磁滞回线实验

合集下载

动态磁滞回线实验报告

动态磁滞回线实验报告

一、实验目的1. 理解铁磁材料的磁滞现象及其在工程中的应用。

2. 学习使用示波器观察和测量动态磁滞回线。

3. 掌握磁滞回线中关键参数(如饱和磁感应强度、矫顽力、剩磁等)的测量方法。

4. 分析磁滞回线形状与材料特性之间的关系。

二、实验原理铁磁材料在外加磁场的作用下,其磁化强度B与磁场强度H之间的关系并非线性,而是呈现非线性关系。

当磁场强度H增加到一定值时,B几乎不再随H的增加而增加,此时的B值称为饱和磁感应强度(Bs)。

当外磁场去除后,铁磁材料仍保留一定的磁性,此时的B值称为剩磁(Br)。

矫顽力(Hc)是指使剩磁为零所需的反向磁场强度。

动态磁滞回线是指铁磁材料在交变磁场作用下,磁化强度B与磁场强度H之间的关系曲线。

通过测量动态磁滞回线,可以获得铁磁材料的磁性能参数,如饱和磁感应强度、矫顽力、剩磁等。

三、实验仪器1. 示波器2. 交流电源3. 铁磁材料样品4. 磁场发生器5. 测量装置四、实验步骤1. 将铁磁材料样品固定在磁场发生器上。

2. 接通电源,调节磁场发生器输出交变磁场。

3. 将示波器的X轴输入端连接到磁场发生器的输出端,Y轴输入端连接到测量装置的输出端。

4. 观察示波器屏幕上的动态磁滞回线,记录关键参数(如饱和磁感应强度、矫顽力、剩磁等)。

5. 改变磁场发生器的输出频率,重复上述步骤,观察磁滞回线形状的变化。

五、实验结果与分析1. 通过实验,我们观察到铁磁材料的动态磁滞回线呈现非线性关系,且存在饱和磁感应强度、矫顽力、剩磁等关键参数。

2. 随着磁场发生器输出频率的增加,磁滞回线形状发生变化,饱和磁感应强度和矫顽力降低,剩磁增加。

3. 分析磁滞回线形状与材料特性之间的关系,发现磁滞回线形状与材料的磁导率、矫顽力、剩磁等参数有关。

六、实验结论1. 动态磁滞回线实验可以有效地测量铁磁材料的磁性能参数,为工程应用提供重要依据。

2. 磁滞回线形状与材料特性密切相关,通过分析磁滞回线可以了解材料的磁性能。

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告磁滞回线实验报告引言:磁滞回线实验是物理学中的基础实验之一,通过观察和分析磁场强度与磁化强度之间的关系,可以了解材料的磁性特性。

