PlantHormoneSignaltransductionpathway植物激素信号转导通路.

合集下载

利用转录组及iTRAQ技术筛选高油酸油菜抗病相关基因_张振乾

利用转录组及iTRAQ技术筛选高油酸油菜抗病相关基因_张振乾

华北农学报·2015,30(5):16-24收稿日期:2015-08-07基金项目:“973”项目(2015CB150206);国家自然科学基金项目(31201240;31000722);“863”项目(2012AA101107-3);湖南省科技重大专项(2014FJ1006);农业部油料作物生物学与遗传育种重点实验室开放课题(2014008);湖南农业大学作物学开放基金项目(ZWKF201302)作者简介:张振乾(1977-),男,河南南阳人,博士,副教授,主要从事油菜育种研究。

通讯作者:李云昌(1955-),男,湖北崇阳人,博士,教授,主要从事油菜育种研究。

官春云(1938-),男,湖北荆州人,教授,主要从事油菜育种、栽培研究。

利用转录组及iTRAQ 技术筛选高油酸油菜抗病相关基因张振乾1,2,肖钢1,官春云1,邬贤梦1,熊兴华1,李云昌2,胡琼2,陈社员1(1.湖南农业大学农学院,南方粮油作物协同创新中心,湖南长沙410128;2.农业部油料作物生物学与遗传育种重点实验室,湖北武汉430062)摘要:高油酸油菜和低油酸油菜对菌核病的抗性存在显著差异,为了弄清其分子机理,以一组高油酸油菜近等基因系自交授粉后20 35d 的种子为材料,分别进行转录组和同位素相对标记与绝对定量技术分析。

分析了与抗病相关的氧化磷酸化、植物激素信号转导通路和植物病原体互作3个分类,将注释的基因和蛋白进行关联,并对其中可能与抗病相关的基因进行定量PCR验证。

结合前人研究发现,基因表达或蛋白表达发生显著变化的基因gi |260505503(多聚半乳糖醛酸酶抑制蛋白)、gi |226346102(HSR203J 类蛋白)、gi |470103214(钙调蛋白类)与抗病相关;而gi |297843222(结合蛋白)、gi |18397961(2-铁,2-硫-铁氧化还原类蛋白)、gi |196052306(还原型烟酰胺腺嘌呤二核苷酸脱氢酶亚基)、gi |18423437(还原型烟酰胺腺嘌呤二核苷酸脱氢酶(辅酶)1α-复形5)和gi |297794581(激酶家族蛋白)等基因差异显著。

鹅掌楸转录组研究及抗寒基因发掘

鹅掌楸转录组研究及抗寒基因发掘

鹅掌楸转录组研究及抗寒基因发掘鹅掌楸(Liriodendron chinense Sarg.)属于木兰科鹅掌楸属,是中国特有植物。

鹅掌楸自然分布于我国南方地区海拔1000米的山地林中。

在对其进行引种栽培的过程中,由于抗寒性问题,导致很难在北方地区种植与应用。

目前,尚未开展鹅掌楸的抗寒性分子机制和种质资源的抗寒性评价方面的研究。

本研究通过高通量测序技术,建立鹅掌楸转录组信息库,筛选鹅掌楸不同条件下抗寒相关的差异表达基因,为从基因水平上研究鹅掌楸提供基础信息。

同时结合生理指标测定,对鹅掌楸种质资源从生理水平到基因水平开展抗寒性综合分析,从而发掘其优质资源,更好地开展鹅掌楸种质资源保存与生产利用服务,并为分子遗传育种提供理论依据。

本研究主要得到以下结论:一、开展抗寒性生理指标测定,鉴定出抗寒种源鹅掌楸不同种源的各抗寒生理指标均表现出明显的季节变化。

具体为,鹅掌楸冬季枝条顶芽中的丙二醛含量、可溶性蛋白质含量、SOD活性、可溶性糖含量、脯氨酸含量均高于秋季枝条顶芽,相对电导率和含水量均低于秋季枝条顶芽。

根据测量的生理指标数据,计算出鹅掌楸4个种源的隶属函数值作为抗寒性的综合评价值,对4个鹅掌楸种源的抗寒性进行了综合排序:安徽>浙江>贵州>云南。

对各抗寒生理指标与隶属函数值进行相关性分析,结果显示,相对电导率、含水量均与隶属函数值呈显著性负相关;脯氨酸含量与隶属函数值呈显著性正相关,在今后的鹅掌楸抗寒性评价时,上述指标可以被用作较好的评价指标。

