第一章有理数全章综合测试
浙教版(2024)数学七年级上册第 一 章有理数综合测试卷(含答案)

第一章综合测试卷有理数班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.-2的绝对值是( )A. 2 B D. -22.四位同学画数轴如下图所示,你认为正确的是( )3.下列有理数中最小的数是( )A. -2.01B. 0C. -24.下列各数中,负数是( )A. -(-2)B. -|-2|C. |-(-2)|D. -(-|2|)5.若|x-5|=5-x,则下列不等式中成立的是( )A. x-5>0B. x-5<0C. x-5≥0D. x-5≤06.有理数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A. aB. bC. cD. 无法确定7.式子|x-1|+2取最小值时,x等于( )A. 0B. 1C. 2D. 38. 如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则与点C表示的数最接近的整数是( )A. -1B. 0C. 1D. 29.在数轴上表示数一1和2024的两点分别为点A和点B,则A,B两点之间的距离为( )A. 2023B. 2024C. 2025D. 202110. 点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A. -(a+1)B. -(a-1)C. a+1D. a-1二、填空题(本大题有 6 小题,每小题4分,共24分)11. 若零上8℃记做+8℃,则零下6℃记做℃.12. 已知a与b互为相反数,b与c互为相反数,且c=-2,则13. 绝对值大于7 且小于12的所有整数的和是 .14. 数轴上到表示2的点距离为3的点表示的数是 .15. 如图,若b的绝对值是a 的绝对值的3倍,则数轴上的原点可能是点 .16. 如图所示是计算机中某一计算程序,若开始输入x=3,则最后输出的结果是 .三、解答题(本大题有8小题,共66分)17.(6分)在数轴上标出下列各数,并用“<”把各数连接起来.18.(6分)某水泥厂计划每月生产水泥 1000t,一月份实际生产了950t,二月份实际生产了 1000t,三月份实际生产了1100t,用正数或负数表示每月超额完成计划的吨数各是多少(超出部分记为正数,不足部分记为负数).19.(6分)一辆货车从百货大楼出发负责送货,向东走了 4km到达小明家,继续向东走了1.5km到达小红家,然后向西走了8.5km到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位表示1km,请你在如图的数轴上标出小明、小红、小刚家的位置(小明家用点 A 表示,小红家用点 B 表示,小刚家用点 C 表示);(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5L,那么这辆货车此次送货共耗油多少升?20. (8分)已知且a,b,c在数轴上对应点的位置如图所示,求a+b+c 的值.21.(8分)某文具店在2023年的某一周的销售中,盈亏情况如下表(盈余为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计-27.8-70.3200138.1-8188448表中星期六的盈亏数被墨水涂污了.(1)请你通过计算说明星期六是盈还是亏? 盈亏是多少?(2)按照这周的销售情况,请你估算一下这个文具店2023年的盈利是多少?22.(10分)如图,图中数轴的单位长度为1.请回答下列问题.(1)如果点 A,B表示的数互为相反数,那么点C 表示的数是正数还是负数? 是多少?(2)如果点D,B表示的数互为相反数,那么点C表示的数是正数还是负数? 图中表示的5个点中,哪一个点表示的数的绝对值最小? 是多少?23.(10分)已知|与所表示的数互为相反数,求的值.24. (12分)同学们都知道:表示 5 与之差的绝对值,实际上也可理解 5 和两数在数轴上所对应的两点之间的距离.请你借助如图的数轴进行以下探索:(1)如果那么(2)由以上探索猜想对于任何有理数x,有最小值,请写出当x在什么范围时有最小值;并求出最小值是多少?(3)请写出当x满足什么取值范围时,使得|第一章综合测试卷有理数1. A2. B3. A4. B5. D6. A7. B8. C9. C10. B 解析:∵O为原点,点C所表示的数为a,∴点A表示的数为a-1,∴点B表示的数为-(a-1),故选 B.11. -6 12. -2 13. 0 14. -1 或 515. 点 A 或点 B 16. 3817. 图略18. 解:一月份:-50t;二月份:0t;三月份:+100t.19. 解:(1)如图所示:(2)小明家与小刚家相距7km. (3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(L). 答:这辆货车此次送货共耗油25.5L.20. 解:由数轴可知b<0,c>0,a>0,∵|a|=3,|b|=2,|c|=6,∴a=3,b=-2,c=6,∴a+b+c=3+(-2)+6=7.21. 解:(1)448-188+27.8+70.3-200-138.1+8=28(元),因为28>0,所以星期六盈利了,盈余28元.0(元).答:这个文具店2021年的盈利是23360元.22. (1)负数一1 (2)正数C 0.523. 解:∵|ab--2|+|b--1|=0,∴a=2,b=1,则原式=24. 解:(或7(2)当时,有最小值,最小值为 3.(3)当时,。
