剪力图和弯矩图(史上最全面).
梁弯矩图梁内力图(剪力图和弯矩图)

注:表中的K为轴向力变形影响的修正系数。
(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中 Ic——拱顶截面惯性矩;
Ac——拱顶截面面积;
A——拱上任意点截面面积。
当为矩形等宽度实腹式变截面拱时,公式I=Ic/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
简单载荷梁力图(剪力图与弯矩图)
梁的简图
剪力Fs图
弯矩M图
1
2
3
4
5
6
7
8
9
10
ቤተ መጻሕፍቲ ባይዱ注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁
表2 各种载荷下剪力图与弯矩图的特征
某一段梁上的外力情况
剪力图的特征
弯矩图的特征
无载荷
水平直线
斜直线
集中力
突变
转折
集中力偶
无变化
突变
均布载荷
斜直线
抛物线
零点
极值
表3 各种约束类型对应的边界条件
2)三跨等跨梁的力和挠度系数 表2-12
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
3)四跨等跨连续梁力和挠度系数 表2-13
注:同三跨等跨连续梁。
4)五跨等跨连续梁力和挠度系数 表2-14
注:同三跨等跨连续梁。
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
[例1] 已知二跨等跨梁l=5m,均布荷载q=11.76kN/m,每跨各有一集中荷载F=29.4kN,求中间支座的最大弯矩和剪力。
剪力图与弯矩图的画法_图文_图文

dM(x) = Q(x)
dx
dQ(x) = q(x)
dx
2
d M(x)
2
= q(x)
dx
公式的几何意义
剪力图上某点处的切线斜率等于该点 处荷载集度的大小 弯矩图上某点处的切线斜率等于该点 处剪力的大小。
梁上最大弯矩可能发生在 Q(x) = 0 的截面上 或梁段 边界的截面上。最大剪力 发生在全梁或梁段的界面。
解: 在AC段中 q=0 ,且 QA=RA
q
A
B
CE
D
0.2
1.6
1
2
q
在AC段中 Qc = 80KN,剪力图
A
B
CE
D
为矩形,MA =0
0.2
1.6
1
2
80KN
(b)
+
80KN
q
在CE段中,剪力图为三角形
A
B
CE
D
QC=80KN,MC=16KN.m
0.2
1.6
1
2
80KN
(b)
+
80KN
81KN
CD段: 向右下方的斜直线
DB段:水平直线
最大剪力发生在 CD 和 DB 段的任一横截面上。
1
A C
0.2
1
q
E
1.6 2
2
B D
80KN
+
80KN
MB = 0
全梁的最大2
1
q
E
1.6 2
2
B D
16 16
+
单位:KN.m
例 作梁的内力图
A
梁弯矩图梁内力图(剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5 word范文word范文word范文word范文word范文word范文word范文.word 范文注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
剪力以及弯矩剪力图以及弯矩图

剪力图和弯矩图在工程管理中的应用
结构设计:用于计 算结构受力确定结 构尺寸和材料
施工管理:用于 指导施工确保施 工质量和安全
维护管理:用于 评估结构状态制 定维护计划
优化设计:用于 优化结构设计降 低成本和能耗
剪力图和弯矩图的注意 事项
绘制剪力图和弯矩图时应注意的事项
确保数据准确无误 注意单位换算确保单位一致 绘制过程中注意比例尺和坐标轴的设置 绘制完成后检查图例、标题、标注等是否清晰明确
添加副标题
剪力和弯矩剪力图以及弯矩 图
汇报人:
目录
CONTENTS
01 添加目录标题
02 剪力和弯矩的基本 概念
03 剪力图和弯矩图的 绘制
04 剪力图和弯矩图的 解读
05 剪力图和弯矩图的 应用
06 剪力图和弯矩图的 注意事项
添加章节标题
剪力和弯矩的基本概念
剪力和弯矩的定义
剪力:作用在物体表面上的力使物体发生剪切变形 弯矩:作用在物体表面上的力使物体发生弯曲变形 剪力图:表示剪力在物体表面上的分布情况 弯矩图:表示弯矩在物体表面上的分布情况
剪力和弯矩的计算方法
剪力:作用在物体上的力使物体发生剪切变形 弯矩:作用在物体上的力使物体发生弯曲变形 剪力计算方法:根据力的平衡原理利用剪力公式进行计算 弯矩计算方法:根据力的平衡原理利用弯矩公式进行计算
剪力和弯矩的单位和符号
剪力:单位为牛顿(N) 符号为F
弯矩:单位为牛顿·米 (N·m)符号为M
证结构安全
剪力图和弯矩图在施工中的应用
确定结构受力情况: 通过剪力图和弯矩图 可以了解结构的受力 情况为施工提供依据。
优化施工方案:根据 剪力图和弯矩图可以 优化施工方案提高施 工效率和质量。
剪力图和弯矩图(史上最全面)解析

