气动机械手控制系统设计

合集下载

基于PLC的气动机械手控制系统设计

基于PLC的气动机械手控制系统设计

第3期(总第411期)2024年3月农业技术与装备AGRICULTURAL TECHNOLOGY&EQUIPMENT No.3基于PLC的气动机械手控制系统设计朱静(江苏省靖江中等专业学校,江苏靖江214500)摘要在工业领域中,气动机械手是很重要的设备,随着科技发展气动机械手有了越来越先进的控制系统。

以PLC的气动机械手控制系统设计为研究内容,分析了PLC气动机械手控制系统的需求,从PLC技术原理出发,设计了气动机械手控制系统,旨在为我国的工业领域发展提供有力支持。

关键词PLC;气动机械手;控制系统中图分类号TP241文献标志码A doi:10.3969/j.issn.1673-887X.2024.03.009Design of Pneumatic Manipulator Control System Based on PLCZhu Jing(Jiangsu Jingjiang Secondary Specialized School,Jingjiang214500,Jiangsu,China)Abstract:In the industrial field,pneumatic manipulator is a very important equipment,with the development of science and technol‐ogy,pneumatic manipulator has more and more advanced control system.Based on the design of PLC pneumatic manipulator control system,this paper analyzed the demand of PLC pneumatic manipulator control system,and designed the pneumatic manipulator con‐trol system from the principle of PLC technology,in order to provide strong support for the development of China's industrial field. Key words:PLC;pneumatic robotic arm;control system气动机械手依靠气压转动完成机械手操作,寿命长,结构简单、动作可靠迅速,在工业领域中较常见。

《2024年基于PLC的气动机械手控制系统设计》范文

《2024年基于PLC的气动机械手控制系统设计》范文

《基于PLC的气动机械手控制系统设计》篇一一、引言随着工业自动化程度的不断提高,气动机械手在工业生产线上扮演着越来越重要的角色。

为了提高机械手的控制精度、稳定性和可靠性,基于PLC的气动机械手控制系统设计成为了当前研究的热点。

本文将详细介绍基于PLC的气动机械手控制系统的设计原理、方法及实施过程。

二、系统设计目标本系统设计的主要目标是实现气动机械手的自动化控制,提高生产效率,降低人工操作成本。

具体包括以下几个方面:1. 提高机械手的控制精度和稳定性;2. 实现机械手的自动化操作,减少人工干预;3. 具备较高的可靠性和抗干扰能力;4. 具备灵活的扩展性和可维护性。

