式光纤振动传感技术可以实时监测铁路和公路的路面状况,通过分析振动信号来判断路面是否出现裂缝、塌陷等异常情况,从而及时发现安全隐患并采取相应措施。

在边境和军事领域,分布式光纤振动传感技术也可以发挥重要作用。

它可以实时监测边境线或军事设施周围的振动情况,通过分析振动信号来判断是否有人非法越境或破坏军事设施,从而提高安全防范能力。

分布式光纤振动传感技术还可以应用于地震监测和预警系统。

通过在地表布设光纤,可以实时监测地表的振动情况,通过分析振动信号来判断是否会发生地震,从而及时发布预警信息并采取相应措施。

分布式光纤振动传感技术作为一种新兴的传感技术,其在安防领域的应用已经取得了显著的成果。

未来,随着技术的不断发展和完善,分布式光纤振动传感技术的应用范围还将进一步扩大,为我们的生活和工作带来更多的便利和安全保障。

光纤束传感器测量轴系扭转振动的研究

光纤束传感器测量轴系扭转振动的研究
ma hney. ci r
Ke r y wo ds: l s r ibe —ptc b nde s n o a e ;f ro i u l e s r;tri n lv b ain;a ulrv lct o so a i r t o ng a点。假设其 中相邻 两点 为 a和 b 两点 对应 的轴角 , 为 0 当轴系旋转时 , 计数器对 频率为 -的高速 时钟脉 冲 厂 进 行计 数。通过传感 器感应轴 上 的标 记点 , 在标记 点掠过
( t t K y L b r tr f rc inM e s rn eh oo y& Isr me t , Sae e a o aa y o e i o au ig T c n l P s g n tu ns
Ta j nvri , ini 0 0 2 Chn ) ini U ies y Ta j 3 0 7 , ia n t n
e c d n s i i tr uc d.The i c p e,s se n o i g dik s no d e prn i l y t m sr c u e,t e mp cs f a lng i e n tu t r h i a t o s mp i t o m e s r me t m a u e n
行模拟实验 , 验证 了该测量系统具备高精度 、 安装方便 、 抗干扰能力强 等优 点 , 对于 回转机械 的扭振检测和
故障诊断具有很好的实用价值 。
关键词 :激 光 ; 光纤束传感器 ; 扭振 ; 角速度
中 图 分 类 号 :T 4 N27 文 献 标 识 码 :A 文 章 编 号 :1 0- 7 7 2 1 )10 1-3 0 09 8 (0 1 0 -0 00
Ab t a t sr c :A oso a — xa i r t n me s r me t y tm sn h o i ai n o b r o t u de s n o n t rin la il b ai a u e n s v o s e u ig t e c mb n t f e —p i b n l e s ra d o i f c

光纤振动传感器原理及其特点是什么

光纤振动传感器原理及其特点是什么

光纤振动传感器原理及其特点是什么在这个过程中,传感器家族的新成员光纤传感器受到青睐。

光纤具有许多优异的性能,如:抗电磁干扰和原子辐射,直径小,柔软,机械性能轻;绝缘和无感电气性能;耐水性、耐高温性和耐腐蚀性的化学特性可以在人们无法到达的地方(如高温区)或对人有害的地方(例如核辐射区)发挥眼睛和耳朵的作用,也可以超越人们的生理极限,接收人们无法感知的外部信息。