新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一2 D.123.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升l0米和下降7米C.超过0.05mm与不足0.03m D.增大2岁与减少2升7.下列说法正确的是()A.-a一定是负数;B.a定是正数;C.a一定不是负数;D.-a一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1m的大小关系是()A.m<m2<1mB.m2<m<1mC.1m<m<m2D.1m<m2<m11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()A.a+b一定大于a-b B.若-ab<0,则a、b异号C.若a3=b3,则a=b D.若a2=b2,则a=b13.下列运算正确的是()A.-22÷(一2)2=l B.3123⎛⎫- ⎪⎝⎭=-8127C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5.14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x=2,y=3,则x y+的值为()A.5 B.-5 C.5或1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。
第一章 有理数 全章 练习题 2023—2024学年人教版数学七年级上册

第一章《有理数》全章练习题(含答案)一、选择题1.2024的倒数是()A.2024B.2024-C.12024-D.120242.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为()A.84410⨯B.84.410⨯C.94.410⨯D.104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是()A.0a >B.0ab >C.0a b ->D.0a b +<4.下列几种说法中,不正确的有()个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A.4B.3C.2D.15.若|m ﹣2|+(n +3)2=0,则m ﹣的值为()A.﹣5B.﹣1C.1D.56.如图是嘉淇同学的练习题,他最后得分是()A.20分B.15分C.10分D.5分6.如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b ->;④||||0a b -<,⑤220a b -<.其中正确的有()A.1个B.2个C.3个D.4个8.如图是一个数值转换机,若输入x 的值是1-,则输出的结果y 为()A.7B.8C.10D.129.观察1211-=,2213-=,3217-=,42115-=,52131-=,⋯,归纳各计算结果中的个位数字的规律,猜测202221-的个位数字是()A.1B.3C.7D.510.计算1111111111131422363524⎡⎤⎛⎫⎛⎫-+÷÷-⨯+-÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为()A.2514B.2514-C.114D.114-二、填空题(本大题共6小题)11.-56____-67(填>,<,=)12.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13.数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14.若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+-+= ⎪⎝⎭.15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16.已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为.18.若x 是不等于1的实数,我们把11x-称为x 的差倒数,如2的差倒数是1112=--,-1的差倒数为()11112=--,现已知113x =-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x =.三、解答题19.把下列各数填在相应的括号里:﹣8,0.275,227,0,﹣1.04,﹣(﹣3),﹣13,|﹣2|正数集合{…}负整数集合{…}分数集合{…}负数集合{…}.20画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5-,0,-2,-(-4),-3.5,321.(1)(-534)+(+237)+(-114)-(-47)(2)()155********⎛⎫-+-⨯-⎪⎝⎭(3)-14+14×[2×(-6)-(-4)2](4)(-2)3×(-34)+30÷(-5)-│-3│22.已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值..23.已知x 是最小正整数,y ,z 是有理数,且有|y﹣2|+|z+3|=0,计算:(1)求x,y,z 的值.(2)求3x﹢y﹣z 的值.24.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车依先后次序记录如下:(单位:km)+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为;(2)如果点P 到点M 、点N 的距离相等,那么x 的值是:;(3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参考解答:一、选择题1.D.2.C 3.D4.C5.D6.B7.D8.A .9.B.10..C 二、填空题11.>12.-3分13.1或-714.015.-2或216.m <﹣n <n <﹣m 17.990018.4三、解答题19.