三、系统设计原理基于PLC的气动机械手控制系统主要由PLC控制器、气动执行机构、传感器及辅助设备等组成。

其中,PLC控制器作为核心部件,负责接收上位机的指令,控制气动执行机构的动作,同时监测传感器的状态,实现机械手的自动化控制。

四、硬件设计1. PLC控制器:选用高性能的PLC控制器,具备较高的处理速度和稳定性。

根据机械手的动作需求,配置相应的输入/输出端口。

2. 气动执行机构:包括气缸、气阀等,负责实现机械手的抓取、移动等动作。

3. 传感器:包括位置传感器、压力传感器等,用于监测机械手的状态,为PLC控制器提供反馈信号。

4. 辅助设备:包括电源、通信接口等,为系统提供必要的支持和保障。

五、软件设计1. 编程语言:采用结构化文本、梯形图、功能块图等编程语言,实现PLC控制器的逻辑控制功能。

2. 程序设计:根据机械手的动作需求,编写相应的程序,实现抓取、移动、停止等动作的控制。

同时,通过传感器反馈的状态信息,实现机械手的闭环控制。

3. 通信协议:与上位机通信,实现数据的传输和指令的下达。

六、系统实施1. 安装与调试:按照硬件设计图,将各部件安装到指定位置,并进行调试,确保各部件正常工作。

2. 编程与测试:根据程序设计要求,编写相应的程序,并进行测试,确保程序正确无误。

气动机械手PLC控制系统设计

气动机械手PLC控制系统设计
二PLC机械手介绍——————————————————————————4
(一)PLC机械手的原理及流程图——————————————————4
(二)电路中主要元器件的绍———————————————————5
1电器继电器的原理及应用———————————————————5
2电磁阀的工作原理及应用———————————————————5
3)其它接口
若主机单元的I/O数量不够用,可通过I/O扩展接口电缆与I/O扩展单元(不带CPU)相接进行扩充。PLC还常配置连接各种外围设备的接口,可通过电缆实现串行通信、EPROM写入等功能。
4)编程器
编程器作用是将用户编写的程序下载至PLC的用户程序存储器,并利用编程器检查、修改和调试用户程序,监视用户程序的执行过程,显示PLC状态、内部器件及系统的参数等。编程器有简易编程器和图形编程器两种。简易编程器体积小,携带方便,但只能用语句形式进行联机编程,适合小型PLC的编程及现场调试。图形编程器既可用语句形式编程,又可用梯形图编程,同时还能进行脱机编程。
5.机械手开始右旋,状态开关动作,抓紧动作结束,机械手开始下降。
6.机械手下升到下降位置,状态开关动作,下降动作结束,机械手开始后退。
7.机械手右旋到右限位置,状态开关动作,右旋动作结束,机械手开始下降。
8.机械手后退到后退位置,机械手开始放松,一个工作循环过程完毕。
9.机械手的工作方式为:单步。
机械手的动作顺序如下:机械手初始位置是后退、下降、逆时针旋转均到底部,机械手成放松状态。当按下启动按钮后,机械手开始前进,前进到底碰到限位开关,前进动作停止,机械手开始上升,上升到顶端,碰到限位开关,上升动作停止,机械手开始执行顺时针旋转动作,顺时针旋转到底,碰到限位开关,旋转动作停止,机械手开始执行夹紧动作,碰到限位开关,夹紧动作停止,机械手开始执行逆时针旋转,逆时针旋转到底,碰到限位开关,逆时针旋转动作停止,机械手开始下降,下降到底部时,碰到限位开关,下降动作停止,机械手执行后退动作,碰到限位开关,后退停止,机械手放松,此时回到初始位置,一个周期动作完成。根据机械手的动作顺序,可以画出如图2.1所示的流程图:

基于plc气动机械手控制系统设计

基于plc气动机械手控制系统设计

目录第1章引言 (1)1.1气动机械手的控制要求 (1)1.2气动机械手的工作方式 (1)1.3系统流程图 (2)第2章 PLC控制系统的设计 (3)2.1气动机械手的硬件系统设计 (3)2.1.1气动机械手的硬件系统 (3)2.1.2电器元件的选择 (3)2.2气动机械手的软件结构设计 (4)2.2.1 PLC的I/O地址分配 (4)2.2.2 PLC的外部接线图 (5)2.3程序设计及梯形图 (6)2.3.1 程序设计说明 (6)2.3.2 程序梯形图 (7)总结 (16)附录 (17)参考文献 (22)摘要机械手是在机械化、自动化生产过程中发展起来的一种新型装置。

机械手主要由手部、运动机构和控制系统三大部分组成。

它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点。

气动机械手控制系统的设计要求是在控制系统的指令下,能将工件迅速、灵活、准确、可靠地抓起并运送到指定位置。

在工业生产中,利用气动机械手将工件从一条生产线搬运到另一条生产线是一种高效的工作方式。

因此采用PLC可编程控制器作为工件抓取机械手的控制系统,根据机械手的控制要求和所能实现的操作功能,设置动作流程,分配输入输出接点,按所需来选PLC的型号,接着进行梯形图的编辑,最后进行程序的编辑与调试,从而使机械手能够完成符合设计要求的动作。

关键词:机械手可编程控制器 PLC 控制设计第1章引言1.1气动机械手的控制要求1、气动机械手的升降和左右移动分别由不同的双线圈电磁阀实现,电磁阀线圈失电时能保持原来的状态,必须驱动反向德线圈才能反向运动。

2、上升、下降的电磁阀线圈分别为YV1、YV2;右行、左行的电磁阀线圈为YV3、YV4;3、机械手的夹钳由单线圈电磁阀YV5来实现,线圈通电夹紧,断电松开;4、机械手的夹钳的松开,夹紧通过延时1.7s实现;5、机械手的限位由行程开关SQ1、SQ2、SQ3、SQ4来实现;1.2气动机械手的工作方式系统设有手动、单周期、连续、单步和回原点五种工作方式(如图1-1)。