光纤振动传感器原理及其特点是什么? 1.光纤传感器原理根据传感原理,光纤传感器可分为两类:一类是透光(非功能)传感器,另一类是传感(功能)传感器。

在光纤传感器中,光纤仅用作光传输介质,通过其他传感元件完成对被测信号的传感。

传感器中的输出光纤和输入光纤是不连续的,它们之间的调制器是光谱变化传感元件或其他传感元件。

在传感光纤传感器中,光纤对被测信号和光信号的传输敏感。

传感器中的“传感”和“传输”光纤是连续的。

由于其高频响应特性,这种结构是计算机磁盘驱动器、磁带、超声波设备和生产线的理想解决方案。

在传感器中,发射和接收光纤束相对排列。

光纤通过测量目标的边缘到达接收光纤。

根据光纤调制的不同原理,光纤传感器可分为强度调制、相位调制、偏振调制、频率调制、波长调制等。

迄今为止,光纤传感器可以测量70多个物理量。

2.光纤传感器的特点(1)高灵敏度由于光是一种波长很短的电磁波,它的光学长度是通过光的相位获得的。

以光纤干涉仪为例。

由于所用光纤的直径很小,当外部机械力或温度变化很小时,光学长度会发生变化,从而导致较大的相位变化。

如果使用10m光纤,l℃的变化将导致1000ard检测到最小相位变化0.。

01ard,因此可以测量的最小温度变化为10℃,这表明它具有较高的灵敏度。

(2)测量速度快光传输速度最快,可以传输二维信息,因此可以用于高速测量。

雷达和其他信号。

分析需要很高的检测率,这很难通过电子方法实现。

这可以通过光衍射的高速光谱分析来解决。

(3)适合恶劣环境光纤是一种耐高压、耐腐蚀和抗电磁干扰的介质,可以在其他传感器无法适应的恶劣环境中使用。

分布式光纤振动传感器及其定位技术研究的开题报告

分布式光纤振动传感器及其定位技术研究的开题报告

分布式光纤振动传感器及其定位技术研究的开题报告一、研究背景振动传感器是现代工程中不可或缺的一种测量工具。

传统的振动传感器多为点式传感器,其只能测量一个特定位置上的振动状况。

然而,利用光纤传感技术,可以将整个光纤作为传感器,实现对光纤上任意一点的振动测量。

因此,分布式光纤振动传感器具有优越的测量精度和灵敏度,其广泛应用于航空、海洋、工程等领域。

然而,目前分布式光纤振动传感技术仍存在一些问题亟需解决。

首先,由于灵敏度高、精度高,光纤传感数据量大,传统算法无法处理大量的数据。

其次,传统的分布式光纤振动传感器定位方法通常需要安装多个传感器,造成部署成本极高。

因此,如何利用大数据分析技术和智能定位技术,提高分布式光纤振动传感器的性能和启动成本成为了一个重要的研究方向。

二、研究目的和意义本研究的目的是探讨分布式光纤振动传感器的数据分析方法和智能定位技术,进一步提高分布式光纤振动传感器的性能和可靠性。

具体研究目标如下:1. 研究利用机器学习方法处理分布式光纤振动传感器的数据,提高数据处理效率和精度。

2. 研究利用大数据分析技术对分布式光纤振动传感器数据进行分析,提高传感器的性能和可靠性。

3. 研究一种基于智能定位技术的分布式光纤振动传感器部署方法,降低部署成本。

通过本研究的开展,能够进一步提高分布式光纤振动传感器的应用价值和实用性,为相关领域的工程技术提供更好的解决方案和技术支持。

三、研究内容和研究方法1. 数据分析方法研究本研究将探讨利用机器学习方法处理分布式光纤振动传感器的数据,并分析数据处理后的精度和效率。

方法:采用机器学习算法对传感器采集到的数据进行处理,探讨不同算法在不同数据集下的处理精度和效率,并在此基础上提出一种高效、精确的数据处理方法。

2. 大数据分析技术研究本研究将探讨如何利用大数据分析技术对分布式光纤振动传感器数据进行分析,提高传感器的性能和可靠性。

方法:采用大数据分析技术对传感器采集到的数据进行处理,分析不同环境下的数据变化规律,提取有用信息,为分析研究提供有力支持。

分布式光纤振动传感技术研究

分布式光纤振动传感技术研究

分布式光纤振动传感技术研究赵浩;林宗强;肖恺;李平;罗巧梅;张静【摘要】分布式光纤振动传感技术具有精度高、动态范围大、响应频带宽、隐蔽性好等优于传统振动传感器的鲜明特点,可用于大坝、桥梁、地矿监测、车辆及机械运行监测、火灾报警、管道泄漏报警及重要区域安防报警等领域,应用前景广阔。