二、建立了鹅掌楸枝条顶芽转录组文库通过转录组测序获得总片段数(cleanreads)为89 832 100条,总碱基数为11.4Gbp,GC含量为46.42%。

其中片段长度大于20个碱基的百分比为96.05%,GC%值为46.75%,说明转录组测序可以用于后续分析。

获得了162092个非冗余Unigene片段,序列信息达到88714395bp,片段大小从201-16808bp不等,N50长度为719bp,N90长度为242bp。

植物蛋白磷酸酶2C结构和功能的研究现状与进展

植物蛋白磷酸酶2C结构和功能的研究现状与进展

浙江大学学报(农业与生命科学版)47(1):11~20,2021Journal of Zhejiang University (Agric.&Life Sci.)http :///agr E -mail :zdxbnsb @植物蛋白磷酸酶2C 结构和功能的研究现状与进展陈耘蕊,毛志君,李兆伟,范凯*(福建农林大学农学院,作物遗传育种与综合利用教育部重点实验室,福州350002)摘要蛋白磷酸酶是蛋白质可逆磷酸化过程中2个关键酶之一,蛋白磷酸酶2C (protein phosphatase 2C,PP2C )是蛋白磷酸酶的重要成员。

PP2C 是一类丝氨酸/苏氨酸蛋白磷酸酶,可以调控真核生物细胞生命活动。

PP2C 成员主要参与激素信号转导途径,尤其可作为脱落酸信号途径的关键调节因子,能响应各种生物和非生物胁迫,在器官发育和种子萌发等方面也具有重要的促进作用。

在不同的植物中也发现了越来越多的PP2C 成员,该酶在不同的植物、不同的生长环境以及不同的生理活动中均有不同的调控方式,这也是目前及今后对PP2C 成员的研究方向。

本文主要介绍了植物PP2C 家族的结构特点、亚细胞定位及其在生长发育、激素信号转导、逆境胁迫方面的研究现状,以及在提高植物生物产量、促进果实发育等方面的新进展。

关键词蛋白磷酸酶2C ;植物生长发育;激素信号转导;胁迫响应中图分类号Q 945文献标志码AResearch status and progress in structure and function of protein phosphatase 2C in plants.Journal of Zhejiang University (Agric.&Life Sci.),2021,47(1):11-20CHEN Yunrui,MAO Zhijun,LI Zhaowei,FAN Kai *(Key Laboratory of Ministry of Education for Genetics,Breeding and Multiple Utilization of Crops,College of Agriculture,Fujian Agriculture and Forestry University,Fuzhou 350002,China )Abstract Protein phosphatase is one of the two key enzymes in the process of protein reversible phosphorylation.Protein phosphatase 2Cs (PP2Cs)are the important members of protein phosphatases.They are attributed to serine/threonine protein phosphatases (STPs)and can regulate the life activities of eukaryotic cells.PP2C members play an important role in hormone signal transduction pathways,especially abscisic acid (ABA)signal pathways;they can respond to various biotic and abiotic stresses,and also regulate organ development and seed germination.Recently,more and more PP2C members are found in plants.The regulation mechanisms of the PP2C members are diverse in different plants,different growth environments,and different physiological activities.The related research is an important topic.This review mainly introduces the structural characteristics,and subcellular localization of PP2C family in plants,and the research progresses in plant growth and development,hormone signal transductions,and stress responses,as well as in aspects of improving plant biological yield and promoting fruit development.Key words protein phosphatase 2C;plant growth and development;hormone signal transduction;stress responseDOI :10.3785/j.issn.1008-9209.2020.05.291基金项目:国家自然科学基金(31701470);中国博士后科学基金(2017M610388,2018T110637);福建农林大学杰出青年科研人才计划(xjq201917)。

植物生理学名词解释

植物生理学名词解释

植物生理学名词解释第一章植物的水分生理1.水势:(water potential)水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。

2.渗透势:(osmotic potential)亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。

3.压力势:(pressure potential)指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。