三、 叠加原理: 多个载荷同时作用于结构而引起的内力等于每个载荷单
独作用于结构而引起的内力的代数和。
Q(P1P2 Pn) Q1(P1) Q2(P2) Qn(Pn)
M(P1P2 Pn) M1(P1) M2(P2) Mn(Pn)
M (P1P2 Pn) M1(P1) M2(P2) Mn(Pn)
适用条件:所求参数(内力、应力、位移)必然与荷载满 足线性关系。即在弹性限度内满足虎克定律。
27
二、材料力学构件小变形、线性范围内必遵守此原理 ——叠加方法
步骤: ①分别作出各项荷载单独作用下梁的弯矩图; ②将其相应的纵坐标叠加即可(注意:不是图形的简单
四、对称性与反对称性的应用: 对称结构在对称载荷作用下,Q图反对称,M图对称;对称
结构在反对称载荷作用下,Q图对称,M图反对称。
M 的驻点: Q 0 ; M 3 qa2 2
x
右端点: Q 0; M 3 qa2 2
22
[例5] 用简易作图法画下列各图示梁的内力图。AB=BC=CD=a
q AB
RA qa Q qa/2
+ – qa/2
qa2 CD
RD
– qa/2
M
qa2/2
+
–
3qa2/8 qa2/2
qa2/2
RB
Pa l
Y
0,
YA
P(l a) l
XA A YA
P B
P B
RB
11
②求内力——截面法
Y
0,
Q YA
P(l a) l
mC 0 , M YA x
m XA A
梁 弯矩图 梁 内力图 (剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
剪力图和弯矩图