气动机械手控制系统设计

气动机械手控制系统设计

气动机械手控制系统设计气动机械手是一种应用气动技术的机械手执行器,通过气动元件驱动来实现抓取、搬运、装配等动作。

气动机械手控制系统设计是指设计控制气动机械手运动的电气、电子、液压等各种控制设备和控制方式。

本文将从气动机械手的工作原理、控制系统的设计要点和实现方法三方面进行详细介绍。

一、气动机械手的工作原理具体来说,气源通常会提供一定的压力,一般使用压缩空气。

气控元件包括气缸、气阀等,用于对压缩空气进行控制,如控制气缸的进气和排气,实现气缸的伸缩和运动方向的改变。

而工作执行器则是机械手的关键组成部分,它是气缸和机械手夹具的组合,通过气缸的控制,实现机械手的抓取、搬运等动作。

二、气动机械手控制系统设计要点1.选择合适的气源和气控元件:在设计气动机械手控制系统时,需要根据机械手的负载要求选择合适的气源和气控元件。

气源的压力和流量要满足机械手的工作需求,而气控元件的类型和数量要根据机械手的动作来确定。

2.设计合理的控制回路:气动机械手的控制回路包括气源控制回路和气缸控制回路。

气源控制回路主要控制气源的启动和停止,而气缸控制回路则控制气缸的进气和排气,实现机械手的运动。

控制回路的设计要合理布置元件,使其在工作过程中能够有序工作,减少能量损失。

3.合理安排气缸的布局:气缸的布局对机械手的工作效果有很大影响。

在布置气缸时,需要考虑机械手的工作空间、抓取点的位置和安全性等因素,尽量将气缸设在合适的位置,以提高机械手的工作效率和稳定性。

三、气动机械手控制系统的实现方法1.纯气动控制:纯气动控制是指完全依靠气源和气控元件来控制机械手的运动。

这种控制方式结构简单,控制精度较低,主要适用于对动作精度要求不高的场合。

2.气动与电气联合控制:在气动机械手的控制系统中,可以结合电气元件和电气控制方式,与气动元件共同控制机械手的运动。

在这种控制方式下,电气元件可用于控制气控元件的工作,提高气动机械手的控制精度。

3.PLC控制:PLC控制是指使用可编程序控制器(PLC)对气动机械手进行控制。

基于PLC的气动机械手控制系统设计

基于PLC的气动机械手控制系统设计

基于PLC的气动机械手控制系统设计一、本文概述随着工业自动化技术的飞速发展,气动机械手作为实现生产自动化、提高生产效率的重要工具,在各个领域得到了广泛应用。

基于可编程逻辑控制器(PLC)的气动机械手控制系统,以其稳定可靠、易于编程和维护的特性,成为当前研究的热点之一。

本文旨在探讨基于PLC 的气动机械手控制系统的设计方法,包括系统构成、硬件选择、软件编程以及调试与优化等方面,以期为我国工业自动化领域的发展提供参考和借鉴。

本文将简要介绍气动机械手及其控制系统的基本原理和特点,为后续的设计工作奠定理论基础。

将详细阐述PLC在气动机械手控制系统中的应用优势,包括其可靠性、灵活性以及扩展性等方面的优势。

在此基础上,本文将深入探讨基于PLC的气动机械手控制系统的设计方法,包括系统架构的设计、硬件设备的选择、软件编程的实现以及系统调试与优化等方面。

本文将总结基于PLC的气动机械手控制系统的设计要点和注意事项,为相关工程实践提供指导和借鉴。

通过本文的研究,旨在为我国工业自动化领域的发展提供新的思路和方法,推动气动机械手控制系统的技术进步和应用推广。

也期望本文的研究成果能对相关领域的学者和工程师产生一定的启示和借鉴作用,共同推动工业自动化技术的发展和创新。

二、气动机械手控制系统概述气动机械手控制系统是以可编程逻辑控制器(PLC)为核心,结合气动执行元件、传感器以及相应的控制逻辑,实现对机械手的精确控制。

该系统结合了气动技术的快速响应和PLC的灵活编程特性,使得机械手的动作更加准确、迅速且易于调整。

PLC控制器:作为整个控制系统的核心,PLC负责接收和处理来自传感器的信号,根据预设的程序逻辑,控制气动执行元件的动作。

PLC 具有高度的可靠性和稳定性,能够适应各种复杂的工作环境。

气动执行元件:包括气缸、气阀和气压调节器等。