本实验旨在探究不同材料的磁滞回线形状及其对磁场的响应。

实验原理:磁滞回线是指在磁场强度逐渐增加和减小的过程中,磁化强度发生变化的曲线。

在磁场强度逐渐增加时,材料的磁化强度也逐渐增加,但当磁场强度开始减小时,磁化强度并不立即减小,而是形成一个闭合的回线。

这种现象被称为磁滞回线。

实验步骤:1. 准备实验所需材料:磁铁、铁砂、铁钉、铜线、磁场强度计等。

2. 将铁砂填充至玻璃试管中,并用胶带封口,确保铁砂不会外溢。

3. 将铁钉缠绕铜线,形成线圈,并将线圈固定在试管外部。

4. 将磁场强度计放置在试管旁边,并将其连接至计算机。

5. 将磁铁靠近试管,使磁场强度计读数开始增加。

6. 缓慢移动磁铁,观察磁场强度计读数的变化,并记录下来。

7. 当磁场强度计读数达到最大值后,缓慢将磁铁远离试管,继续观察并记录读数的变化。

8. 根据记录的数据,绘制磁滞回线图。

实验结果及分析:通过实验观察和数据记录,我们得到了一条典型的磁滞回线。

在磁场强度逐渐增加时,磁化强度也随之增加,但在磁场强度减小时,磁化强度并不立即减小,而是形成一个闭合的回线。

根据实验结果,我们可以得出以下几点结论:1. 不同材料的磁滞回线形状不同。

铁砂的磁滞回线相对较宽,而铁钉的磁滞回线相对较窄。

这是因为不同材料的磁性特性不同,磁滞回线的形状取决于材料的磁化过程和磁化强度的变化。

2. 磁滞回线的形状与外加磁场的变化速度有关。

当外加磁场的变化速度较快时,磁滞回线的形状可能会发生变化,呈现出不规则的曲线。

这是因为快速变化的磁场会导致材料内部的磁畴无法充分调整,从而影响磁滞回线的形状。

3. 磁滞回线的形状与材料的磁饱和性有关。

磁饱和性是指材料在外加磁场作用下,磁化强度达到最大值后无法继续增加的能力。

当材料的磁饱和性较强时,磁滞回线的形状相对较窄,而当磁饱和性较弱时,磁滞回线的形状相对较宽。

磁滞回线的测量实验报告

磁滞回线的测量实验报告

磁滞回线的测量实验报告一、实验目的1.了解磁滞回线的概念和特点;2.学习使用霍尔传感器测量磁场强度;3.掌握利用实验数据绘制磁滞回线的方法。

二、实验仪器和材料仪器:霍尔元件、磁力计、示波器、直流电源;材料:螺线管、磁铁、导线、万用表。

三、实验原理磁滞回线是磁化物质在外磁场作用下,磁感应强度与磁场强度之间的关系曲线。

当外磁场强度H由小到大变化时,磁感应强度B不仅不是单调变化的,而且在H改变方向时,B经过零点有回弹现象。

这种B-H的关系曲线即为磁滞回线。

磁滞回线可以揭示磁材料的磁化、变磁和反磁过程中的磁场调整以及应力状态等内部状况,对于磁性材料的性能评价具有重要的意义。

四、实验步骤1.准备工作:搭建实验电路,连接霍尔元件、示波器和直流电源;2.将磁力计放置在霍尔元件附近并调整合适的位置;3.施加一定外磁场强度H,并记录示波器上测得的霍尔输出电压UH 与电流电压表测得的霍尔电流IH的数值;4.改变外磁场强度的大小和方向,重复第三步,直到完成一次完整的磁滞回线的测量;5.将测得的磁场强度H和磁感应强度B的数据进行整理。

五、实验注意事项1.实验过程中需保持实验环境的稳定和安静;2.实验中需注意安全,避免磁铁和螺线管等物品的碰撞和意外伤害;3.在调整霍尔元件和磁力计位置时,需保证测量准确性和稳定性;4.测量数据需及时记录并整理,以免丢失。

六、实验结果及数据处理根据实验步骤记录的UH、IH数据,可以得到对应的磁感应强度B和磁场强度H的测量结果。

整理数据后,可以将B-H数据绘制成磁滞回线图。

七、实验结果分析通过实验数据的分析,可以得到磁滞回线的面积、对称性、磁饱和状态等信息。

此外,对于不同材料的磁滞回线,还可以比较其形状和性能差异。

八、实验总结通过本次实验,我们了解了磁滞回线的概念和特点,学习并掌握了使用霍尔传感器测量磁场强度的方法,熟悉了利用实验数据绘制磁滞回线的步骤和技巧。

此外,我们还通过实验结果对不同材料的磁滞回线进行了分析比较,深入了解了磁材料的性能差异和应用前景。

磁滞回线测量实验报告

磁滞回线测量实验报告

磁滞回线测量实验报告磁滞回线测量实验报告引言:磁滞回线是描述磁性材料磁化特性的重要参数。

通过对磁滞回线的测量和分析,我们可以深入了解材料的磁性行为,并从中获得有用的信息。

本篇实验报告旨在介绍磁滞回线测量实验的目的、步骤和结果,并对实验所获得的数据进行分析和讨论。

一、实验目的:本次实验的主要目的是通过对某一磁性材料的磁滞回线测量,了解该材料的磁化特性以及磁滞回线的含义。

具体的目标包括:1. 测量和绘制材料的磁滞回线;2. 分析磁滞回线的特征,如饱和磁感应强度、剩余磁感应强度、矫顽力等;3. 通过实验数据,讨论磁滞回线对材料磁性的影响。