4.质外体途径:(apoplast pathway)指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。

5.共质体途径:(symplast pathway)指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。

6.渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

7.根压:(root pressure)由于水势梯度引起水分进入中柱后产生的压力。

8.蒸腾作用:(transpiration)指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。

9.蒸腾速率:(transpiration rate)植物在一定时间内单位叶面积蒸腾的水量。

10.蒸腾比率:(transpiration ratio)光合作用同化每摩尔CO2所需蒸腾散失的水的摩尔数。

11.水分利用率:(water use efficiency)指光合作用同化CO2的速率与同时蒸腾丢失水分的速率的比值。

12.内聚力学说:(cohesion theory)以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。

13.水分临界期:(critical period of water)植物对水分不足特别敏感的时期。

第二章植物的矿质营养1.矿质营养:(mineral nutrition)植物对矿物质的吸收、转运和同化。

精选PlantHormoneSignaltransductionpathway植物激素信号转导通路资料

精选PlantHormoneSignaltransductionpathway植物激素信号转导通路资料
Site of action x developmental stage x concentration of hormone? Crosstalk and specificity?
Chemical Structures of the Plant Hormones
plant hormones synthesis sites and their major functions
Plant hormone signaling transduction (auxin, ethylene, cytokinin, gibberellin, abscisic acid, brasinosteroid, jasmonic acid etc.)
Definition of plant hormone
2. The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome.
(a) ubiquitin-dependent protein degradation (negative regulator)
(b) tow component system (phospho-relay).
6. Manipulation of plant growth and development with knowledge from plant hormone signal transduction pathway. ex. Second green revolution.

滇山茶狮子头及其芽变品种大玛瑙间花色差异分析

滇山茶狮子头及其芽变品种大玛瑙间花色差异分析

DOI : 10.13430/ki.jpgr.20230906003植物遗传资源学报 2024, 25 ( 4 ): 600-611Journal of Plant Genetic Resources滇山茶狮子头及其芽变品种大玛瑙间花色差异分析周麟1,雍清青1,姚响2,陈晓涓1,黄顺满1,屈燕1(1西南林业大学园林园艺学院/国家林业和草原局西南风景园林工程技术研究中心/云南省功能性花卉资源及产业化技术工程研究中心,昆明 650224; 2昆明市绿化工程质量检测站,昆明 650224)摘要: 滇山茶是世界著名观赏花木,花色是其重要的观赏性状。

滇山茶狮子头花色为深红色,而其芽变品种大玛瑙是滇山茶中唯一红白双色的名贵品种,极具观赏价值。

以上述2个品种为研究材料,采用RHSCC 比色卡比色法和色差仪测定2个品种滇山茶花蕾期和盛花期花瓣的花色表型,并基于转录组与代谢组分析挖掘呈色相关的关键代谢物及关键基因。

花青素靶向代谢分析表明,在滇山茶2个品种中共鉴定出28种花青素代谢物,其中狮子头与大玛瑙红色区域花瓣间没有差异代谢物,狮子头与大玛瑙白色区域花瓣间的关键差异代谢物为矢车菊素-3-O-桑布双糖苷、原花青素B2、原花青素B3、阿福豆苷,大玛瑙花瓣的红白区域关键差异代谢物为矢车菊素-3-O-桑布双糖苷、原花青素B2、阿福豆苷。