气缸是实现机械手抓取、移动等动作的主要执行机构;气阀用于控制气缸的运动方向和速度;气压调节器则用于调节气缸的工作压力,以保证机械手的稳定性和精确性。

气动机械手控制系统设计分析

气动机械手控制系统设计分析

气动机械手控制系统设计分析气动机械手是一种用气压作为动力源的机械手臂,主要应用于工业自动化制造中的装配、夹取等工作。

气动机械手控制系统是机械手操作的重要组成部分,本文将从气动机械手控制系统设计分析的角度,对气动机械手控制系统相关问题进行分析。

一、气动机械手控制原理气动机械手的控制原理是通过空气压力驱动气缸活塞,改变气缸活塞的位置从而实现机械手臂的运动。

气动机械手控制系统一般由执行机构、感应元件、控制器、传感器等组成,其中最重要的部分就是控制器。

在气动机械手控制系统中,控制器是独立的微型计算机,其主要功能是根据操作者的设定来计算控制信号并形成控制指令,同时控制器还负责接收传感器的信号,控制气缸的开闭以及控制气压的大小等。

控制器一般使用PLC(可编程逻辑控制器)或PC(个人计算机)等。

二、气动机械手控制系统设计1、控制器选型气动机械手控制系统设计的一个重要因素是选择控制器类型。

可编程逻辑控制器(PLC)是主要的控制器类型之一,它是一种基于电子技术的智能控制器,具有可编程性和可扩展性特点。

PLC的应用是非常广泛的,它可以用于机器人、制造业、自动化系统等领域。

另外,个人计算机(PC)也可以作为气动机械手控制器。

相比PLC,PC的可编程性更强,其控制功能也更加灵活。

不过,PC在可靠性和实时性方面相对较弱,其控制系统需要通过编写控制软件或使用现有的控制程序来实现。

因此,在实际应用中需要根据具体的控制要求和性能要求来选择控制器类型。

2、传感器选型在气动机械手控制系统中,传感器是非常重要的部分,它能够实现机械手运动的持续监测和位置检测。

传感器的选型应该根据需求进行,有以下几种常用传感器:(1)接触式传感器:可以感知物体的接触情况,通常用于检测机械手夹持物体的情况。

(2)光电传感器:可以感知物体的存在和位置,通常用于检测工件的位置和方向。

(3)压力传感器:可以感知气压变化,通常用于检测气缸的工作状态。

(4)编码器:可以检测机械手的位置和方向,通常用于机械手的导航。

气动机械手plc设计

气动机械手plc设计
制定定期维护和检查计划,确保系统各部件处于 良好状态。
系统扩展性考虑
模块化设计
将系统划分为多个模块,便于未来功能扩展和升级。
预留接口
在设计时预留外部接口,以便未来与其他设备或系统进行集成。
可扩展的存储和计算能力
考虑未来数据处理需求的增长,设计可扩展的存储和计算架构。
06 案例分析
案例一
总结词:成功应用
详细描述
PLC采用可编程的存储器,用于存储程序、数据和参数等信 息,并通过输入/输出接口与外部设备进行通信。它能够按照 程序逻辑执行控制任务,具有高度的可靠性和灵活性,广泛 应用于工业自动化领域。
PLC的工作原理
总结词
PLC的工作原理包括输入采样、程序执行和输出刷新三个阶段。在输入采样阶段,PLC读取输入信号的状态并将 其存储在输入映像寄存器中;在程序执行阶段,PLC按照用户程序的顺序执行指令,并更新内部寄存器的值;在 输出刷新阶段,PLC将输出映像寄存器的状态输出到输出模块,驱动外部负载。
优化程序
根据调试结果,对程序进行优化,提高机械手的控制 性能和稳定性。
04
气动机械手PLC控制系统的 实现
系统硬件配置
控制器
气动元件
选择一款高性能的PLC控制 器,如西门子S7-300或欧 姆龙CP1H系列,以满足气
动机械手的控制需求。
01
02
根据气动机械手的动作要求 ,选择适当的气动元件,如 气缸、电磁阀、气源处理元
控制系统
控制系统是气动机械手的核心部分,通过PLC(可编程逻辑控 制器)对机械手的运动进行控制,实现各种动作的精确控制和 协调。
传感器
传感器用于检测机械手的运动状态和位置,将信号反馈给控 制系统,以便实现精确控制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