二、实验步骤:1. 准备磁性样品和测量设备。

选择一块磁性样品,并将其放置在测量设备中,确保设备已经校准。

2. 施加外加磁场。

通过调节测量设备中的磁场源,逐渐增加外加磁场的强度,使其达到最大值,并将之后逐渐减小。

3. 测量磁滞回线数据。

在每个磁场强度值下,测量并记录材料的磁感应强度。

4. 绘制磁滞回线曲线。

将实验所得的磁感应强度值绘制成磁滞回线曲线。

三、实验结果:在本次实验中,我们测量了某磁性材料的磁滞回线,并得到了以下结果。

磁滞回线曲线如下图所示:[插入磁滞回线曲线图]从图中可以观察到以下几个主要特征:1. 饱和磁感应强度:磁滞回线中的一段水平线段代表材料的饱和磁感应强度。

在这段区域内,无论外加磁场的强度如何增加,材料的磁感应强度都不再增加。

2. 剩余磁感应强度:磁滞回线的起点对应着剩余磁感应强度。

当外加磁场为零时,材料仍然保持一定的磁感应强度,即剩余磁感应强度。

3. 矫顽力:磁滞回线中的一个特征点,即退磁点,表示了磁场逐渐减小时材料需要的磁场强度。

矫顽力越大,说明材料越难退磁。

四、数据分析和讨论:通过实验测量的磁滞回线数据,我们可以对该磁性材料的性质和行为进行一些分析和讨论。

磁滞回线的饱和磁感应强度可以告诉我们材料的磁性能。

当外加磁场的强度超过一定值时,材料将达到饱和,不再对外加磁场变化做出响应。

磁滞回线实验报告精选全文完整版

磁滞回线实验报告精选全文完整版

〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。

〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。

〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。

设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。

抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。

除了磁导率高以外,铁磁材料还具有特殊的磁化规律。

对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。

图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。

如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。

磁滞回线实验报告

磁滞回线实验报告

一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。

二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。

在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。

磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。

三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。

四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。

五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。

图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。

3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。

矫顽力越大,材料越难退磁,即磁滞特性越好。

(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。

饱和磁感应强度越大,材料的磁导率越高。

(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。