解:正数集合{0.275,227,()3--,2-…};负整数集合{8-…};分数集合{0.275,227, 1.04-,13-…};负数集合{8-, 1.04-,13-…}.20解:()2.5 2.5,44,-=--= 在数轴上表示各数如下:∴ 3.5-<2-<0< 2.5-<3<()4--21.解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦734=-+=-(2)()155********⎛⎫-+-⨯-⎪⎝⎭()()()()15573636363629612=⨯--⨯-+---182030217=-+-+=-(3)-14+14×[2×(-6)-(-4)2]()1112164=-+⨯--()178=-+-=-(4)(-2)3×(-34)+30÷(-5)-│-3│()38634⎛⎫=-⨯-+-- ⎪⎝⎭6633=--=-22.解: a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯--+⨯=++=或原式=()()2201314130⨯---+⨯=-++=.23.解:(1)∵x 是最小正整数∴x=1∵|y﹣2|≥0,|z+3|≥0,且|y﹣2|+|z+3|=0∴|y﹣2|=0,|z+3|=0∴y﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x﹢y﹣z=3×1+2-(-3)=3+2+3=8.24.解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+-⨯=(元),答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册

第一章综合素质评价七年级数学上(R版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A.+30元B.-50元 C.-30元D.+50元2.-12的相反数是( )A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A.液态氧B.液态氢 C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )A B C D7.下列说法中,错误的是( )A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是( )A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715 -|13|;(2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 .三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}.18.(6分)化简下列各数:(1)-(-68); (2)-(+0.75); (3)-[-(-23)].19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C( , ),B→C( , ),C→D ( , );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)<14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5;当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。
人教版七年级数学有理数全章测试含答案

第一章 有理數 全章測試班級: 姓名: 學號: 分數一、選擇題(每題3分,共30分)1.有理數﹣2的相反數是( )A .2B .﹣2C .D .﹣2.6的絕對值是( )A .6B .﹣6C .D .﹣ 3.在﹣,0,,﹣1這四個數中,最小的數是( )A .﹣B .0C .D .﹣14.一個數和它的倒數相等,則這個數是( )A .1B .1-C .±1D .±1和05.下列各式中正確的是( )A .22)2(2-=B .33)3(3-=C .22)2( 2-=-D .|3| 333=- 6.下列說法正確的是( )A .一個數的絕對值一定比0大B .一個數的相反數一定比它本身小C .絕對值等於它本身的數一定是正數D .最小的正整數是17.有理數-32,(-3)2,|-33|,13-按從小到大的順序排列是( )A .13-<-32<(-3)2<|-33| B .|-33|<-32<13-<(-3)2C .-32<13-<(-3)2<|-33| D .13-<-32<|-33|<(-3)2 8. 有理數a , b 在數軸上的對應點如圖所示,則下麵式子中正確的是( )b <0<a ; |b | < |a |;●ab >0;❍a -b >a +b .A . B . ❍C . ●D .●❍9.若x 的相反數是3,︱y ︱=5,則x +y 的值為( )A .-8B . 2C . 8或-2D .-8或210.若a a =-,則有理數a 在數軸上的對應點一定在( ).A. 原點左側B.原點或原點左側C. 原點右側D. 原點或原點右側二、填空題(每題3分,共30分)11.比較大小 32- 76-. 12.A 、B 兩地相距6987000m ,用科學記數法表示為_____________m .13. 數軸上表示數-5和表示數-14的兩點之間的距離是_____________.14.在數軸上,若點P 表示-2,則距P 點3個單位長的點表示的數是_____________.15.在數軸上表示數a 的點到原點的距離為3,則a -3=_____________.16.絕對值不大於2的所有整數為____ ______.17.若a <0,b >0 ,且| a |>| b | ,則a+b ________0. (填“<”或“>”“=”)18.