由弯矩图画剪力图

合集下载

剪力图和弯矩图(最全面)-剪刀图弯矩图特征 PPT

剪力图和弯矩图(最全面)-剪刀图弯矩图特征 PPT

P q
Pa 2
qa2 2
A
BM
x x
+ P
=
=+
A
B M1
Pa 2
+
+
q
qa 2
A
B M2
2 +
x
三、对称性与反对称性的应用: 对称结构在对称载荷作用下,Q图反对称,M图对称;对称
结构在反对称载荷作用下,Q图对称,M图反对称。
[例8] 作下列图示梁的内力图。
P
PL
Q
x
0L 0.5P L 0.5P L
q AB
RA qa Q qa/2
+ – qa/2
qa2 CD
RD
– qa/2
M
qa2/2
+

3qa2/8 qa2/2
qa2/2
解:求支反力 RAq2a; RDq2a
左端点A:
Q qa; M 0 2
x
B点左: Qqa;M1qa2
2
2
B点右: Q qa;M1qa2
2
2
C点左: Qqa;M1qa2
M
– N图
P1a
M图 P1a+ P2 l
二、曲杆:轴线为曲线的杆件。 内力情况及绘制方法与平面刚架相同。
[例11] 已知:如图所示,P及R 。试绘制Q、M、N 图。
解:建立极坐标,O为极点,OB
R
P
极轴,q表示截面m–m的位置。
A
q
B
O
x
q q qq M ( ) P P ( R x R c ) o P ( 1 c s R ) ( o 0 s )
q q q Q () P 1 P si( n 0)

工程力学弯曲强度1(剪力图与弯矩图

工程力学弯曲强度1(剪力图与弯矩图

05 剪力图与弯矩图的计算与分析
CHAPTER
剪力与弯矩的计算方法
要点一
剪力计算
根据受力分析,通过力的平衡原理计算剪力。在梁的截面 上,剪力方向与梁的轴线垂直,大小等于通过截面形心的 剪切面上的剪力。
要点二
弯矩计算
弯矩是描述梁弯曲变形的量,其计算方法包括截面法、力 矩分配法等。弯矩的计算需要考虑梁的长度、截面尺寸、 材料属性以及外力分布等因素。
在工程实践中,许多结构和设备都需 要承受弯曲负荷,如桥梁、建筑、车 辆等,因此弯曲强度的研究具有重要 意义。
弯曲强度的基本原理
弯曲强度的基本原理包括剪力和弯矩 的分析。剪力是指在弯曲过程中垂直 于轴线的力,而弯矩则是指弯曲过程 中产生的力矩。
剪力和弯矩的分析是确定结构在弯曲 负荷下的应力和变形的重要手段,也 是进行结构设计和优化的基础。
谢谢
THANKS
剪力图与弯矩图的受力分析
剪力图
通过绘制剪力随梁长度变化的曲线图,可以直观地表示 出梁在不同位置受到的剪力大小和方向。根据剪力图, 可以分析梁在受力过程中的稳定性以及剪切破坏的可能 性。
弯矩图
弯矩图表示弯矩随梁长度变化的曲线图,可以用来分析 梁在不同位置的弯曲变形程度以及弯曲应力分布情况。 通过弯矩图,可以判断梁在受力过程中是否会发生弯曲 失稳或弯曲破坏。
CHAPTER
剪力图与弯矩图在结构设计中的应用
结构设计是工程中非常重要的环节,剪力图 与弯矩图是进行结构设计的关键工具。通过 分析剪力和弯矩的分布和大小,可以确定结 构的受力情况和变形趋势,从而优化结构设 计,提高结构的稳定性和安全性。
在进行结构设计时,需要综合考虑多种因素 ,如载荷、材料属性、连接方式等。剪力图 与弯矩图可以帮助工程师更好地理解和分析