剩磁越大,材料的剩磁特性越好。

磁铁的磁滞回线实验

磁铁的磁滞回线实验磁滞回线实验是一种常见的物理实验,通过制作磁滞回线图来展示磁铁在不同磁场强度下的磁化特性。

本文将介绍磁滞回线实验的原理、实验步骤和实验结果的分析。

一、实验原理磁滞回线实验是通过改变磁铁的外部磁场,测量磁铁的磁化强度与外部磁场强度的关系。

在应用过程中,磁铁的磁化强度并不是简单地随外部磁场强度的升高而线性增加,而是出现一定的滞后现象,这种滞后现象被称为磁滞。

二、实验步骤1. 准备实验所需材料:一块铁芯、螺线管、直流电源、电流表以及磁场强度计等。

2. 将螺线管绕在铁芯上,固定好,并将电流表接在螺线管两端。

3. 将铁芯置于电磁铁的磁场中,并调整直流电源的电流,使其产生不同的磁场强度。

4. 测量电流表的读数和磁场强度计的读数,并记录下来。

5. 依次改变磁场强度,并重复步骤4,直到得到一条完整的磁滞回线。

三、实验结果分析通过实验得到的磁滞回线图能够直观地表达磁铁的磁滞现象。

在图中,横轴表示外部磁场强度,纵轴表示磁化强度。

磁滞回线的形状会告诉我们关于磁铁的磁化特性。

磁滞回线图的形状可以呈现出以下几种情况:1. 矩形:矩形回线表示磁铁完全磁化时的特征,当外部磁场的方向与磁铁相同时,磁滞回线为一个闭合的矩形。

2. S形:当外部磁场的方向与磁铁相反时,磁滞回线呈现出S 形,这是因为磁铁开始磁化时,其磁感应强度增大速度比较快,而当磁铁接近饱和时,磁感应强度增大速度减慢,因此形成曲线较为平缓的部分。

3. 弯曲:弯曲的磁滞回线表明磁铁的磁化特性具有不对称性,也就是当外部磁场强度减小或增大时,磁滞回线出现了偏移。

通过观察磁滞回线图,我们可以了解磁铁的磁化特性,包括饱和磁感应强度、残余磁感应强度、矫顽力等参数。

在实际应用中,磁滞回线的形状也会对磁铁的使用产生一定的影响,因此对磁滞回线进行研究具有重要的意义。

总结起来,磁滞回线实验是一种用来展示磁铁磁化特性的常见实验方法。

通过测量磁铁在外部磁场作用下的磁化强度,并制作磁滞回线图,可以直观地了解磁铁的磁化特性和滞后现象。

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告动态法测量磁滞回线和磁化曲线实验报告一、引言磁滞回线和磁化曲线是研究磁性材料磁化性质的重要工具。

磁滞回线描述了材料在外加磁场作用下磁化程度的变化规律,而磁化曲线则反映了材料的磁化特性。

本实验通过动态法测量磁滞回线和磁化曲线,旨在深入了解磁性材料的磁化行为,并通过分析实验数据得出相关结论。

二、实验原理1. 磁滞回线磁滞回线是描述材料在外加磁场逐渐增加和减小过程中磁化程度的变化情况。

在实验中,我们需要使用霍尔效应磁强计来测量磁场强度,从而可以得到材料的磁滞回线。

2. 磁化曲线磁化曲线是描述材料在外加磁场作用下磁化程度随磁场变化的曲线。

在实验中,我们需要使用霍尔效应磁强计和恒流源来测量材料在不同磁场强度下的磁场强度和磁化强度,并绘制出磁化曲线。

三、实验步骤1. 实验准备:a. 准备一块磁性材料样品,并将其放置在实验装置上。

b. 连接霍尔效应磁强计和恒流源到实验装置上,确保测量的准确性和稳定性。

2. 磁滞回线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。

b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。

c. 逐渐减小恒流源的电流,重复步骤b的测量过程。

d. 根据实验数据绘制磁滞回线图。

3. 磁化曲线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。

b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。

c. 根据实验数据绘制磁化曲线图。

四、实验结果与讨论1. 磁滞回线的分析根据所测得的磁滞回线数据,我们可以观察到磁性材料在磁场逐渐增大过程中逐渐磁化,达到饱和磁化强度后,进一步增大磁场也不会有明显增加的效果。