有理數b 在數軸的位置在-3和-2之間,則|b+2|=_____________..19.若m n n m -=-,且4m =,3n =,則m +n =_____________.20.(1)設a <0,b >0,且a b >,用“<”號把a 、-a 、b 、-b 連接起來為 .(2)設a <0,b >0,且a +b >0,用“<”號把a 、-a 、b 、-b 連接起來為 .(3)設ab <0,a +b <0,且a <0,用“<”號把a 、-a 、b 、-b 連接起來為 .三、計算題(每題4分,共32分)21.計算(1).5)213(438)414()5.6(++-+--- (2).25.221341221+--(3) .1623()(10)()273-⨯---÷- (4).314322-⨯-+--()()().(5).)61163245(481+-⨯-- (6).12111()()369364-÷-+-+(7).2342(3)()(2)3⎡⎤---⨯---⎢⎥⎣⎦ (8)..22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦四、解答題(每題4分,共8分)22.計程車司機小張某天下午的運營是在一條東西走向的大道上。
人教版初中数学七年级上册第一章《有理数》综合能力检测题含答案

人教版初中数学七年级上册第一章《有理数》综合能力检测题一、选择题1.-2019的相反数是( )A.-2019B.2019C.-20191D. 20191 2.一个数的倒数等于它本身的数是( )A.1B.-1C.±1D.03.如果两个数的绝对值相等,则这两个数( )A.互为相反数 B .相等 C.积为0 D.互为相反数或相等4.下列说法中正确的是( )A.一个数前面加上“-”号,这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数又不是负数5.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)36.大于-2019而小于2020的所有整数的和是( )A.-2019B.-2018C.2019D.20207.当n 为正整数时,(-1)2n +1-(-1)2n 的值是( )A.0B.2C.-2D.2,或-28.定义a ∨b 表示a 、b 两数中较大的一个,a ∧b 表示a 、b 两数中较小的一个,则(50∨52)∨(49∧51)的结果是( )A.50B.52C.49D.519.某人用1000元购进一批货物,第二天售出,获利110,过几天又以900元购进一批货物,但这一次亏了10%,这样,他在这两次交易中( )A.不盈不亏B.盈10元C.亏10元D.不能确定10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32019的末位数字是( )A.3B.9C.7D.1二、填空题11.绝对值最小的有理数是_____,最小的正整数是_____.12.写出与-32异号的两个有理数:_____.13.比7大-7的数是_____.14.最小的自然数与最大的负整数的差是_____.15.不为零的两数成互为相反数,则它们的商是_____.16.绝对值小于π的所有整数有_____个,其积为_____.17.在数轴上距2.5有3.5个单位长度的点所表示的数是_____.18.19.一外地民工10天的收支情况如下(收入为正):30元,-17元,23元,-15元,-3 元,27元,45元,-10元,-8元,20元.如果他原来有钱60元,则现在他有_____元钱.20.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第4次捏合后可拉出_____根细面条;第_____次捏合后可拉出256根细面条.三、解答题21.计算:(1)-6+213.(2)(712-56+1)÷(-124). 22.某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1等等,依此类推,上午7:45•应记为多少?23.一天美美和丽丽利用温差来测量山峰的高度.美美在山脚测得的温度是4℃,丽丽此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.6℃,问这个山峰有多高?24.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:992122×(-11). 不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上: 解法一:原式=-219922×11=-2418922=-109912. 解法二:原式=(99+2122)×(-11)=99×(-11)+ 2122×(-11)=-109912. 解法三:原式=(100-122)×(-11)=100×(-11)+122×11=-109912. 对这三种解法,大家议论纷纷,你认为哪种方法最好?说说你的理由,通过对本题的求解,你有何启发?25.若定义一种新的运算为a *b =ab ÷(1-ab ),计算[(3*2)]*16. 26.写出一个三位数,它的各个数位上的数字都不相等,如637,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数.对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,你发现了什么?请写出你的探索过程.27.任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15 873,你发现了什么规律?能试着解释一下理由吗?28.某一出租车一天下午以文昌阁为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-5,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车在文昌阁的什么方向?