@目录之中。

机电工程学院、课程设计说明书设计题目: 气动机械手控制系统设计学生姓名:学号:专业班级:机制F09、指导教师:2012 年 12 月 12 日内容摘要在工业生产和其他领域内,由于工作的需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危及生命。

自从工业机械手问世以来,相应的各种难题迎刃而解。

工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并已成为现代机械制造生产系统中的一个重要组成部分。

在我国,近几年也有较快的发展,并取得了一定的效果,受到机械工业和铁路工业等部门的重视。

机械手可在空间抓、放、搬运物体,动作灵活多样,适用于可变换生产品种的中、小批量自动化生产,广泛应用于柔性自动线。

机械手一般由耐高温、抗腐蚀的材料制成,以适应现场恶劣的环境,大大降低了工人的劳动强度,提高了工作效率。

PLC可以按照所需要求完成机械手的设计,使机械手的设计简单化,大大节省了时间。

本文应用西门子S7—200系列PLC来实现气动机械手的搬运控制系统,该系统充分利用了可编程控制器(PLC)的控制功能。

利用可编程技术结合相应的硬件装置,控制气动机械手完成各种动作。

该系统具有结构简单、可靠稳定、容易控制等优点。

关键词:气动机械手;S7—200系列PLC;CPU226;目录第1章引言 (1)第2章系统总体方案设计 (2)程序设计的基本思路 (2)气动机械手的控制要求 (2)系统的硬件结构与操作功能 (2)硬件结构 (2)气动机械手的操作功能 (3)第3章 PLC控制系统设计 (4)可编程控制器的CPU选择 (4)气动机械手的I/O地址分配表 (4)PLC的输入输出设备接线图 (5)气动机械手控制流程图 (6)程序设计梯形图 (7)语句表 (15)PLC程序调试 (23)结论 (30)设计总结 (31)谢辞 (32)参考文献 (33)第1章引言由于气压传动系统使用安全、可靠,可以在高温、震动、易燃、易爆、多尘埃、强磁、辐射等恶劣环境下工作。

而气动机械手作为机械手的一种,它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境、容易实现无级调速、易实现过载保护、易实现复杂的动作等优点。

所以,气动机械手被广泛应用于汽车制造业、半导体及家电行业、化肥和化工,食品和药品的包装、精密仪器和军事工业等。

现代汽车制造工厂的生产线,尤其是主要工艺的焊接生产线,大多采用了气动机械手。

车身在每个工序的移动;车身外壳被真空吸盘吸起和放下,在指定工位的夹紧和定位;点焊机焊头的快速接近、减速软着陆后的变压控制点焊,都采用了各种特殊功能的气动机械手。

高频率的点焊、力控的准确性及完成整个工序过程的高度自动化,堪称是最有代表性的气动机械手应用。

第2章系统总体方案设计程序设计的基本思路在进行程序设计时,首先应明确对象的具体控制要求,然后根据程序的控制要求画出程序工作状态流程图,最后根据程序工作状态流程图及程序的控制要求画出梯形图。