本文主要介绍了分布式光纤振动传感器相关技术及种类,并对分布式振动传感技术的发展方向和应用领域进行展望。

%Fiber vibration sensor system of digital network is a new technology,whichdevelopesrapidly with the rapid development of optical fiber and optical fiber communication technology. Because of High precision,wide dynamic range, wide response frequency band,good concealment and so on,fiber sensors are suititable to be applied in the field of monitoring of DAMS、Bridges、 mining、vehicles and machinery operation,fire alarm,pipeline leak alarm et al. Fiber vibration sensor systemhas a broad application prospect. This paper introduces some related technologies of the distributed fiber vibration sensor system and species.Development tendency and application fields are also predicted.【期刊名称】《电子设计工程》【年(卷),期】2014(000)019【总页数】4页(P18-20,24)【关键词】分布式光纤振动传感器;光时域反射;干涉;光纤光学【作者】赵浩;林宗强;肖恺;李平;罗巧梅;张静【作者单位】上海波汇通信科技有限公司上海 200120;上海紫珊光电技术有限公司上海 200120;上海波汇通信科技有限公司上海 200120;上海波汇通信科技有限公司上海 200120;上海波汇通信科技有限公司上海 200120;上海波汇通信科技有限公司上海 200120【正文语种】中文【中图分类】TN29光纤传感技术[1-3]是一门新兴技术,它是随着光导纤维和光纤通信技术的高速发展而迅速发展起来的。

光纤传感器的振动测量技术

光纤传感器的振动测量技术

光纤传感器的振动测量技术光纤传感器在振动测量方面那可是相当厉害的角色!咱就先来说说这振动测量到底是咋回事。

我记得有一次,我去一个工厂参观,那机器轰鸣,震得整个车间都嗡嗡响。

工人们就特别苦恼,因为机器的振动情况他们很难准确掌握,不知道啥时候就会出点小毛病。

这时候,光纤传感器就派上用场啦!光纤传感器测量振动,靠的就是它那灵敏的“感知神经”。

它能把极其微小的振动变化都给捕捉到,然后转换成我们能看懂的信号。

比如说,当一个物体以微小的幅度振动时,光纤传感器里的光纤就会跟着发生细微的拉伸或者压缩。

光纤传感器的优势可太多了。

首先,它抗干扰能力特别强。

不像有些传统的传感器,稍微有点电磁干扰,就乱了套。

光纤传感器可不怕,在各种复杂的环境中都能稳稳地工作。

而且啊,它的精度那叫一个高。

能精确到啥程度呢?哪怕是像头发丝那么细的振动变化,它都能给你测出来。

再说说它的适用范围,那可真是广泛得很。

从大型的桥梁、高楼大厦,到小小的精密仪器,都能用上光纤传感器来测量振动。

比如说,一座大桥在风的吹拂下会产生振动,要是振动幅度过大,那可就危险了。

这时候,在桥上安装几个光纤传感器,就能实时监测振动情况,提前发现问题,保障大家的安全。

还有啊,在航空航天领域,光纤传感器也是大显身手。

飞机在飞行过程中,各个部件都会产生振动。

通过光纤传感器的监测,可以及时了解部件的工作状态,确保飞行安全。

在实际应用中,为了让光纤传感器更好地发挥作用,还得进行一些精心的设计和调试。

就像给它量身定制一套合身的衣服一样,要考虑到测量的频率范围、灵敏度要求、安装位置等等因素。

总之,光纤传感器的振动测量技术就像是我们的一双超级眼睛,让那些隐藏在振动中的秘密无处遁形。

有了它,我们就能更好地了解各种物体的振动情况,保障生产生活的安全和稳定。

就像我参观的那个工厂,如果早早用上光纤传感器来测量机器的振动,工人们也能省不少心呢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章光纤振动传感器的研究随着光纤和光电子器件技术研究的不断深入,光纤传感技术得到了突飞猛进的发展。