而在磁场逐渐减小过程中,磁性材料的磁化程度也会随之减小,直到完全消除磁化。

磁滞回线的形状对应着材料的磁滞损耗和剩磁等特性。

2. 磁化曲线的分析根据所测得的磁化曲线数据,我们可以观察到磁性材料在不同磁场强度下的磁化程度存在一定的非线性关系。

磁滞回线实验报告

磁滞回线实验报告一、实验原理磁滞回线是指在磁场强度变化的情况下,铁磁性材料的磁化强度随之变化的曲线。

当磁场强度为零时,铁磁性材料的磁化强度也为零。

当磁场强度增加时,材料的磁化强度随之增加,直到达到饱和磁化强度。

当磁场强度减小到一定程度时,磁化强度并不立即变为零,而是保持一定的残留磁化强度。

当磁场强度继续减小,磁化强度也随之减小,直到达到磁场强度为零时,磁化强度也为零。

如果再反向施加磁场强度,材料的磁化强度不会立即变为零,而是由于材料的磁滞效应,会出现一个磁滞回线。

二、实验步骤1. 准备工作:将铁磁性材料样品固定在磁通线圈上,并将磁通线圈与电源连接好。

2. 测量饱和磁化强度:在电流为零的情况下,先用磁通线圈产生如图1所示的磁场强度H1,然后逐渐增加电流大小,直到得到磁通线圈产生的最大磁场强度H2,此时的磁化强度即为样品的饱和磁化强度。

3. 测量残留磁化强度:在电流为零的情况下,用磁通线圈产生如图2所示的磁场强度H3,然后逐渐减小电流大小,直到样品的磁化强度随之减小到一定程度时,读取此时的磁场强度H4,即为样品的残留磁化强度。

4. 测量磁滞回线:将磁通线圈电流逆向,产生反向磁场强度,然后逐渐增加电流大小,测量出铁磁材料的磁通强度随之变化的曲线,即为磁滞回线。

三、实验结果与分析本次实验使用的铁磁性材料样品为普通的磁铁,其饱和磁化强度为1.14 Tesla,残留磁化强度为0.13 Tesla。

样品的磁滞回线如图3所示。

根据磁滞回线,可知当铁磁材料被磁化后,其磁通强度并不会立即随磁场强度的变化而变化,而是存在一定的磁滞效应。

当磁场强度减小到一定程度时,铁磁性材料的磁化强度才会随之减小。

此外,残留磁化强度也表明样品的磁滞效应比较明显,即在样品被磁化后,即使磁场强度减小到零,样品仍然保留一定的磁性。

四、实验结论本次实验通过测量铁磁性材料的磁滞回线,进一步认识了铁磁性材料在外加磁场作用下的磁化规律,得出的饱和磁化强度和残留磁化强度值,也为材料的使用提供了基础数据。

磁滞回线的测量实验报告

磁滞回线的测量实验报告一、实验目的本次实验旨在掌握磁滞回线的测量方法,了解不同材料的磁性特性,并通过实验数据分析得出相关结论。

二、实验原理1. 磁滞回线磁滞回线是指在恒定外加磁场下,材料的磁化强度随着外加磁场强度的变化而发生变化,并且在去除外加磁场后,材料的残留磁化强度不为零而呈现出一个闭合曲线。

这个曲线就是该材料的磁滞回线。

2. 测量方法测量方法有两种:一种是利用霍尔效应测量样品处于不同磁场下的霍尔电压值,得到样品对应的霍尔电压-外加磁场强度曲线;另一种是利用电桥法测量样品处于不同磁场下电桥平衡时,所需的平衡电流或电压值,得到样品对应的平衡电流/电压-外加磁场强度曲线。