剪力图与弯矩图的画法_图文_图文

剪力图与弯矩图的画法_图文_图文
剪力图与弯矩图的画法_图文_图文.ppt
dM(x) = Q(x)
dx
dQ(x) = q(x)
dx
2
d M(x)
2
= q(x)
dx
公式的几何意义
剪力图上某点处的切线斜率等于该点 处荷载集度的大小 弯矩图上某点处的切线斜率等于该点 处剪力的大小。
梁上最大弯矩可能发生在 Q(x) = 0 的截面上 或梁段 边界的截面上。最大剪力 发生在全梁或梁段的界面。
解: 在AC段中 q=0 ,且 QA=RA
q
A
B
CE
D
0.2
1.6
1
2
q
在AC段中 Qc = 80KN,剪力图
A
B
CE
D
为矩形,MA =0
0.2
1.6
1
2
80KN
(b)
+
80KN
q
在CE段中,剪力图为三角形
A
B
CE
D
QC=80KN,MC=16KN.m
0.2
1.6
1
2
80KN
(b)
+
80KN
81KN
CD段: 向右下方的斜直线
DB段:水平直线
最大剪力发生在 CD 和 DB 段的任一横截面上。
1
A C
0.2
1
q
E
1.6 2
2
B D
80KN
+
80KN
MB = 0
全梁的最大2
1
q
E
1.6 2
2
B D
16 16
+
单位:KN.m
例 作梁的内力图
A

剪力图和弯矩图教程

剪力图和弯矩图教程

(0<x<a)
M(x)FAyxFl b (0≤x≤a)
CB段:
F Q(x)F Ay FF l bFF l a (a<x<l) M (x)F Ax yF (xa )F l (la x) (0≤x≤l)
3.作剪力图和弯矩图
剪力图和弯矩图教程
例题4 简支梁受集中力偶作用,如图示,试画梁的剪力图和弯矩图。
3.作剪应力图和弯矩图
最大剪力发生在梁端,其值为
F 1ql
2 Qmax
最大弯矩发生在跨中,它的剪数力图值和弯为矩图M教程max
1 8
ql
2
例题3 简支梁受集中作用如图示,作此梁的剪力图和弯矩图。
解:1.求约束反力
FAyFl b,FByFl a 2.列剪力方程和弯矩方程 AC段:
FQ(x)
FA
y
Fb l
剪力图和弯矩图教程
一、根据内力方程作内力图
剪力方程——表示横截面上剪力FQ随横截面位置x而变化的函数关系; 弯矩方程——表示横截面上弯矩M随横截面位置x而变化的函数关系。
例题1 图所示,悬臂梁受集中力F作用,试作此 梁的剪力图和弯矩图
解: 1.列剪力方程和弯矩方程
FQ(x)F (0<x<l ) M(x)Fx (0≤x<l)
d2M(x)
当q(x)朝上时, dx2 q(x)0 M图为上凸下凹。
剪力图和弯矩图教程
(3) 在集中力作用处,M图发生转折。如果集中力向下,则M 图向下转折;反之,则向上转折。
(4) 在集中力偶作用处,M图产生突变,顺时针方向的集中力偶 使突变方向由上而下;反之,由下向上。突变的数值等于该集 中力偶矩的大小。 3. 弯矩图与剪力图的关系
x

