分数拆项与裂项

合集下载

六年级奥数试题-分数裂项与分拆(教师版)

六年级奥数试题-分数裂项与分拆(教师版)

第十三讲 分数裂项与分拆1. “裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

①对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- ②对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+③对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222h h n n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭ 2. 裂差型裂项的三大关键特征:①分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

12分数拆分(2)

12分数拆分(2)

一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

例1、计算:16+112+120+…+172+190+1110。

六年级第一讲:分数裂项

六年级第一讲:分数裂项

| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education分数裂项| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education例1一、单位分数的拆分:导入课堂 练习:()[]1161+= ()与[ ]中数不同 例1:()()()()()()()()11111111201201101+=+=+=+=+=教学建议:首先要掌握10的因数有哪几个解:分析:分数单位的拆分,主要方法是:从分母N 的约数中任意找出两个m 和n,有:BA n m N n n m N m n m N n m N 11)()()()(11+=+++=++= 本题10的约数有:1,10,2,5 …… 例如:选1和2,有:151301)21(102)21(101)21(10)21(1101+=+⨯++⨯=+⨯+⨯= 本题具体的解有:3011513511416011211101111101+=+=+=+=专题解析典型例题解析| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假Nice Education练习1(1)()()11121+= 有哪几种情况? (2)杯望希11161++= (“希” “望” “杯”代表不同的整数,一种情况即可)(3)赛竞克匹林奥11111121+++++= (不同数代表不同的数,一种情况即可)例2求:+⨯+⨯+⨯+⨯541431321211 (31)30130291⨯+⨯的值 教学建议:用裂项法求)1(1+n n 型分数求和分析:因为=+-++=+-)1()1(1111n n n n n n n n )1(1+n n (n 为自然数) 所以有裂项公式:111)1(1+-=+n n n n分析:a n =111)1(1+-=+n n n n所以 原式311301301291514141313121211-+-+-+-+-+-=31303111=-=练习2(1)91901541431321⨯++⨯+⨯+⨯ (2)121+261+3121+4201+……+204201| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education(3)99009899970297017271565542413029201912116521++++++++++ (4)1200520043221=⨯++⨯+⨯xx x(5)?,20052004)1(11216121n n n 求已知=+++++例3求1009711071741411⨯++⨯+⨯+⨯ 的值 教学建议:用裂项法求)(1k n n + 型分数求和分析:)(1k n n +型。

分数拆项与裂项

分数拆项与裂项

分数的速算与巧算1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨 一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 三、循环小数化分数 1、循环小数化分数结论:0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 2、单位分数的拆分:例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。

小学奥数教程-分数裂项计算 (含答案)

小学奥数教程-分数裂项计算 (含答案)

教师版
page 2 of 17
【考点】分数裂项
【难度】2 星
【题型】计算
【解析】 1 + 1 + 1 + + 1 = 1 × (1 − 1 + 1 − 1 + … + 1 − 1 )= 50
1×3 3×5 5× 7
99 ×101 2 3 3 5
99 101 101
【答案】 50 101
【巩固】 计算:
【考点】分数裂项
【难度】3 星
【题型】计算
【解析】原式 =1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1 2 5 5 7 7 11 11 16 16 22 22 29 29 2
【答案】 1 2
【例 4】 计算: (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) ×128 = 8 24 48 80 120 168 224 288
【答案】12
【巩固】 251 + 251 + 251 + + 251 + 251
4 × 8 8 ×12 12 ×16
2000 × 2004 2004 × 2008
【考点】分数裂项
【难度】2 星
【题型】计算
【关键词】台湾,小学数学竞赛,初赛
【解析】 原式
=251 16
×

1 1×
2
+
2
1 ×
裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是 1 的,复杂形式可为都是 x(x 为任意自然数)的,但是只要将 x 提取出来即可转化为分子都是 1 的运算。