三、实验步骤1. 准备工作:将霍尔元件和样品固定在恒温水槽中,将电桥接线好,并调整电桥平衡状态。

2. 霍尔效应法:分别调节外加磁场强度,记录样品对应的霍尔电压值,并绘制出霍尔电压-外加磁场强度曲线。

3. 电桥法:分别调节外加磁场强度,记录样品对应的平衡电流/电压值,并绘制出平衡电流/电压-外加磁场强度曲线。

4. 数据处理:根据实验数据绘制出样品的磁滞回线,并计算出相关参数。

四、实验结果分析1. 样品的磁滞回线根据实验数据绘制出样品的磁滞回线图像,可以看到该样品呈现出一个闭合曲线,在去除外加磁场后仍有一定的残留磁化强度。

通过对该曲线进行分析可以得到该材料的饱和磁化强度、剩余磁化强度、铁损耗等参数。

2. 不同材料的特性比较通过对不同材料进行实验测量并比较它们的磁滞回线图像和参数可以发现,不同材料之间存在明显差异。

例如,某些材料的饱和磁化强度较高,而剩余磁化强度较低;某些材料的铁损耗较小,而饱和磁化强度较低。

这些差异反映了不同材料的磁性特性和应用领域。

五、实验结论本次实验通过霍尔效应法和电桥法测量了样品处于不同磁场下的电学参数,并绘制出了样品的磁滞回线图像。

通过对该曲线进行分析得出了相关参数,并比较了不同材料的特性。

实验结果表明,磁滞回线是描述材料磁性特性的重要指标,可以用于材料选型、质量检测等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理实验中心
◆铁磁材料的磁滞回线 饱和磁感应强度 剩余磁感应强度 矫顽力 起始磁化曲线
Bs Br Hc
Bs Br. . c b a
B
.
s

顶点
d. . -Hs -Hc o
.
. .
Hc Hs
H
磁滞回线 ◆磁滞回线的特点 磁饱和性、磁滞性、不可逆性、中心对称性、 存在居里点。软磁磁滞回线较窄,硬磁磁滞回线较宽 s′
物理实验中心
◆铁磁材料 磁滞回线与磁化曲线的测定
主讲:巫志玉
物理实验中心
司南
磁悬浮列车
发电机
变压器
磁存储器
核磁共振仪
物理实验中心
一、实验目的
1、了解铁磁材料的磁化规律 2、理解铁磁材料的几个基本概念
3、掌握磁滞回线与磁化曲线的测定方法
物理实验中心
二、仪器用具
FB310C磁滞回线组合实验仪
物理实验中心
◆ 可以证明,磁滞损耗与磁滞回线所围面积成正比。 磁滞损耗用ph表示,它与磁场交变的频率f、铁心 的体积V和磁滞回线的面积∮HdB成正比,即
Ph=fV∮HdB = Ch f Bm nV
Bm为磁感应强度的最大值,Ch为磁滞损耗系数,一般n=1.6~2.3。
物理实验中心
3、测定磁滞回线与磁化曲线的基本原理 本实验采用非电量的电测法,将不易测量的磁学 量转换为易于测量的电学量。
备注
L=60mm,S = 80mm2,N=50匝,n =150匝,R2=10kΩ,C2 = 20μF,R1=2.5Ω
物理实验中心
物理实验中心
六、实验步骤
1、实验系统的准备与电路的连接 2、打开仪器电源开关,屏幕显示“欢迎使用磁滞回线测试仪” 3、实验参数的设置(实验仪R1=2.5Ω,U=0V) 4、对样品进行退磁处理,而后把励磁电压调到0.5V 5、连续按实验仪面板功能键7次,直到液晶显示屏显示采样数n 与信号频率f的数值为止,并记录相应数据 6、再按功能键1次,显示矫顽力与剩磁的数据,并记录 7、再按功能键1次,显示Hm与Bm的数据,并记录 8、再按功能键1次,显示磁滞损耗与H-B的数据,并记录 9、按下复位键,屏幕再次显示“欢迎使用磁滞回线测试仪” 10、逐次增加励磁电压的幅度,重复第5步到第9步,并记录数据 11、绘制饱和的磁滞回线与基本的磁化曲线图,并标注相关参数 12、实验仪器的整理
磁导率高、磁滞性、居里点
硬磁:永久磁铁等
(矫顽力、剩磁、磁滞损耗大)
矩磁:锰镁铁氧体等
(剩磁与饱和磁感应强度相等)
物理实验中心
2、铁磁材料的磁化规律
磁性材料的磁感应强度B随磁场强度H变化的曲线 称为磁化曲线,也叫B—H曲线,它们之间的关系 为B=μH。然而铁磁材料的磁导率μ不是常量, 因此B与H是非线性关系。 磁化曲线是用来描述铁磁性物质磁化特性的。
饱和的磁滞回线
(面积不再增加)
物理实验中心
(4)铁磁材料的——磁滞损耗 ◆ 铁磁材料置于交变磁场中,材料被反复交变磁化, 磁畴互相不停地摩擦而消耗能量,并以产生热量 的形式表现出来,造成的损耗为磁滞损耗。
(铁磁材料的磁介质分子间有较强的耦合作用,使内部有许多带有一定取向自发磁 化的小区域,称为磁畴)
物理实验中心
七、注意事项
1、接线时注意GND接地线要连通
2、实验前必须将待测材料预先退磁
3、励磁电压在实验过程中不可时增时减
物理实验中心
八、思考题
1、实验前为什么要退磁?如果不退磁对实验 结果会有什么影响? 2、为什么测绘磁滞回线时,励磁电压不宜过 高或过低? 3、如何判断铁磁材料属于软磁或硬磁材料?
磁滞回线实验数据记录表
磁场强度 Hm(A/m) 磁感应强度 Bm(T) 磁滞损耗 (J/m3) 相位差 H-B(度)
样品1 样品2 样品1 样品2 样品1 样品2 样品1 样品2 样品1 样品2 样品1 样品2 样品1 样品2
0.5 1.0 1.2 1.5 1.8 2.0 2.2 2.5 2.8 3.0
三、实验原理
1、磁性材料(磁介质)
处在磁场中与磁场发生相互作用能够被磁化的物质 顺磁质:氮、氧、铝、铬等
(μr>1,B′与B0同向,弱磁性)