剪力图和弯矩图方法

剪力图和弯矩图方法

剪力图和弯矩图方法
剪力图和弯矩图是结构力学中常用的分析工具,用于分析和设计结构的受力情况。

以下是剪力图和弯矩图的制作方法:
剪力图:
1. 绘制结构图:首先画出结构的几何形状和受力情况的示意图。

2. 确定剪力方向:根据结构受力情况,确定每个截面上的剪力方向,通常用箭头表示。

3. 确定剪力大小:根据结构受力平衡条件,确定每个截面上的剪力大小。

4. 画出剪力图:根据确定的剪力方向和大小,在结构示意图上相应位置上画出对应的剪力图。

弯矩图:
1. 绘制结构图:首先画出结构的几何形状和受力情况的示意图。

2. 确定截面位置:根据需要绘制弯矩图的位置,确定绘制弯矩图的截面位置。

3. 确定剪力大小:根据结构受力平衡条件,确定每个截面上的截面剪力大小。

4. 确定截面抵抗矩:根据截面形状,计算每个截面上的截面抵抗矩。

5. 计算弯矩:根据截面抵抗矩和截面剪力大小,计算每个截面上的弯矩大小。

6. 画出弯矩图:根据计算得到的弯矩大小,在结构示意图上相应位置上画出对应的弯矩图。

在绘制剪力图和弯矩图时,需要考虑结构的几何形状、支座条件、荷载情况等因
素,同时应满足受力平衡条件和连续性要求。

这些图形分析的结果可以帮助工程师评估结构的受力情况,进行结构设计和优化。

快速绘制梁的剪力图和弯矩图

快速绘制梁的剪力图和弯矩图
2、分段建立方 A程C段:
CB段: F
3、依方程而作图
简支梁受集中力偶作用,如图示,试画梁的剪力图和 弯矩图。 解:1.求约束反力
2.列剪应力方程和弯矩方程 AC段: V
CB段:V
3、依方程而作图
荷载图、剪力图、弯矩图的规律
从左往右做图
在无荷载作用的梁段:剪力图为水平线,弯矩图为斜直线, 斜率的大小等于对应梁段上剪力的大小。V>0时向右下方斜斜, V<0时向右上方倾斜,V=0时为水平线。 在均布荷载作用的梁段上:剪力图为斜直线,斜率等于荷载 集度,q<0( )向右下方倾斜,反之,向右上方倾斜。 弯矩图为二次抛物线,q<0,向下凸起;q>0( )向上凸。 遇到集中荷载:剪力图突变,突变方向与集中荷载方向相同, 突变大小等于集中荷载的大小。弯矩图出现转折,转折方向与 集中力的方向相反。 遇到集中力偶:剪力图不变,弯矩图突变,突变方向由力偶的 转向决定,逆上顺下。突变大小等于力偶矩的大小。 极值弯矩:集中力作用截面、集中力偶截面或弯矩为零的截面。
画剪力图和弯矩图时,一定要将梁正确分段, 分段建立方程,依方程而作图
简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。
解:1.求约束反力 由对称关系,可得:
2、建立内力方程
Fs
RA
qx
1 2
ql
qx
(0<x<l)
3、依方程作剪力图和弯矩图
载作用,如图示, 作此梁的剪力图和弯矩图。 1.求约束反 力
vv vv
vv v v
v
利用上述规律:
1、可以检查剪力图和弯矩图是否正确。 2、可以快速的绘制剪力图和弯矩图,步骤如下: (1)将梁正确分段 (2)根据各段梁上的荷载情况,判断剪力图和弯矩图的 形状

剪力以及弯矩剪力图以及弯矩图

剪力以及弯矩剪力图以及弯矩图

剪力图和弯矩图在工程管理中的应用
结构设计:用于计 算结构受力确定结 构尺寸和材料
施工管理:用于 指导施工确保施 工质量和安全
维护管理:用于 评估结构状态制 定维护计划
优化设计:用于 优化结构设计降 低成本和能耗
剪力图和弯矩图的注意 事项
绘制剪力图和弯矩图时应注意的事项
确保数据准确无误 注意单位换算确保单位一致 绘制过程中注意比例尺和坐标轴的设置 绘制完成后检查图例、标题、标注等是否清晰明确
添加副标题
剪力和弯矩剪力图以及弯矩 图
汇报人:
目录
CONTENTS
01 添加目录标题
02 剪力和弯矩的基本 概念
03 剪力图和弯矩图的 绘制
04 剪力图和弯矩图的 解读
05 剪力图和弯矩图的 应用
06 剪力图和弯矩图的 注意事项
添加章节标题
剪力和弯矩的基本概念
剪力和弯矩的定义
剪力:作用在物体表面上的力使物体发生剪切变形 弯矩:作用在物体表面上的力使物体发生弯曲变形 剪力图:表示剪力在物体表面上的分布情况 弯矩图:表示弯矩在物体表面上的分布情况
剪力和弯矩的计算方法
剪力:作用在物体上的力使物体发生剪切变形 弯矩:作用在物体上的力使物体发生弯曲变形 剪力计算方法:根据力的平衡原理利用剪力公式进行计算 弯矩计算方法:根据力的平衡原理利用弯矩公式进行计算
剪力和弯矩的单位和符号
剪力:单位为牛顿(N) 符号为F
弯矩:单位为牛顿·米 (N·m)符号为M
证结构安全
剪力图和弯矩图在施工中的应用
确定结构受力情况: 通过剪力图和弯矩图 可以了解结构的受力 情况为施工提供依据。
优化施工方案:根据 剪力图和弯矩图可以 优化施工方案提高施 工效率和质量。