分数计算技巧及分数计算的技巧

分数计算技巧及分数计算的技巧

分数计算技巧对于分数的混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧。

分数计算技巧也是数学竞赛中的考点之一。

1.凑整法与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……,从而使运算得到简化。

2.约分法3.裂项法将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,从而简化运算。

例7 在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1。

解:这道题看上去比较复杂,要求10个分子为1、而分母不同的分数的和等于1,似乎无从下手。

但如果巧用1/n-1/(n+1)=1/n(n+1)来做,就非常简单了。

所以,要求的10个数是:2、6、12、20、30、42、56、72、90、10。

本题的解不是唯一的,例如由1/10+1/30=1/9+1/45可知,用9和45可以替换上面解答中的10和30,同样符合要求。

4.代数法5.分组法解:利用加法交换律和结合律,先将同分母的分数相加。

分母为n的分数之和为6.一些典型例题1、解:观察这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行裂项计算。

2、计算:3、4、5、6、练习题在做分数的计算题时,只要正确利用分数的基本性质和四则运算法则,一般都能得到正确结果。

但有时按常规方法计算就显得相当麻烦。

下面我们来学习分数运算中的某些技巧,通过这些运算技巧的学习,可以达到简化计算的目的,从而提高同学们的计算速度。

一、阅读思考想一想,你能很快说出下面每组式子的答案吗?分析与解:3组中,每组2个式子的结果都相等,分别是21、61、201。

总结规律:如果一个分数的分子是1,分母是2个相邻自然数的乘积,那么这个分数就可以拆分成2个分数的差。

应用规律:在计算分数加、减法的时候,先将其中的一些分数适当拆分,使得有一部分分数可以相互抵消,从而使计算简化,我们把这种方法叫做裂项法(也叫拆项法)。

(完整word版)六年级奥数分数裂项

(完整word版)六年级奥数分数裂项

分数裂项计算教课目的本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,能够分为察看、改造、运用公式等过程。

好多时候裂项的方式不易找到,需要进行适合的变形,或许先进行一部分运算,使其变得更为简单了然。

本讲是整个奥数知识系统中的一个精髓部分, 列项与通项概括是密不行分的,因此先找通项是裂项的前提,是能力的表现,对学生要求较高。

知识点拨分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法. 裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。

碰到裂项的计算题时,要认真的 察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂 的计算,一般都是中间部分消去的过程,这样的话, 找到相邻两项的相像部分,让它们消去才是最根本的。

(1) 关于分母能够写作两个因数乘积的分数,即 1 形式的, 这里我们把较小的数写在前方, 即 a b ,a b那么有1 1 1 1a b b a ()a b(2) 关于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:1,1形式的,我们有:n ( n1) (n2)( n 1)( n 2)( n n 3)n ( n 1(n 2)1 [ 1 1) (n1 ] 1)2 n (n 1)(n 2) 11 [ 1 1n ( n 1) (n2) (n3) 3 (n 1) (n ]n 2) (n 1) (n 2) (n 3)裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将 x提拿出来即可转变为分子都是1 的运算。

( 2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接”( 3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:( 1)a 2 2 2 2b ab1 1 ( 2)a ba bab a b a b a b b a a b a b a b b a裂和型运算与裂差型运算的比:裂差型运算的中心是“两两抵消达到化的目的” ,裂和型运算的目不有“两两抵消”型的,同有化“分数凑整”型的,以达到化目的。

初中数学简便计算方法技巧

初中数学简便计算方法技巧

初中数学简便计算方法技巧
初中数学的简便计算方法有很多,下面列举部分方法供参考:
- 运算律:包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法对加法的分配率。

- 拆项法:将分数拆成“1-”的形式,这种情况通常分子和分母的值相差为1或2;或者把整数拆成两数之和的形式,被拆后的一个数和分数的分母成倍数关系,再利用乘法对加法的分配率进行化简计算。