离文昌阁多远?(2)若每公里的价格为2.4元,司机一个下午的营业额是多少?参考答案:一、1.B.点拨:负数的相反数是正数;2.C.点拨:1的倒数等于1,-1的倒数等于-1;3.D.点拨:非负数的绝对值等于它的本身,负数的绝对值等于它的相反数;4.D.点拨:A、B、C都应忽视了0;5.A.点拨:(-2)7=-27,-32=-9≠(-3)2=9,-3×23=-24≠-32×2=-18,-(-3)2=-9≠-(-2)3=-8;6.C.点拨:-2018+(-2017) +(-2016) +…+2016+2017+2018+2019=2019;7.C.点拨:因为(-1)2n+1=-1,(-1)2n=1,所以(-1)2n+1-(-1)2n=-1-1=2;8.B.点拨:由新定义,得(50∨52)∨(49∧51)=52∨49=52;9.B.点拨:1000×110-900×10%=10;10.C.点拨:末位数字依次以3、9、7、1循环,而2019÷4=502…3,即末位数字是7.二、11.0、1;12.答案不惟一,所有正数都可,如,2、9.等等;13.0.点拨:7+(-7)=0;14.1.点拨:最小的自然数是0,最大的负整数是-1,其差为0-(-1)=1;15.-1.点拨:取具体数值验证;16.7、0.点拨:绝对值小于π的所有整数有-3、-2、-1、0、1、2、3,其和为(-3)+(-2)+(-1)+0+1+2+3=0;17.-1和6.点拨:在2.5的左边,且与之相距3.5个单位长度的点是-1,在2.5的右边,且与之相距3.5个单位长度的点是6;18.日,一.点拨:星期一的温差=11℃-2℃=9℃,星期二的温差=12℃-1℃=11℃,星期三的温差=11℃-0℃=11℃,星期四的温差=9℃-(-1)℃=10℃,星期五的温差=7℃-(-4)℃=11℃,星期六的温差=5℃-(-5)℃=10℃,星期日的温差=7℃-(-5)℃=12℃,显然,星期日的温差最大,星期一的温差最小;19.152.点拨:60+30+(-17)+23+(-15)+(-3)+27+45+(-10)+(-8)+20=152;20.16、8.点拨:第在次捏合后可拉出21根细面条,第2次捏合后可拉出22根细面条,第3次捏合后可拉出23根细面条,第4次捏合后可拉出24根细面条,…,第n次捏合后可拉出2n根细面条,所以第4次捏合后可拉出24=16根细面条,若拉出256根细面条,则有2n=256,即2n=28,所以n=8.三、21.(1)原式=-183+73=-323.(2)原式=(712-56+1)×(-24)=(712-56+1)×(-24)=712×(-24)-56×(-24) +1×(-24)=-14+20-24=-18.22.以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3.23.从山脚到山顶温度降低了4-(-2)=6(℃).因为每升高100米平均降低0.6℃,由6÷0.6=10,可知从山脚到山顶共升高了10个100米,所以山高为10×100=2500(米).即综合式子是:[4-(-2)]÷0.6×100=1000(米),即山高为1000米.24.解法二与解法三;解法二与解法三巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.25.因为a*b=ab÷(1-ab),所以[(3*2)]*16=3×2÷(1-3×2)*16=(-65)*16=(-65)×16÷[1-(-65)×16]=(-15)÷65=-15×56=-16.26.若以637为例进行尝试:637→763-367=396→963-369=594→954-459=495→954-459=495,最后结果固定为495,若再用258进行尝试:258→852-258=594→954-459=495→954-459=495.经过多次尝试后发现,总能得到495这结果,并固定在这一结果上,似乎掉进了一个“黑洞”.点拨:这是数学上的“黑洞”问题,有兴趣的同学可以尝试探索四位数、五位数是否也存在同样的“黑洞”,自己发现数学中某些数字的神奇作用,感受数学的无穷魅力.27.取数字3,乘7,再将结果乘15 873,得(3×7)×15 873=21•×15 •873=333 333;取数字5,乘7,再将结果乘15 873,得(5×7)×15 873=35×15 •873=555555;取数字8,乘7,再将结果乘15 873,得(8×7)×15 873=56×15 873=888 888.由此,通过观察发现,任选1,2,3,…,9中的一个数字n ,将这个数乘7,再将结果乘15 873,均得到一个6位数,每位上的数字相同,都是n ,即(n ×7)×15 873=nnn nnn .因为7×15873=111 111,所以(n ×7)×15 873=n ×(7×15 873)=n ×111 111=nnn nnn .点拨:通过探索规律可以发现,数学真奇妙,数学中存在一些具有特殊作用的数字,如本题7与15 873的积就具有神奇的“复印”功能,你能将任意一个1,2,3,…,9中的数字连续“复印”6次,你还能发现其他具有“特异功能”的数字吗?28.(1)因为+9+(-3)+(-5)+4+(-8)+6+(-5)+(-6)+(-4)+10=-2,所以出租车在文昌阁的西边,距文昌阁2千米.(2)因为+9+3-+5-+4+8-+6+5-+6-+4-+10=60,所以60×2.4=144,即司机一个下午的营业额是144元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数全章综合测试
A . a>b>0
B . b> c > a
C . b > a> c
D . c> a> b
.若
x = 2, y = 3,则x + y 的值为 (
)
D .以上都不对
二、填空题10x3=30分
1. 2. 3. 4. 5.