由于光纤传感器的体积小、质量轻、精度高、响应快、动态范围宽、响应快等优点,并且它具有良好的抗电磁干扰、耐腐蚀性和不导电性,所以在很多领域都应用广泛。

光纤传感器发展到现在,已经可以探测很多的物理量,给人们的生活带来了极大的益处。

其中探测的物理量有电压、电流、加速度、流速、压力、温度、位移、生物医学量及化学量等等。

光纤振动传感器就是这些中的一员。

光纤振动传感器的出现已有30来年的历史,它是测量振动信号的。

最初的光纤振动传感器是采用干涉式的结构[2],利用振动产生的光纤应变导致干涉仪信号臂的相位发生变化,但这种传感器结构比较复杂,不利于复用。

由于振动在自然界、人们生活中及各个重大工程中普遍存在,所以研究人们对振动的测量十分关注。

本章将对几种常用的光纤振动传感器的结构设计、信号解调方法所存在问题,进行分析与讨论,继而可以更好的设计新的振动传感器,为设计做好准备工作。

3.1几种典型的光纤振动传感器的设计查阅了众多文献资料,归纳了几种典型的光纤振动传感器的结构原理,主要有光强调制型、相位调制型、光纤布拉格光栅波长调制型、偏振态调制型等几种形式。

3.1.1相位调制型光纤振动传感器的原理及结构利用外界因素引起的光纤中光波相位变化来探测各种物理量的传感器,称为相位调制传感型光纤传感器。

由于位相调制传感器具有非常高的灵敏度,它是所有光纤传感器中最为人所知的。

一般地说,这种传感器运用一个相干激光光源和两个单模光纤。

光线被分束后入射到光纤。

如果干扰影响两根相关光纤的其中一根、就会引起位相差,这个位相差可精确地检测出。

位相差可用干涉仪测量。

有四种干涉仪结构。

它们包括:马赫—泽德尔、迈克尔逊、法布里—帕罗和赛格纳克干涉仪,其中马赫—泽德尔和赛格纳克干涉仪分别在水听器和陀螺上应用非常广泛。

下面是基于光纤Sagnac干涉原理。

A和B是干涉仪的两个传感臂,起到传输光的作用。

C是一段被绕成圆环状的光纤,是用来接收或感应外接信息的变化,2 2光纤3dB耦合器被用来分解和合成干涉光束。

注入的光经过耦合器被分为两束,一束光由A到C再到B,最后传回到耦合器中;另一束由B到C再到A,最后传回到耦合器中,两束光相遇产生干涉。

光纤Sagnac干涉振动传感器,是以光学Sagnac干涉仪为基础,利用单模光纤和3dB耦合器构成。

该传感器能够探测微弱振动[4],当信号在固体中传播并作用于传感器的敏感元件时,传感器的输出光强度受到了信号的调制。

通过检测输出光强度,并利用Fourier变换,获得信号的频率特征。

3.1.1 Sagnac光纤传感器原理示意图3.1.2光强调制型光纤振动传感器的原理及结构首先,介绍一下强度调制的机理。

强度调制传感器一般与位移或其他物理扰动相联系,这种扰动与光纤发生作用,或与连接于光纤的机械调制器作用,引起接收到的光强发生改变。

强度调制型光纤传感器的种类很多。

根据对信号光调制方法的不同,可以分为外调制型(调制区域在光纤外部),也称传光型,及内调制(调制区域为光纤本身),也称传感型。

传光型有可分为反射式和透射式;传感型包括光模式功率分布型、光吸收系数调制型和折射率强度调制型等等。

目前,改变光纤光强的办法有以下几种形式。

如改变光纤的耦合条件,改变光纤的歪曲状态,改变光纤中折射率的分布,改变光纤对光波的吸收特性等等。

总之,光损失可以是由于以下因素而引起:透射,反射,微小弯曲或吸收,散射,荧光等。

在光纤通信中,光纤耦合技术成熟的基础上,蒋奇、隋青美等人研制成功了一种全光纤器件的高性能耦合型光纤声振动传感器,以其测量带宽,灵敏度高,解调、制作成本低,使用简单等优点,受到很多人的关注[5]。