- 裂项相消法:将算式中的项进行拆分,拆成两个或多个数字的和或差,拆分后的项前后可以相互抵消。

- 分子分母约分法:将分数化简,约分后计算更简单。

- 方程左右两边相同因数相消法:若方程左右两边有相同的因数,可以将其消去后再进行计算。

- 字母代换法:若式子较为复杂,但包含相同的部分,可以先用字母代替,化简后再代入字母的值进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的速算与巧算1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+ 二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.三、循环小数化分数0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 2、单位分数的拆分:例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是:从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。

例如:选1和2,有:11(12)12111010(12)10(12)10(12)3015+==+=++++ 本题具体的解有:1111111111011110126014351530=+=+=+=+ 例题精讲 模块一、分数裂项【例 1】11111123423453456678978910+++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式111111131232342343457898910⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭ 11131238910⎛⎫=⨯- ⎪⨯⨯⨯⨯⎝⎭1192160= 【巩固】 333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式11111113[(...)]3123234234345171819181920=⨯⨯-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1131920111391231819201819206840⨯⨯-=-==⨯⨯⨯⨯⨯⨯ 【例 2】 计算:57191232348910+++=⨯⨯⨯⨯⨯⨯ . 【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n 个数恰好为n 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.原式32343161232348910+++=+++⨯⨯⨯⨯⨯⨯ 1111283212323489101232348910⎛⎫⎛⎫=⨯++++⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 111111111132212232334899102334910⎛⎫⎛⎫=⨯⨯-+-++-+⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 31111111122129102334910⎛⎫⎛⎫=⨯-+⨯-+-++- ⎪ ⎪⨯⨯⎝⎭⎝⎭ 3111122290210⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭ 7114605=-- 2315=也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以()()()()()()2323121212n n n n n n n n n +=+⨯+⨯++⨯+⨯+⨯+,再将每一项的()()212n n +⨯+与()()312n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同.【巩固】 计算:5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯() 【解析】 本题的重点在于计算括号内的算式:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.观察可知523=+,734=+,……即每一项的分子都等于分母中前两个乘数的和,所以 571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 233491023434591011+++=+++⨯⨯⨯⨯⨯⨯ 111111342445351011911=++++++⨯⨯⨯⨯⨯⨯ 111111344510112435911⎛⎫⎛⎫=+++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭11111111111111111344510112243546810911⎛⎫⎛⎫=-+-++-+⨯-+-+-++-+- ⎪ ⎪⎝⎭⎝⎭ 11111113112210311⎛⎫⎛⎫=-+⨯-+- ⎪ ⎪⎝⎭⎝⎭8128332533⎛⎫=+⨯+ ⎪⎝⎭3155= 所以原式31115565155=⨯=. 【巩固】 计算:3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先将每一项的分子、分母都乘以分子中的数.即:原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:23154=⨯+,24264=⨯+,25374=⨯+……【解析】 原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 154264374101441234523456345671011121314⨯+⨯+⨯+⨯+=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111123434545611121344441234523456345671011121314⎛⎫=++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11111112233434451112121311111112342345234534561011121311121314⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭111112231213123411121314⎛⎫⎛⎫=⨯-+- ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 111112212132411121314=-+-⨯⨯⨯⨯⨯1771811121314+=-⨯⨯⨯11821114=-⨯⨯11758308616=-= 【例 3】 12349223234234523410+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式12349223234234523410=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 21314110122323423410----=++++⨯⨯⨯⨯⨯⨯ 111111112223232342349234910=-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1362879912349103628800=-=⨯⨯⨯⨯ 【例 4】 111111212312100++++++++++ 【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。