剪力图弯矩图快速画法口诀

剪力图弯矩图快速画法口诀

剪力图弯矩图快速画法口诀剪力图快速画法口诀外伸端,自由端,没有P力作零点。

无力梁段水平线,集中力偶同样看,均布荷载对斜线,小q正负定增减,集中力处有突变,左顺右逆画竖线,增多少?降多少?集中横力作参考。

弯矩图快速画法口诀弯矩图,较复杂,对照剪图来画它,自由端,铰支端,没有力偶作零点。

剪图水平弯图斜,剪力正负定增减,天上下雨池水满,向上射出弓上箭。

剪图轴线交叉点,弯矩图上极值点。

均载边界无横力,光滑吻接无痕迹。

集中力处有转折,顺着外力折个尖。

集中力偶有突变,反着力偶符号弯,升多少?降多少?集中力偶作参考。

弯矩图形已画完,注意极大极小点,数值符号截面点,三大要素标齐全。

7.2.1 截面法求内力问题:梁在发生平面弯曲变形时,横截面上会产生何种内力素?在横截面上会有几种内力素同时存在?如何求出这些内力素?例:欲求图示简支梁任意截面1-1上的内力。

1.截开:在1-1截面处将梁截分为左、右两部分,取左半部分为研究对象。

2.代替:在左半段的1-1截面处添画内力、,(由平衡解释)代替右半部分对其作用。

3.平衡:整个梁是平衡的,截开后的每一部分也应平衡。

由得如取右半段为研究对象,同样可以求得截面1-1上的内力和,但左、右半段求得的及数值相等,方向(或转向)相反。

7.2.2 剪力和弯矩是横截面上法向分布内力分量的合力偶矩,因在纵向对称面内且与截面垂直,故称为截面1-1的弯矩。

由于取左半段与取右半段所得剪力和弯矩的方向(或转向)相反,为使无论取左半段或取右半段所得剪力和弯矩的正负符号相同,必须对剪力和弯矩的正负符号做适当规定。

剪力的正负:使微段梁产生左侧截面向上、右侧截面向下的剪力为正,反之为负。

弯矩的正负:使微段梁产生上凹下凸弯曲变形的弯矩为正,反之为负。

归纳剪力和弯矩的计算公式:(截面上的弯矩等于截面一侧所有外力对截面形心取力矩的代数和。

)公式中外力和外力矩的正负规定:剪力公式中外力的正负规定:截面左段梁上向上作用的横向外力或右段梁上向下作用的横向外力在该截面上产生的剪力为正,反之为负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.4 根据弯矩图作剪力图
1.1.4 根据弯矩图作剪力图
利用微分关系,可方便地根据弯矩图作剪力图。

(一)当M图为直线变化时
以图1-4a所示跨中作用集中荷载的简支梁为例,加以说明。

其M图和图分别示于图1-4b和图1-4c。

图1-4
在图1-4b中,循惯例,选取直角坐标系。

当我们分区段考察M图形与图形的关系时,若沿轴的指向,由左向右看,则将会看到如下客观规律:
第一,关于的符号:AC段,M“下坡”(M为增函数),则其相应的为正(M的一阶导数>0);CB段,M“上坡”(M为减函数),则其相应的为负(M的一阶导数<0)。

第二,关于的大小:可由M图形的“坡度”(斜率)确定,即,其中,为该区段长度,为图中该区段两端点弯矩值的高差。

而且,区段内图形“坡度”愈徒,剪力值愈大;
“坡度”愈缓,剪力值愈小;“坡度”为零(M图为水平直线),则剪力值亦为零(无剪力)。

二相邻区段的M图形“坡度”相同(当有集有力偶作用时),则其剪力值亦相同。

例如,本例中,AC段的剪力为
而CB段的剪力为
这一规律同样适用于竖杆或斜杆,只是须注意应沿杆轴“由左向右看”这一前提条件。

(二)当M图为二次抛物线变化时
根据M与的微分关系可判定,该图为斜直线。

因此,只须按照“一求两端剪力,二引直线相
连”的步骤,即可绘出该区段的图。

图1-5是根据已知弯矩图(图1-5a)绘出相应剪力轮廊图(图1-5b)的一个例子。

图1-5。

相关文档
最新文档