为使单模光纤耦合器可作为传感器应用,研究人员分析了单模光纤耦合传感器的敏感机理,根据传感器耦合输出与传感器耦合区长度及耦合区振动频率存在一定的关系这一原理,可以制成光纤振动传感器,实现振动的检测。

图3.1.2 熔锥形光纤耦合器结构示意图当入射光P0 进入输入端时,随着两个光波导逐渐靠近,两个传导模开始发生重叠现象,在双锥体结构的耦合区,光功率再分配,一部分光功率从“直通臂”继续传输,另一部分则是由“耦合臂”传到另一光路。

耦合器两输出端的输出功率之差与激振源的振动加速度成线性关系。

因此,可以通过测量耦合器输出功率的变化,求出传感器加速度的值,实现对振动的测量。

此类传感器对应变的响应非常灵敏,耦合比的线性关系良好,且温度漂移影响可以稳定在0. 5 %以内。

与压电振动传感器的测试对比,该传感器可更好地实现0~50 Hz 低频和4 kHz 高频振动检测。

由于耦合型传感器受制作工艺,外界干扰等影响,传感器耦合输出比的控制,主要在人工拉锥过程中通过观测光谱仪来实现。

而现在对于耦合区的长度和截面形状还不能有效的控制,这样导致了不同的光纤传感器的物理性能相互差异较大,保持光纤耦合器性能的一致性是目前要克服的。

所以,耦合型光纤传感器可基本实现对应变和振动参数的检测,但如果面向实用化的话,还要考虑到制作工艺、耦合区材料、结构本身等多重因素的影响。

3.1.3波长调制型光纤振动传感器的原理及结构波长调制传感原理为被测场/参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化量来确定被测参量。

由布拉格中心波长b λ的数学表达式3.1.3,通过外界参量对布拉格中心波长的调制来获取传感信息[7],这个过程是光纤光栅的传感原理。

Tn eff 2b =λ(3.1.3) 式中,纤芯的有效折射率是eff n ,T 为光栅的周期。

由3.1.3方程可知,b λ是由光栅周期,反向耦合模的有效折射率决定的。

其中,任何能使得这两个参数发生变化的物理过程都将引起光栅布拉格波长的漂移。

在所有引起光栅布拉格波长漂移的外接因素中,最直接的是应变参数的改变。

进而,这种新型的、基于波长漂移检测的光纤传感器机理被得到了广泛的应用。

光纤布拉格光栅具有成本低、体积小、抗电磁干扰、可靠性高等优点,特别适用于辐射性、强磁场、腐蚀性或危险性大的环境中物理参量的测量,是目前最具发展前景的一类光纤传感器。

目前国内外已有不少光纤光栅振动传感器的报道,主要采用了机械悬臂梁结构设计[6]。

但是,由于机械悬梁臂一般都是由金属材料制作而成,其固有的热胀冷缩导致了悬梁臂对温度的交叉灵敏度,成为了该类传感器发展的屏障。

为消除对振动的交叉敏感性,现主要采用、机械补偿结构设计以及参考光纤光栅等技术方法。

但这些方法比较复杂,结构不易加工。

下面介绍研究者设计的一种光纤光栅振动传感器[8]。

它是由机械悬梁臂一端固定在封装壳上,与待测的物台连接。

在测量振动时,振动源和物台同时振动,而引起悬梁臂振动。

两个相同特质的光纤光栅,一个安装在悬梁臂下表面的对称位置作为信号解调光栅,另一个安装在机械悬梁臂的上表面上作为传感光栅。

由振动惯性力的作用下悬臂梁发生机械振动,带动两个光栅产生周期性的应变拉伸或收缩,从而引起FBG的布拉格波长发生变化,通过探测波长的信息前后是否一致,就能实现振动测量。