此类问题需要从最简单的项开始入手,通过公式的运算寻找规律。

从第一项开始,对分母进行等差数列求和运算公式的代入有112(11)11122==+⨯⨯,112(12)212232==+⨯+⨯,……, 原式22221200992(1)1122334100101101101101=++++=⨯-==⨯⨯⨯⨯ 【巩固】 234501(12)(12)(123)(123)(1234)(12349)(12350)++++⨯++⨯++++⨯+++++++⨯++++原式=213⨯+336⨯+4610⨯+51015⨯+…+5012251275⨯ =(11-13)+(13-16)+(16-110)+(11225-11275)=12741275【巩固】 2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++ 【解析】 2111(12)112=-⨯++,311(12)(123)12123=-+⨯+++++,……, 10011(1299)(12100)129912100=-+++⨯+++++++++,所以 原式1112100=-+++ 15049150505050=-= 【巩固】 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++() 【解析】 原式234101()133********=-++++⨯⨯⨯⨯ 1111111113366104555⎛⎫=--+-+-++- ⎪⎝⎭ 11155⎛⎫=-- ⎪⎝⎭155= 【例 5】22222211111131517191111131+++++=------ . 【解析】 这题是利用平方差公式进行裂项:22()()a b a b a b -=-⨯+, 原式111111()()()()()()24466881010121214=+++++⨯⨯⨯⨯⨯⨯ 1111111111111()244668810101212142=-+-+-+-+-+-⨯ 1113()214214=-⨯= 【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯ 【解析】 原式22222222222222222132438712233478----=++++⨯⨯⨯⨯ 2222222111111112233478=-+-+-++- 2118=-6364= 【巩固】 计算:222222222231517119931199513151711993119951++++++++++=----- . 【解析】 原式2222222222111113151711993119951⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭222997244619941996⎛⎫=++++ ⎪⨯⨯⨯⎝⎭ 111111997244619941996⎛⎫=+-+-++- ⎪⎝⎭1199721996⎛⎫=+- ⎪⎝⎭9979971996= 【巩固】 计算:22221235013355799101++++=⨯⨯⨯⨯ . 【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为221-,241-,261-,……,21001-,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了. 原式22222222124610042141611001⎛⎫=⨯++++ ⎪----⎝⎭ 222211111111142141611001⎛⎫=⨯++++++++ ⎪----⎝⎭ 1111150413355799101⎛⎫=⨯+++++ ⎪⨯⨯⨯⨯⎝⎭ 111111111501423355799101⎡⎤⎛⎫=⨯+⨯-+-+-++- ⎪⎢⎥⎝⎭⎣⎦ 11150142101⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦150504101=⨯6312101= 【巩固】 22446688101013355779911⨯⨯⨯⨯⨯++++⨯⨯⨯⨯⨯ 【解析】 (法1):可先找通项222111111(1)(1)n n a n n n n ==+=+---⨯+原式11111(1)(1)(1)(1)(1)133********=+++++++++⨯⨯⨯⨯⨯ 11555(1)552111111=+⨯-=+= (法2):原式288181832325050(2)()()()()3355779911=-+-+-+-+- 61014185065210453579111111=++++-=-= 【例 6】 1113199921111111(1)(1)(1)(1)(1)223231999+++++⨯++⨯+⨯⨯+ 【解析】 11211112()1112(1)(2)12(1)(1)(1)2312n n n n n n n n ++===⨯-++++++⨯+⨯⨯++ 原式=11111111()()()()223344519992000⎡⎤-+-+-++-⨯⎢⎥⎣⎦= 【巩固】 计算:111112123122007+++⋯+++++⋯ 【解析】 先找通项公式12112()12(1)1n a n n n n n ===-++⨯++ 原式11112(21)3(31)2007(20071)222=++++⨯+⨯+⨯+ 222212233420072008=++++⨯⨯⨯⨯ 200722008=⨯ 20071004= 【巩固】 111133535735721+++++++++++ 【解析】 先找通项:()()()1111352122132n a n n n n n ===+++++⨯++⨯, 原式111111132435469111012=++++++⨯⨯⨯⨯⨯⨯ 111111133591124461012⎛⎫⎛⎫=+++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 11111121112212⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭ 175264= 【例 7】 121231234123502232342350++++++++++⨯⨯⨯⨯++++++ 【解析】 找通项(1)(1)2(1)(1)212n n nn n a n n n n +⨯⨯+==+⨯⨯+-- 原式2334455623344556410182814253647⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯, 