概率论基础知识
概率论基础知识

对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
概率论的基础

概率论的基础1 预备知识在开始介绍概率论之前,我们需要先了解一些预备知识。
1.1 集合运算概率论中经常会涉及到集合运算,因此我们需要先了解集合运算的基本概念。
集合是由一些确定的对象组成的整体。
我们用大写字母表示集合,用小写字母表示集合中的元素。
常见的集合运算有:- 并集:将两个集合的元素合起来,得到包含这两个集合所有元素的新集合。
记作A∪B。
- 交集:只将两个集合中都有的元素取出来,得到一个新的集合。
记作A∩B。
- 补集:集合A的补集是指集合U中所有不在A中的元素的集合。
记作A'或者A^c。
- 差集:从集合A中减去集合B中的元素,得到一个新的集合。
记作A-B。
1.2 条件概率在概率论中,条件概率是指在已知一种事件发生的前提下,另一种事件发生的概率。
记作P(B|A),表示在事件A发生的情况下,事件B发生的概率。
条件概率的计算公式为:$$P(B|A) = \frac{P(A\cap B)}{P(A)}$$其中,P(A∩B)表示事件A和事件B同时发生的概率。
1.3 独立性在概率论中,独立性是指两个事件的发生不会互相影响。
也就是说,当事件A发生与否对事件B发生的概率没有任何影响时,我们称事件A和事件B是独立的。
如果事件A和事件B是独立的,那么有以下公式成立:$$P(A\cap B) = P(A) \cdot P(B)$$反之,如果有以上公式成立,那么我们可以认为事件A和事件B是独立的。
2 概率的定义概率是描述随机事件发生可能性的数值。
在概率论中,我们用P(E)表示事件E发生的概率。
2.1 古典概型如果所有的结果都是等可能的,那么我们可以使用古典概型来计算概率。
例如,掷硬币和掷骰子都是古典概型,因为每一个结果都是等可能的。
在古典概型中,如果一个事件E可以由n个元素构成,且所有的元素等可能,那么事件E发生的概率就是:$$P(E) = \frac{\text{符合事件E的结果个数}}{\text{总结果个数}} = \frac{n_E}{n}$$2.2 条件概率法则如果我们已知事件B发生,在B的基础上怎么计算事件A发生的概率呢?根据条件概率公式,我们有:$$P(A|B) = \frac{P(A\cap B)}{P(B)}$$这个公式被称为条件概率法则。
概率论的知识点总结

概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。
样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。
2.概率分布概率分布描述了随机变量可能取值的概率情况。
概率分布分为离散分布和连续分布两种。
常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。
概率密度函数和累积分布函数是描述连续分布的重要工具。
3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。
随机变量分为离散随机变量和连续随机变量。
离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。
4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。
数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。
5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。
大数定律包括弱大数定律和强大数定律两种。
弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。
6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。
中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。
中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。
以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。
随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。
概率论知识点总结归纳

概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。
概率论广泛应用于统计学、金融、生物学等领域。
本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。
一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。
2. 样本空间:随机试验所有可能结果的集合,用S表示。
3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。
4. 概率:事件发生的可能性大小的度量,用P(A)表示。
二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。
计算概率时可以根据样本空间和事件个数进行计算。
2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。
3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。
三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。
a. 伯努利分布:只有两个可能取值的离散概率分布。
b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。
c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。
2. 连续概率分布:表示随机变量在一个区间上的概率分布。
a. 均匀分布:随机变量在一段区间上取值的概率相等。
b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。
四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。
2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。
3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。
4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。
总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。
数学概率论与数理统计的基础知识