图3.1.3.1 光纤光路图图3.1.3.1是光纤光栅传感器的光路原理图。

光通过2×2 光纤耦合器,送到传感头1上。

之后,反射光信号返回又经2×2 光纤耦合器,经过传感头2上,传感头2的透射光强经光电转化,由光信号转换为振动的电信号,此时传感头2的作用是用作传感头1的光波长滤波器,将传感头1的波长改变转化成为光强信号变化。

3.1.3.2 此传感器的原理图此光纤光栅振动传感器特点是用一种新的简单易行的解调技术,可以有效消除光纤光栅敏感信号的啁啾现象,有效减弱传感器的温度交叉敏感的问题,振动测量精度有显著的提高。

3.2 光纤振动传感器信号的解调技术信号检测是传感系统中的关键技术之一,传感解调系统的实质是一个信息(能量)转换和传递的检测系统,它能准确、迅速地测量出信号幅度的大小并无失真地再现被测信号随时间的变化过程,待测信息(动态的或静态的)不仅要精确地测量其幅值,而且需记录和跟踪其整个变化过程。

信号解调是光纤传感器实用化所面临的关键问题之一[9]。

目前常用的适用于干涉型光纤振动传感器和光纤光栅振动的解调方法不同。

下面分别对其作出讨论。

3.2.1 相位型光纤振动传感器的解调方法光纤干涉型振动传感器的信号处理直接会影响到测量的精度、分辨率及动态范围等因素。

能形成干涉的方法有很多,所以用于光相位解调的干涉结构也有很多。

目前主要有双光束干涉法、三光束干涉法、多光束干涉法和环形干涉法。

而其中最常用且技术最成熟的是双光束干涉法。

光纤传感中的通常使用的双光束干涉有马赫-泽德型光纤干涉仪和迈克尔逊(Michelson)型光纤干涉仪(如图2-1)两种。

在探测和处理方面,由于后者在信号探测时有比较大的回波干扰,所以光纤传感领域中马赫-泽德型干涉解调方式得到了更为广泛的推广和应用。

图 2-1 迈克尔逊型相位调制型光纤传感原理图无源零差解调方法原理是光路设置来实现正交偏置的开环解调方法。

此技术关键的使用是找到获取正交信号的电路方法,也叫作被动零差解调方法。

零差检测法相原理是对一个频谱比较复杂的信号进行滤波,提取出两个低频的信号,然后重新合成为一个新的信号,该信号的相位就包含了被测量的信息。

合成外差解调法的原理与与零差检测法相似,只是合成外差法采用本振信号混频。

该解调方法的优点是对光信号的幅度波动和偏振态变化不敏感。

3.2.2 波长调制型光纤振动传感器的解调技术波长解调技术在光纤振动传感器解调技术中被广泛应用。

它将测量的信息进行波长编码,不必对光纤连接器,光源输出功率起伏,耦合器损耗进行补偿,操作较为简单。

下面对光纤光栅振动传感器的解方法做进一步的讨论。

如图3.2.2.1,在传感过程中,信号的解调可分为反射式及透射式,反射式的传感解调系统比较容易实现。

过程是光经连接器进入传感光纤光栅,传感头在外接因素变化的情况下,对光波进行调制;由传感光栅透射(或反射)信息的调制光波,探测器接收连接器传入的信息解调并输出。

图3.2.2.1信号解调目前比较应用较多的主要波长移动检测方案有以下几种:可调谐滤波检测法,匹配光栅检测法,光谱仪和多波长计检测法,边缘滤波检测法,CCD分光仪检测法,波长可调谐光源解调法等[10]。

边沿滤滤解调检测方法是基于光强检测,适用于动静态测量,由式可知测量范围与探测器的分辨率成正比。

此方法的特点是能够有效地抑制连接及微弯干扰、光源输出功率的起伏等不利因素,采用了较好的补偿措施,而且系统反应灵敏,价格较低,使用方便灵活,并且在几个εm测量范围内,系统具有几十个με的高分辨率。

3.2.2.3 边沿滤滤解调示意图光谱仪和多波长计检测法是对波长移位常用的检测方法,在光纤光栅传感系统中。

相关文档
最新文档