由于CPU对程序的串行扫描工作方式,会造成输入输出的滞后。

而由扫描方式引起的滞后时间,最长可达两个扫描周期,程序越长,这种滞后越明显,则控制精度就越低。

因此,在实现控制要求的基础上,应使程序尽量简洁﹑紧凑,这样有利于程序的运行。

另一方面,同一控制对象,根据生产的工艺流程不同,控制要求或控制时序会发生变化。

此时,要求程序修改方便、简单,即要求程序有较好的柔性,这样在修改程序时能节省很多时间。

下面介绍一种基于PLC的气动机械手的控制方法。

机械手的控制属顺序控制,采用步进指令,首先应画出机械手工作状态流程图,然后根据流程图所提供的思路进行程序设计。

气动机械手的控制要求1、气动机械手的升降和左右移动分别由不同的双线圈电磁阀实现,电磁阀线圈失电时能保持原来的状态,必须驱动反向的线圈才能反向运动。

2、上升、下降的电磁阀线圈分别为YV2、YV1,右行、左行的电磁阀线圈为YV3、YV4。

3、机械手的夹钳由单线圈电磁阀YV5来实现。

线圈通电时夹紧工作,断电时松开工作。

4、机械手的夹钳的松开,夹紧通过延时实现。

5、机械手下降、上升、右行、左行的限位由行程开关SQ1、SQ2、SQ3、SQ4来实现。

系统的硬件结构与操作功能2.3.1 硬件结构机械手用来将工件从A点搬运到B点(如图2-1),输出为1时工件被夹紧,为0时被松开。

工作方式选择开关的5个位置分别对应于5种工作方式,操作面板下部的9个按钮式手动按钮分别对用于紧急停车、启动、停止、下降、上升、右行、左行、夹紧、松开。

为了保证在紧急情况下(包括PLC发生故障时)能可靠地切断负载电源,设置了交流接触器KM。

PLC开始运行时按下“负载电源”按钮,使KM线圈得电并自锁,KM的主触点接通,给外部负载提供交流电源,出现紧急情况时用“紧急停车”按钮断开负载电源。

机械手示意图如图2-1所示。

图2-1 机械手示意图2.3.2 气动机械手的操作功能系统设有手动、单周期、连续、单步和回原点五种工作方式(如图2-2)。

在手动工作方式下,用—对应的6个按钮分别独立控制机械手的升、降、左右行和夹紧松开。

在单周期的工作方式下,按下启动按钮后,从初始步开始,机械手按顺序功能图的规定完成一个周期的工作后,返回并停留在初始步。

在单步工作方式下,从初始步开始,按一下启动按钮,系统转换到下一步,完成该步的任务后,自动停止工作并停留在该步,再按一下启动按钮,又往前走一步。

单步工作方式常用于系统的调试。

图2-2 操作面板第3章 PLC控制系统设计可编程控制器的CPU选择根据设计可知需要17个输入接口,5个输出接口,通过查阅手册选择S7-200 CPU226基本单元(24DI/16DO出)1台。

CPU226有24个输入端口,16个输出端口,满足气动机械手对输入输出端口的要求,不需要再增加扩展单元,它属于整体式结构。

整体式PLC 具有结构紧凑、体积小、重量轻、价格低的优点。

一般小型或超小型PLC多采用这种结构。

模块式PLC把各个组成部分做成独立的模块,如CPU模块、输入模块、输出模块、电源模块等。

综上所述,应选择S7-200CPU226基本单元。

气动机械手的I/O地址分配表气动机械手的I/O地址分配表如表3-1所示。

表3-1 I/0地址分配表PLC的输入输出设备接线图PLC外部接线图的输入输出设备、负载电源的类型等的设计应结合系统的控制要求来进行具体分析和设定。

PL C的外部接线图应尽量做到简洁明了以便于观察,出现故障时也便于维修,这样的外部接线图才是合理的外部接线图。

气动机械手控制外部接线图如图3-1所示。

图3-1 PLC的输入输出设备的接线图气动机械手控制流程图原理:接通电源使系统启动开始扫描,扫描手动时判断手动按钮是执行手动操作;扫描回原点开关,是执行回原点操作;扫描单步开关,是执行单步操作;扫描单周期开关,是检测是否在原点,是执行单周期操作;扫描连续操作,是检测是否在原点,是执行连续操作。

除了连续操作以外,其他操作执行完以后自动重新扫描。

图3-2 气动机械手控制流程图程序设计梯形图○○○○○○○语句表ORGANIZATION_BLOCK 主程序:OB1TITLE=程序注释:主程序BEGINNetwork 1 在Step 7 Micro/Win中编译正确的程序在文件菜单中导出为AWL文件;2.打开仿真软件,点“配置”-“CPU型号”,然后选择CPU 226;3.点“程序”-“载入程序”;4.选择Step 7 Micro/Win的版本;5.将先前导出的AWL文件打开;6.点“PLC”-“运行”,开始调试程序(一)判断机械手是否处于原点。