6. 7. 8. 9.
10 11 12 13
一、选择题:13x2=26分 下列说法正确的是(
) B .不是正数的数一定是负数
C. 0不是最小的有理数
D.正有理数包括整数和分数
1 的相反数的绝对值是( )
2
1
1
A . —
B . 2
C. 一 2
D . 一
2
2
有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是
A •所有的整数都是正数 A. a> b B. a < b C. ab>0 在数轴上,原点及原点右边的点表示的数是( a D. > 0 b ) A .正数
B .负数 C.非正数 D .非负数 下列各组数中,不是互为相反意义的量的是 ( ) A .收入200元与支出20元 B.上升10米和下降7米 C.超过0.05mm 与不足0.03m D .增大2岁与减少2升 下列说法正确的是 ( ) A . — a 一定是负数; B . a 定是正数;
C . a
一定不是负数; D . —
a 一定是负数
如果一个数的平方等于它的倒数.那么这个数一定是 ( ) A . 0 B . 1 C. — 1 D . ± 1 如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )
A .互为相反数但不等于零 B.互为倒数 C .有一个等于零 D.都等于零 1 若0< m< 1,m 、m 2
、 的大小关系是 ( m
2 1 2 1 A . m< m < B . m < m< C . m m
1 < m< m
2 < m 2 < m m .4604608取近似值,保留三个有效数字,结果是 ( ) A . 4.60 X 106
B . 4600000
C . 4.61 X 106
D . 4.605 X 106 .下列各项判断正确的是 ( ) A . a+ b 一定大于 a — b B.若一ab< 0,贝U a 、b 异号 C.若 a 3= b 3,贝U a= b .若a=— 2X 32,b=(— 2X 3) 2, c=—( 2X 4) 2,则下列大小关系中正确的是 (
)
D .若 a 2= b 2,则 a= b
1 •某地气温不稳定,开始是 6C, —会儿升高4'C,再过一会儿又下降 1「C ,这时气温是 __________ 。
1
2.—个数的相反数的倒数是一
1 -,这个数是 ______________ 。
3
3•数轴上到原点的距离是 3个单位长度的点表示的数是 ________________ 。
4.- 2的4次幂是 ____________ , 144是 ____________ 的平方数。
5.若 _a = 5,_则a= ________________。
6.若ab>0, bc v 0,_则ac __________ 0.
7.绝对值小于5的所有的整数的和 ____________ 。
8用科学记数法表示 13040000应记作 ____________________ 。
若保留三个有效数字,则近似值为 ________________ 。
9•若
X —1 +( y + 2) 2
= 0, ■则 x -y = _______ 。
10 •甲数的绝对值是乙数绝对值的 2倍,在数轴上甲、乙两数在原点的同侧,并且对应两点的距离等于 10,这两个数为 ______
三、解答题
1 •列式计算:3x2=6分
(1)- 4、一 5、+ 7三个数的和比这三个数绝对值的和小多少?
7 3
,一三的和,所得的差是多少?
8 4
2.计算题:4x4=16分
(1) (- 12)- 4X(-6)- 2;
2, b = - 3, c 是最大的负整数,求 a+ b- c 的值。
4分
5
(2)从一I 中减去一 ■,
12
(2) 一2-12 (----)
3 4 2
5
(3)(——)X(- 4) 2-0.25 X(- 5)X(- 4) 3 8
6
2 1
3 1 2 (4) -1
6
-(0.5
) [-2-(-3)3]- -0.52
3 3 8
3.若
4.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,
那么李老师所行路程依次为(单位:百米) :+ 12,— 10,+ 10,— 8,— 6, - 5,— 3.
(1)求李老师最后是否回到岀发点 A ? ( 2)李老师离开岀发点 A最远时有多少千米?
(3)李老师共走了多少千米?6分
5•在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所•已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东 500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.
(1)在数轴上表示四家公共场所的位置.
(2)列式计算青少年宫与商场之间的距离. 6分
+ ( b+1) 4= 0,求(a+ b) (a2— ab+b2)的值.6 分
6.已知。