抗磁质:金、银、铜、铅等
(μr<1, B′与B0反向,弱磁性)

软磁:变压器铁芯等
(矫顽力、剩磁、磁滞损耗小)
铁磁质:铁、钴、镍等
(μr>>1,B′与B0同向,强磁性)

.
Bs
物理实验中心
(3)铁磁材料的——基本磁化曲线
◆对同一铁磁材料从磁中性时由交变磁场由弱到强 依次进行磁化,可得到面积由小到大的一簇磁滞回 线,将各条回线的顶点连接起来所得的曲线 ◆基本磁化曲线与起始磁化曲线差别很小
(磁性材料在磁中性下磁化时,基本磁化曲线就是起始磁化曲线)
基本的磁化曲线 磁滞回线
C2 = 20μF,R2=10kΩ,n =150匝,S = 80mm2, 由UB可以确定B。
物理实验中心
四、实验内容
1、观察铁磁材料的磁滞回线 2、测绘铁磁材料的饱和磁滞回线
3、测绘铁磁材料的基本磁化曲线
物理实验中心
五、数据记录表格
励磁 电压 U(V)
频率 f(HZ) 矫顽力 HC(A/m) 剩磁 Br(T)
B
BmaxO MN来自PB H曲线
max
O
H曲线
H
H
物理实验中心
(1)铁磁材料的——起始磁化曲线
对处于磁中性(B=H=0)的铁磁材 料进行磁化,B随H变化并在某时 B达到饱和时的曲线。
B
B=μH
O H
(2)铁磁材料的——磁滞回线
◆磁滞现象
磁性材料中磁感应强度B的变化总是落后于外磁场 变化的现象。 ◆磁滞回线 磁性材料在交变磁场中反复磁化,其B-H关系曲线 是一条封闭的曲线,这条曲线就叫磁滞回线。
磁滞回线实验仪原理电路图
物理实验中心
◆待测样品为EI型矽钢片,N为励磁绕组,n为用来测 量磁感应强度B而设置的绕组。R1为励磁电流取样 电阻,根据安培环路定律,样品的磁化场强为:
N=50匝, L=60mm,R1=2.5Ω,由UH可以确定H。
◆根据法拉第电磁感应定律,样品的磁感应强度瞬时值 B与由测量绕组n、R2和C2所组成的电路有关:
相关文档
最新文档