当机械手处于原点位置时,即左、上限位开关打开,调试结果如下:(二)机械手自动回原点。

机械手先进行向上运动,然后向左运行至原点处。

1.机械手先向上运动2.机械手行至上限位开关,机械手右移至原点。

1.按下启动按钮,将旋转按钮调至手动开关位置。

按下下降开关,机械手下降。

2.按下夹紧开关,机械手进行夹紧操作。

(三)以连续调试(单周期)调试为例。

(单步、单周期调试与其基本相同,在此只介绍连续调试)1.气动机械手处于连续工作状态。

当按下启动按钮后,气动机械手下降。

2.机械手下降至下限位开关处,机械手开始夹紧,以后上升。

3.机械手到达上限位,上限位开关打开,机械手右行。

4.机械手到达右限位,右限位打开,机械手开始下行。

5.机械手下降至最低位,机械手放松。

6.机械手放松完,以后上升。

7.机械手行至上限位,机械手左行。

8.机械手行至原点,开始下降。

结论气动机械手的升降和左右移动分别由不同的双线圈电磁阀实现,电磁阀线圈失电时能保持原来的状态,需驱动反向德线圈才能反向运动。

线圈通电夹紧,断电松开;机械手的夹钳的松开,夹紧通过延时实现;机械手的限位由四个行程开关来实现。

本设计主要应用于机加工生产、货物调运等场合。

气动机械手因采用PLC控制,具有体积小、重量轻、控制方式灵活、可靠性高、操作简单和容易维修等优点。

使用该机械手代替人工搬运工件,既安全又准确,提高了劳动生产率,保证了工件的质量,降低了工人的劳动强度,具有较好的经济效益和社会效益。

可编程控制器PLC以其丰富的I/O 接口模块、高可靠性,可以在机械手控制系统的设计中起到十分重要的作用。

设计总结课程设计结束了,我自己感到收获颇丰。

由于机电传动的课程掌握的不是很好,在课程设计的开始阶段,自己基本上没有思绪,很难下手去做课程设计。

有问题不怕,就怕不解决问题。

就这样先完善知识储备,然后一步一步开始着手做课程设计。

随着现代化制造的不断发展,越来越多的企业选择自动化的生产线,机械手更作为现代制造中不可缺少的一部分。

通过这次课程设计,我学会了用PLC对机械手的简单的控制,更加明白了知识的重要性。

同时在此次课程设计中,我发现了自己的知识确实有很多的不足,很多理解不到位或是没有接触过的知识,作为机械的学生,我们必须要扎实自己的基础知识,只有这样才能制造出合格的产品。

虽然自己用心的做此次课程设计,但是由于自己的知识水平有限,难免会有考虑不周之处,希望老师予以批评指正!谢辞在这里,首先指导本次课程设计的王宗才老师表达最诚挚的感谢!“王老师,您辛苦了!”。

王老师对我们严格要求,细心指导,每天都过来指导我们的设计,对于我们的问题都予以认真的讲解。

最让我感动的是他严谨的教凤和认真务实的工作态度,这是我们现在大学生最应该学习的。

对待知识学习的态度应该更加认真一些,务实一些!我相信通过这次的课程设计,我们在今后的学习中,会更加用心一些!同时在这次设计中,由于自己的专业知识掌握的不够扎实,理解不够到位,很多同学都给与一一解答,在此一并予以感谢!参考文献[1]王宗才.机电传动与控制.北京:电子工业出版社,2011[2]黄净.电器与PLC控制技术.北京:机械工业出版社,2002[3]阮友德.电气控制与PLC实训教程.北京:人民邮电出版社,2006[4]李媛.PLC原理与应用.北京:北京邮电大学出版社,2009[5]周惠文.可编程控制器原理与应用.北京:电子工业出版社,2007[6]胡学林.电气控制及PLC.北京:冶金工业出版社,1997[7]廖常初.PLC编程及应用.北京:机械工业出版社,2002[8]孙振强.可编程控制器原理及应用教程.北京:清华大学出版社,2005[9] 张州,刘广瑞,杜大军.基于PLC 控制的气动机械手系统.机电产品开发与应用,2004(3). |。

相关文档
最新文档