转录组KEGG 分析结果表明,苯丙醇生物合成和类黄酮生物合成途径与大玛瑙红白双色花瓣的形成有关;植物激素信号转导和昼夜节律-植物途径与滇山茶花色芽变有关。

转录代谢联合分析共筛选出与滇山茶呈色高度相关的差异表达基因共17条,包括4条CHS 、3条HCT 、2条F3′H 、1条LAR 、5条MYB 和2条bHLH 。

本研究结果对进一步揭示花色芽变育种具有一定的参考意义。

关键词: 滇山茶;花青素苷;花色;代谢组;转录组Analysis of Flower Color Difference Between Camellia reticulata‘Shizitou ’ and its Bud Mutant ‘Damanao ’ZHOU Lin 1,YONG Qingqing 1,YAO Xiang 2,CHEN Xiaojuan 1,HUANG Shunman 1,QU Yan 1(1College of Landscape and Horticulture , Southwest Forestry University/Southwest Research Center for Engineering Technology ofLandscape Architecture under National Forestry and Grassland Administration/Yunnan Engineering Research Center forFunctional Flower Resources and Industrialization , Kunming 650224;2Kunming Greening EngineeringQuality Detecting Test Station , Kunming 650224)Abstract :Camellia reticulata is a famous ornamental flower in the world , and its flower color is an important ornamental character. The flower color of Camellia reticulata ‘Shizitou ’ is deep red , while its bud mutant ‘Damanao ’ showing white-red mixed flower is rare with great ornamental value. In this study , both varieties were analyzed at the flower traits by RHSCC colorimetric method , and their metabolites and transcriptional profiles were examined based on transcriptome and metabolome methodologies. Anthocyanin targeted metabolic analysis detected 28 anthocyanin metabolites. There were no different metabolites between the petals of ‘Shizitou ’ and ‘Damanao ’ in the red region , while the main different metabolites between the white region of the petals of ‘Shizitou ’ and ‘Damanao ’ were centaurin-3-O-sambudigoside , proanthocyanidin B2, proanthocyanidin B3 and afotoside. The main different metabolites between white and red region of ‘Damanao ’ petals were centaurin-3-O-sambuloside , proanthocyanidin B2 and afoside. Transcriptomic KEGG analysis showed that the genes in phenylpropanol biosynthesis and flavonoid biosynthesis pathways were related to the收稿日期: 2023-09-06 修回日期: 2023-10-02 网络出版日期: 2023-12-07URL : https :///10.13430/ki.jpgr.20230906003第一作者研究方向为园林植物与观赏园艺,E-mail :*****************通信作者: 屈燕,研究方向为园林植物资源开发与利用,E-mail :**************.cn基金项目: 国家“十三五”重点研发计划项目(2019YFD1001005);云南省万人计划青年拔尖人才项目(YNWR-QNBJ-20190211)Foundation projects : National “13th Five-Year Plan ” Key Research and Development Plan Project (2019YFD100100005);Ten Thousand TalentPlans For Young Top-Notch Talents of Yunnan Province (YNWR-QNBJ-20190211)4 期周麟等:滇山茶狮子头及其芽变品种大玛瑙间花色差异分析formation of red and white bicolor petals of ‘Damanao’. Plant hormone signal transduction and circadian rhythm-plant pathway were associated with flower color bud change of Camellia reticulata. Transcriptional and metabolic joint analysis identified 17 differentially expressed genes highly related to the color of Camellia reticulata, including 4 CHS, 3 HCT, 2 F3'H, 1 LAR, 5 MYB and 2 bHLH. This study provided a reference for future breeding based on the flower color bud mutation.Key words:Camellia reticulata;anthocyanin glycosides;flower color;metabolome;transcriptome滇山茶(Camellia reticulata Lindl.)是中国传统花木之一,因其花大茂盛、花姿多样、花色绚丽,被誉为花中娇客[1-2]。