数学概率论与数理统计的基础知识概率论和数理统计是数学中的重要分支,它们研究了随机事件的发生规律以及通过对数据进行统计分析来了解事物的规律性。
本文将介绍数学概率论与数理统计的基础知识,帮助读者了解这两个领域的重要概念和方法。
一、概率论的基础知识1. 随机试验和样本空间随机试验是在相同条件下具有不确定性的实验,其结果不能事先预知。
样本空间是随机试验所有可能结果的集合。
2. 事件和概率事件是样本空间的子集,表示一些感兴趣的结果。
概率是事件发生的可能性大小的度量,介于0和1之间。
3. 古典概型古典概型是指具有有限样本空间且样本点等可能出现的随机试验。
在古典概型中,事件的概率可以通过样本点的数目来计算。
4. 条件概率条件概率是指事件B在另一个事件A已经发生的条件下发生的概率,表示为P(B|A)。
条件概率的计算可以使用“乘法规则”。
5. 独立事件事件A和B称为独立事件,如果事件A的发生不会对事件B的发生产生影响。
独立事件的概率计算可以使用“乘法规则”。
二、数理统计的基础知识1. 总体和样本总体是指研究对象的全体,而样本是从总体中选取的一部分个体。
统计学中,我们通常通过对样本的统计分析来推断总体的特征。
2. 随机变量和概率分布随机变量是取值具有随机性的变量,可以是离散的或连续的。
概率分布描述了随机变量各个取值的概率。
3. 参数和统计量参数是总体的特征指标,统计量是样本的特征指标。
通过样本统计量的计算,我们可以对总体参数进行估计。
4. 抽样分布和中心极限定理抽样分布是指统计量的分布,它反映了统计量的随机性。
中心极限定理表明,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。
5. 置信区间和假设检验置信区间用于对总体参数进行估计,假设检验用于对总体参数的假设进行推断。
通过置信区间和假设检验,我们可以对统计结论进行推断和验证。
三、应用案例概率论和数理统计在各个领域都有广泛的应用。
例如,金融领域中的风险评估和投资决策,医学领域中的临床试验和流行病学研究,工程领域中的质量控制和可靠性分析等等。
(完整版)概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为或。
A B ⊇B A ⊆相等关系:若且,则称事件A 与事件B 相等,记为A =B 。
A B ⊇B A ⊆事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为。
B A B A =-互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时可记为A +B 。
B A ⋃对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为。
对立事件的性质:A 。
Ω=⋃Φ=⋂B A B A ,事件运算律:设A ,B ,C 为事件,则有(1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律): B A B A ⋂=⋃BA B A ⋃=⋂第二节 事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时⋃⋃⋃⋃n A A A 21++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P 概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时n A A A ⋃⋃⋃ 21)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃ 当AB=Φ时P(A∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)(2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则P(B)=∑P()P(B|)n A A A ,,,21 i A i A 贝叶斯公式:设是一个完备事件组,则n A A A ,,,21 ∑==)|()()|()()()()|(j j i i i i A B P A P A B P A P B P B A P B A P 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则与B ,A 与,与均相互独立A B A B 总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
概率论必备知识点

概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。
以下是一些概率论中的必备知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
概率则是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
计算概率的方法有多种。
对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。
例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。
二、古典概型古典概型是一种最简单的概率模型。
在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。
计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。
三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。
例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。
在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例如,已知今天下雨,明天晴天的概率就是一个条件概率。
条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。
概率知识点归纳整理总结