通过试写我们又发现数列存在以上规律,这样我们就可以轻松写出全部的项,所以有原式2334455648494950505114253647475048514952⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯35023215226=⨯= 1000999100011=-【例 8】 222222222222233333333333331121231234122611212312341226++++++++⋯+-+-+⋯-++++++++⋯+ 【解析】 22222333(1)(21)122212116()(1)123(1)314n n n n n n a n n n n n n n ⨯+⨯+++⋯++===⨯=⨯+⨯+++⋯+⨯++ 原式=211111111[()()()()]31223342627⨯+-+++-+=2152(1)32781⨯-= 【巩固】 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭【解析】 22221(1)(1)1(1)1(1)1(2)n n n a n n n n ++=+==+-+-⨯+ 原式223398989999(21)(21)(31)(31)(981)(981)(991)(991)⨯⨯⨯⨯=⨯⨯⨯⨯+⨯-+⨯-+⨯-+⨯- 223344559898999929949131425364999710098110050⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯=⨯⨯⨯⨯⨯⨯ 【例 9】 计算:22222223992131991⨯⨯⨯=--- 【解析】 通项公式:()()()()()221111112n n n a n n n n ++==+++-+, 原式22334498989999(21)(21)(31)(31)(41)(41)(981)(981)(991)(991)⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯+⨯-+⨯-+⨯-+⨯-+⨯- 223344559898999931425364999710098⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 22334498989999132435979998100=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯29999110050=⨯= 【巩固】 计算:222222129911005000220050009999005000+++=-+-+-+ 【解析】 本题的通项公式为221005000n n n -+,没办法进行裂项之类的处理.注意到分母()()()2100500050001005000100100100n n n n n n -+=--=----⎡⎤⎣⎦,可以看出如果把n 换成100n -的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一个22505050005000-+.将项数和为100的两项相加,得 ()()()()22222222210010022001000021005000100500010050001001001005000n n n n n n n n n n n n n n -+--++===-+-+-+---+,所以原式249199=⨯+=.(或者,可得原式中99项的平均数为1,所以原式19999=⨯=)【例 10】 ⎪⎭⎫ ⎝⎛+++++++-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯22222210211211112120154132124 【解析】 虽然很容易看出321⨯=3121-,541⨯=5141-……可是再仔细一看,并没有什么效果,因为这不象分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式 ,于是我们又有)12()1(632112222+⨯+⨯++++n n n n= ..减号前面括号里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢⎪⎭⎫ ⎝⎛+++++++-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯22222210211211112120154132124 =⎪⎭⎫ ⎝⎛⨯⨯++⨯⨯+⨯⨯⨯-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯21111015321321162120154132124 =⎪⎭⎫ ⎝⎛⨯⨯++⨯⨯+⨯⨯⨯-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯212220156413421242120154132124 =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯⨯-⨯++⎪⎭⎫ ⎝⎛⨯⨯-⨯+⎪⎭⎫ ⎝⎛⨯⨯-⨯⨯2122201212015641541342132124 =⎪⎭⎫⎝⎛⨯++⨯+⨯⨯2220164142124 =⎪⎭⎫⎝⎛⨯++⨯+⨯⨯111013212116 =⎪⎭⎫ ⎝⎛-⨯11116=1160.模块二、换元与公式应用【例 11】 计算:3333333313579111315+++++++【解析】 原式()333333333123414152414=++++++-+++()()223331515181274⨯+=-⨯+++22576002784=-⨯⨯8128=【巩固】 132435911⨯+⨯+⨯+⨯【解析】 原式()()()()()()21213131101101=-++-+++-+()()()()()22222222222131101231091231010101121103756=-+-++-=+++-=++++-⨯⨯=-=【巩固】 计算:1232343458910⨯⨯+⨯⨯+⨯⨯++⨯⨯【解析】 原式()()()()2222221331441991=⨯-+⨯-+⨯-++⨯-()333323492349=++++-++++()()2123912349=++++--++++245451980=-=【例 12】 计算:234561111111333333++++++【解析】 法一:利用等比数列求和公式。

相关文档
最新文档