钩苞大丁草高通量转录组测序及差异表达分析

钩苞大丁草高通量转录组测序及差异表达分析

钩苞大丁草高通量转录组测序及差异表达分析陈菁;郑伟;王谈笑;王炜;徐晓丹【摘要】In the present study, two samples (abaxial leaves with and without penniform fiber)'s cDNA were sequenced based on Illumina Hi-Seq2500 to analyze the fiber development mechanism.The results indicated that 108 694 unigenes were obtained.Then, 1 605 differential expressed genes (DEGs) were selected.830 DEGs were divided into 39 GO terms, 512 DEGs were assigned to 25 categories with COGdatabase.Function annotation against KEGG database obtained 315 DEGs.10 significantly reliable enrichment pathways were selected by enrichment analysis of 79 KEGG pathways.DEGs in "amino sugar and nucleotide sugar metabolism" which control cellulose biosynthesis, DEGs in "phenylpropanoid biosynthesis" which control lignin biosynthesis and DEGs in "plant hormone signal transduction" which control auxin`s signal transduction were down-regulated.While those in "plant hormone signal transduction" which control cytokinin and abscisic acid signal transduction were up-regulated.These results greatly enriched genetic information of G.delavayi and provided basic data for function verification and genetic improvement of fiber traits in the future.%该研究采用Illumina Hi-Seq2500高通量测序技术,对叶背有纤维和无纤维发育的两组钩苞大丁草(Gerbera delavayi Franch.)叶片样品的cDNA进行转录组测序,分析其叶背毡毛纤维发育机理.测序结果得到了108 694条单基因序列,进一步筛选得到了1 605条差异表达基因,838条差异表达基因在GO数据库具有功能定义,512条差异表达基因在COG分类体系中具有详细的蛋白功能释义,315条差异表达基因注释到了KEGG数据库中.其中,氨基糖和核苷酸糖代谢途径中控制纤维素合成的相关基因,苯丙烷类生物合成途径中控制木质素合成的相关基因,以及激素信号转导途径中控制生长素信号转导的相关基因表达量下调;激素信号转导途径中控制细胞分裂素、脱落酸信号转导的相关基因表达量上调.研究结果在一定程度上丰富了钩苞大丁草的基因信息,并为后续的遗传改良提供了基础数据.【期刊名称】《西北植物学报》【年(卷),期】2017(037)003【总页数】8页(P470-477)【关键词】钩苞大丁草;转录组,高通量测序;差异表达基因;纤维发生【作者】陈菁;郑伟;王谈笑;王炜;徐晓丹【作者单位】昆明理工大学现代农业工程学院,昆明 650500;昆明理工大学建筑与城市规划学院,昆明 650500;昆明理工大学现代农业工程学院,昆明 650500;昆明理工大学建筑与城市规划学院,昆明 650500;昆明理工大学艺术与传媒学院,昆明650500【正文语种】中文【中图分类】Q786;Q789钩苞大丁草(Gerbera delavayi Franch.)为菊科大丁草属多年生草本植物,因其叶片干枯后具有良好的助燃性,又名“火草”。