概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。
样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。
事件是样本空间的一个子集,表示随机试验的一些结果。
事件的概率描述了该事件发生的可能性有多大。
2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。
3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。
4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。
5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。
6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。
概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。
排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。
2. 事件的独立性在概率论中,独立性是一个重要的概念。
事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。
在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。
3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。
随机变量可分为离散型和连续型两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n i=
是一完备事件组,且对任意的i有
1
P(Hi)>0及P(A)>0,则 P(Hi
A)=
P(Hi )P(A Hi )
n
P(Hj )P(A Hj )
j=1
概率论基础知识
第一章 概率论基础知识
二、概率
例. 用自动血压计计量血压。以C表示被测成人患高血压, B表示血压计显示高血压。假定P(C)=0.15,
2. 事件的运算(与集合运算对应) (1)交换律:A∪B=B∪A,AB=BA; (2)分配率:A(B ∪ C)=AB ∪AC,A(B-C)=AB-AC (3)结合律:A(BC)=(AB)C=ABC, A ∪(B ∪ C)=(A ∪ B) ∪C=A ∪ B ∪ C
概率论基础知识
第一章 概率论基础知识
例1. (单点分布)若随机变量X概率为1地取常数值c, 即P(X=c)=1,则称X服从单点分布或退化分布。 此时X可被视为常数。
例2. (两点分布)若随机变量X只取两个值,称其分布
为两点分布。分别用0与1表示其取值,则分布可被
表示为
x
01
P(X x) 1-p p
记作X~B(1,p).
概率论基础知识
i=1
则 H
n
i i=1
为一个完备事件组。
(2)全概率公式:
设
H
i
n i=
1
是一完备事件组,且对任意的i有
P(Hi)>0,则对任一n 事件A,都有
P(A)= P(Hi)P(AHi )
概率i=论1基础知识
第一章 概率论基础知识
二、概率 4. 全概率公式与Bayes公式
(3) Bayes公式:
设
H
i
k k
P A i= P(A ), P A i= P(A )
i=1 i=1
i=1 i=1
概率论基础知识
第一章 概率论基础知识
二、概率 2. 概率的性质
(1) 不可能事件的概率为零 P(Ø)= 0; (2) P(A∪B)= P(A)+ P(B)- P(AB) .
(3) P(A)=1-P(A)
及任意的1≤i1<i2<…<ir≤n有 P(Ai1Ai2…Air)=P(Ai1)P(Ai2)…P(Air)
则称A1,A2,…,An相互独立。
概率论基础知识
第一章 概率论基础知识
二、概率
4. 全概率公式与Bayes公式
(1)完备事件组的定义:
设H1, H2,…,Hn为n个事件,若
n
= Hi 且HiHj=, i,j
则称X为连续型随机变量,称f(x)为X的分布密度 (简称密度)或概率函数。
概率论基础知识
第一章 概率论基础知识
三、随机变量及其分布函数
例1. (均匀分布)若随机变量X的密度函数为
1 f (x)=b-a
a xb
0 其他
则称X服从[a,b]上的均匀分布,记作X~U(a,b)。
例2. (指数分布)若随机变量X的密度为
P(B|C)=0.95及P(B|C )=0.05。那么若血压计显示高血
压,被测成人患有高血压的概率有多大?
概率论基础知识
第一章 概率论基础知识
三、随机变量及其分布函数 1. 一维随机变量及其分布 (1)随机变量定义:设(Ω,F,P)为概率空间,定义 在Ω上的单值实函数X(w)称为随机变量。
(2)离散型随机变量
概率论基础知识
课程的地位 Importance of the Course
对于理工科的研究生来讲,应用数理 统计是最重要的基础课程之一。
在数理统计中,同学们不仅可以学到 处理随机性数据的具体的学科知识,而且 还能受到严谨细密的思维方法和科学精神 的熏陶。
概率论基础知识
研究生课程与本科生有许多区别。比如难度大、进 度快、讲课不再面面具到。要想尽快适应这种学 习,加强预习是个好方法。这里讲的预习,不仅仅 是课前5分钟翻翻书,而是安排专门的时间,按照指 定的进度有计划地预习新内容。预习中不能光阅 读,还要钻研概念、推导证明、演算例题,查表计 算,等等。坚持预习也是培养自学能力的好方法。
概率论基础知识
概率论基础知识
第一章 概率论基础知识
概率论是数理统计的理论基础,为了使它 们能更好地衔接起来,本章扼要地复习概 率论的基本概念、定理与公式。
概率论基础知识
第一章 概率论基础知识
一、事件及其运算
1. 基本事件:随机试验中,每个可能出现的结果; 样本空间:全体基本事件组成的集合; 事件:样本空间的子集,常用A、B等表示; 事件发生、不可能事件、必然事件; 互斥事件、对立事件。
概率论基础知识
第一章 概率论基础知识
(1)条件概率定义: 设A、B是两个随机事件,且P(A)>0,则称
P(AB) P(B A)=
P(A)
事件A发生的条件下事件B 发生的条件概率。
概率论基础知识
第一章 概率论基础知识
(4)独立性推广: 设A1,A2,…,An为n个事件,若对任意的r (1<r≤n)
定义:若随机变量X的所有可能取的值是有限多个或 可列无限多个,则称X为离散型随机变量。
设X可能的取值为x1,x2,…,xn,…, 记P{X = xi } = pi , i = 1, 2,...,则称{p1,p2,…}为X的概率函数或概率分布。
概率论基础知识
第一章 概率论基础知识
三、随机变量及其分布函数
第一章 概率论基础知识
三、随机变量及其分布函数 例3. (二项分布)设在一次试验中事件A发生的概率为p
(0≤p≤1),X表示n次独立重复试验中事件A发生 的次数,则称X服从二项分布,记作X~B(n,p).
P(X =k)=k npk(1-p)n-k, k=0,1,2, ,n
例4. (泊松分布)设离散型随机变量X可能的取值为所 有非负整数,且
二、概率
1. 概率的定义
设Ω为样本空间,F为所有事件的全体。如果
定义在F上的函数P()满足如下性质,则对于F中的 任意元素A,称P(A)为事件A发生的概率,P为F上
的概率测度,(Ω,F,P)为概率空间。
(1)0 ≤ P(A) ≤ 1
(2)P(Ω)=1
(3)对两两互斥的事件序列A1,A2,…Ak…,有
P(Xk)ke-, k0,1,2,
k!
其中λ >0 ,则称X服从参数为λ的Poisson分布,记作X~P(λ).
概率论基础知识
第一章 概率论基础知识
三、随机变量及其分布函数 1. 一维随机变量及其分布
(3)连续型随机变量 若X为随机变量,若存在非负函数f(x)满足在 R上的积分小于-∞,且
x
P(X≤x) = f (t ) dt