WRKY转录因子的研究进展

WRKY转录因子的研究进展

WRKY转录因子的研究进展张凡;尹俊龙;郭瑛琪;岳艳玲【摘要】WRKYs是高等植物中最大的转录因子家族(TFs)之一.它具有特殊结构-WRKY结构域,这些结构可使WRKY转录因子拥有不同的转录调控功能.WRKY TFs 不仅可以通过调节植物激素信号转导途径来调节它们的应激反应,还可以结合其靶基因启动子中的W-box[TGACC(A/T)],通过激活或抑制下游基因的表达来调节它们的应激反应.此外,WRKY蛋白不仅可以与其他TFs相互作用来调控植物防御反应,而且还可以通过识别和结合本身目标基因中的W-box进行自我调节以调控其对各种压力的防御反应.因此,WRKY TFs不管是在植物响应生物胁迫中,还是非生物胁迫中都具有重要的作用.但是,近年来,关于WRKY TFs在高等植物中的调控作用的研究综述稀少且深度较浅.重点阐述了WRKY TFs的结构特征和分类,在植物生物胁迫和非生物胁迫中发挥的作用,以及通过调节植物激素信号转导途径、MAPK信号级联和自调控来调控各种胁迫,以期为将来WRKY TFs的研究提供理论参考和思路.%WRKYs is one of the largest transcription factor families(TFs)in higher plants. It has a special structure of WRKY domain, which allows WRKY transcription factors to have different transcriptional regulatory functions. WRKY TFs can regulate their stress responses not only by regulating the plant hormone signal transduction pathways,also by activating or inhibiting the expressions of downstream genes while binding to the W-box(TGACC(A/T))in the target gene promoter. In addition,WRKY protein can regulate plant defense responses to various stresses not only by interacting with other TFs,also by self-regulation while identifying and combining the W-box in its own target gene. Therefore,WRKY TFs playimportant roles in the responses of plants to biological and abiotic stresses. However,the current research on the regulatory roles of WRKY TFs in higher plants is rare and simple in recent years. In order to provide theoretical reference and ideas for future research on WRKY TFs,here we mainly summarized the structural features and classification of WRKY TFs,the roles in plant biological and abiotic stresses,and the regulations to various stresses via hormone signal transduction pathway,MAPK signal cascade and self-regulation.【期刊名称】《生物技术通报》【年(卷),期】2018(034)001【总页数】9页(P40-48)【关键词】WRKY转录因子;网络调控;胁迫【作者】张凡;尹俊龙;郭瑛琪;岳艳玲【作者单位】云南农业大学园林园艺学院,昆明 650201;云南农业大学园林园艺学院,昆明 650201;中国科学院昆明动物研究所,昆明 650000;云南农业大学园林园艺学院,昆明 650201【正文语种】中文植物在整个发育时期都会受到生物和非生物胁迫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Specific cell fate determination and differentiation (Xylem and phloem specification, root organization (patterning))
Abiotic stress signaling pathways (salt, drought, heat, cold, metal, vernalization etc.)
(b) the amount of the hormone (dosage or concentration)
(c) the sensitivity of that tissue to the hormone.
(d) the condition of the plant itself is critical: what is the condition of the plant? its age?
(a) ubiquitin-dependent protein degradation (negative regulator)
(b) tow component system (phospho-relay).
6. Manipulation of plant growth and development with knowledge from plant hormone signal transduction pathway. ex. Second green revolution.
Plant Hormone Signal transduction pathway
Байду номын сангаас
Talk Outline
1. General introduction to cell signaling transduction pathways in plant.
2. Different plant hormones and their physiological function in plants.
3. Comparison between plant hormones and animal hormones action.
4. Ways or approaches in studying plant hormone
signaling transduction pathways.
5. Molecular mechanism of various plant hormone signal transduction pathways
3. Each hormone may result in multiple effects -- the particular effect depending on a number of factors:
(a) the presence of other hormones and the presence of activator molecules ( calcium, sugars)
Site of action x developmental stage x concentration of hormone? Crosstalk and specificity?
Chemical Structures of the Plant Hormones
plant hormones synthesis sites and their major functions
Analogy view of cell signaling transduction pathway
Input
(command)
Keyboard
Signal perception
Endogenous: phytohormone
Exogenous: environmental
cue
CPU (Central Processing
in cyclin F
Annals of Botany 99: 787-822 (2007)
Biological significance of ubiquitin/proteosome system (UPS) in plants
1. UPS was involved in different processes of plant life, including organ initiation and embryogenesis patterning, light signalling , circadian clock regulation ,hormone production, perception and signal transduction, and in plant defence.
E1; UBA, ubiquitin activating enzyme E2: UBC, ubiquitin conjugatingenzyme E3: ubiquitin protein ligase RBX: ring-box protein CUL: cullin CRL:cullin ring ligase HECT: homologous to E6-AP
2. Ethylene: histidine kinase Raf-like kinase CTR1 Mitogen activated protein kinase cascade
3. Cytokinin: phosphorelay (two-component system)
4. Gibberellin: G protein and DELLA protein hexosamine (NAcGlu)
Plant hormone signaling transduction (auxin, ethylene, cytokinin, gibberellin, abscisic acid, brasinosteroid, jasmonic acid etc.)
Definition of plant hormone
2007 (CHLH, GCR2)
Summary of molecular components involved
in plant hormone signaling transduction
1. Auxin: TIR1: F-box protein (Ubiquitin conjugated ligase) PIN1 (pin-formed 1) Aux/IAA repressor
COOH terminus RING: really interesting new gene
protein domain SCF: SKP1-Cullin-F-box SKP: S phase kinase associated protein F-box: SKP/ASK interaction motif
5. Abscisic acid: PP2C protein, SnRK protein kinase Farnesylation
6. Brasinosteroid: BRI1 (LRR-RLK)
An overview of the ubiquitination process in plants
Development regulatory pathway e. g. flowering (autonomous), lead, root, trichome formation
root apical meristem (RAM) shoot apical meristem (SAM) formation polarity and cell cytoskeleton rearrangement
2. The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome.
Science, 2001
Dissect plant hormone signal transduction pathways by molecular genetic analysis
Chronological events and persons involved in identification of different hormone receptors
Main approaches used to study plant hormone perception,
signal transduction biosynthesis and responses
1. Molecular genetics approach
hormone biosynthetic mutants vs. hormone insensitive mutants
1. The word hormone is derived from the Greek verb meaning to excite.
2. hormones are organic substances synthesized in one tissue and transported out where their presence results in physiological responses ( not always true; may act at or close to synthesis site). They are required in minute amounts (10-6 to 10 -8M).
相关文档
最新文档