梁的剪力方程
V=V (x)
梁的弯矩方程
M=M(x)
剪力图和弯矩图
以梁横截面沿梁轴线的位置为横坐标,以垂直 于梁轴线方向的剪力或弯矩为纵坐标,分别绘 制表示V (x)和M(x)的图线。这种图线分别称为 剪力图和弯矩图,简称V图和M图。绘图时一 般规定正号的剪力画在x轴的上侧,负号的剪 力画在x轴的下侧;正弯矩画在x轴下侧,负弯 矩画在x轴上侧,即把弯矩画在梁受拉的一侧。
画剪力图和弯矩图时,一定要将梁正确分段, 分段建立方程,依方程而作图
例题1 简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。
解:1.求约束反力 由对称关系,可得:
2、建立内力方程
V x
RA
qx
1 2
ql
qx
(0<x<l)
3、依方程作剪力图和弯矩图
Vmax=
1 ql 2
Mmax 1 ql 2 8
例2 简支梁受集中荷载作用,如图示, 作此梁的剪力图和弯矩图。
1.求约束反 力 2、分段建立方程 AC段: V
CB段: V
3、依方程而作图
例题3 简支梁受集中力偶作用,如图示,试画梁的剪 力图和弯矩图。 解:1.求约束反力
2.列剪应力方程和弯矩方程 AC段: V
CB段:V
3、依方程而作图
荷载图、剪力图、弯矩图的规律
(kN)
E
3
x=3.1m
3
2.2
(kN·m)
1.41 3.8
FB 3.8
CA和DB段:q=0,V图为水平线, M图为斜直线。
AD段:q<0, V 图为向下斜直线, M图为下凸抛物线。
2.作剪力图和弯矩图
由剪力图和弯矩图可知:
梁弯矩图梁内力图(剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
.\2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dQx qx dx
剪力图上某点处的切线斜率等
Q(x)
M(x)+d M(x)
于该点处荷载集度的大小。
18
mA(Fi ) 0 , 1 Q( x)dx q( x)(dx)2 M ( x) [M ( x) dM ( x)] 0 2 dM ( x) Q( x) dx
1 M2 q( x2 a)2 qLx2 2
图(c)
15
§4–3 剪力方程和弯矩方程 ·剪力图和弯矩图
1. 内力方程:内力与截面位置坐标(x)间的函数关系式。
Q Q ( x) M M ( x)
剪力方程
弯矩方程
2. 剪力图和弯矩图:
剪力图
弯矩图
Q Q( x) 的图线表示 M M ( x) 的图线表示
3. 支座简化
6
3. 支座简化 ①固定铰支座
2个约束,1个自由度。如:桥梁
下的固定支座,止推滚珠轴承等。 ②可动铰支座 1个约束,2个自由度。
如:桥梁下的辊轴支座,滚珠轴承等。
③固定端 3个约束,0个自由度。如:游泳池 的跳水板支座,木桩下端的支座等。 YA XA MA
7
4. 梁的三种基本形式 ①简支梁
17
§4–4 剪力、弯矩与分布荷载集度间的关系及应用
一、 剪力、弯矩与分布荷载间的关系 q(x)
对dx 段进行平衡分析,有:
Y 0 Q( x ) q( x )dx Q( x ) dQ( x ) 0
x y M ( x)
dx q(x) Q(x)+d Q(x) A dx
q( x )dx dQ( x )
1
第四章
弯曲内力
§4–1 平面弯曲的概念及梁的计算简图 §4–2 梁的剪力和弯矩 §4–3 剪力方程和弯矩方程 · 剪力图和弯矩图
§4–4 剪力、弯矩与分布荷载集度间的关系及应用
§4–5 按叠加原理作弯矩图 §4–6 平面刚架和曲杆的内力图 弯曲内力习题课
2
§4–1 平面弯曲的概念及梁的计算简图
13
二、例题
[例2]:求图(a)所示梁1--1、2--2截面处的内力。 q 2 解:截面法求内力。 qL 1 1--1截面处截取的分离体 1 a y qL A M1 x1 Q1 图(b) 2 b 如图(b)示。
x
图(a)
Y qL Q1 0 Q1 qL
mA( Fi ) qLx1 M1 0 M1 qLx1
X 0, XA 0 Pa mA 0 , RB l P(l a) Y 0 , YA l
11
②求内力——截面法
Y 0 , Q YA
P(l a) l
XA A
m
P
B
mC 0 , M YA x
剪力 ∴ 弯曲构件内力 弯矩 1. 弯矩:M 构件受弯时,横截面上其作 用面垂直于截面的内力偶矩。
弯矩图上某点处的切线斜率等于该点处剪力的大小。
y M ( x) Q(x) dx A M(x)+d M(x) q(x) 弯矩与荷载集度的关系是:
Q(x)+d Q(x)
dM 2( x) q( x) 2 dx
19
二、剪力、弯矩与外力间的关系 外 力 无外力段
q=0
均布载荷段
q>0 q<0
集中力
P C
16
[例2] 求下列各图示梁的内力方程并画出内力图。
MO
L
P
解:①求支反力
Q(x)
YO YO MO M(x)
YO P ; MO PL
x
②写出内力方程
P
Q(x)
Q( x ) YO P
x M ( x) x
–PL
M ( x ) YO x M O P( x L )
③根据方程画内力图
对称面但外力并不作用在对称面内,这种
弯曲则统称为非对称弯曲。
5 下面几章中,将以对称弯曲为主,讨论梁的应力和变形计算。
二、梁的计算简图
梁的支承条件与载荷情况一般都比较复杂,为了便于
分析计算,应进行必要的简化,抽象出计算简图。
1. 构件本身的简化 通常取梁的轴线来代替梁。 2. 载荷简化 作用于梁上的载荷(包括支座反力)可简化为三种类型: 集中力、集中力偶和分布载荷。
M — 集中力偶
q(x) — 分布力 ②悬臂梁 ③外伸梁
q — 均布力
P — 集中力
8
5. 静定梁与超静定梁
静定梁:由静力学方程可求出支反力,如上述三种基本
形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全 部支反力。
9
[例1]贮液罐如图示,罐长L=5m,内径 D=1m,壁厚t =10mm,
一、弯曲的概念 1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴 线变成了曲线,这种变形称为弯曲。 2. 梁:以弯曲变形为主的 构件通常称为梁。
3
3. 工程实例
4
4. 对称弯曲:
横截面对称的杆件发生弯曲变形后,轴线仍然和外力在同一平面内。 P
1
q
P
2
M
纵向对 称面
非对称弯曲—— 若梁不具有纵对称面,或者,梁虽具有纵
YA
m
x
RB
A
YA M
Q C Q C RB
12
M P
2. 剪力:Q
构件受弯时,横截面上其作用线平行于截面的内力。 3.内力的正负规定: ①剪力Q: 绕研究对象顺时针转为正剪力;反之为负。 Q(+) Q(+) Q(–) Q(–)
②弯矩M:使梁变成凹形的为正弯矩;使梁变成凸形的为负弯矩。 M(+) M(+) M(–) M(–)
14
2--2截面处截取的分离体如图(c) qL
Y qL Q2 q( x2 a ) 0
1
2
q
1 a
y qL x
2
b
Q2 q( x2 a L)
mB (Fi ) 0 , 1 2 qLx2 M 2 q( x2 a) 0 2
图(a) B M2 x2 Q2
集中力偶
m C
Q Q 图 特 征
水平直线
Q Q
斜直线
Q
自左向右突变
Q
无变化
Q C
x
Q<0
x
x
x
与 x x x x m 特 M2 征M 反 M M M M M 20 增函数 降函数 碗状 m 馒头状 折向与P反向 M1 M2
钢的密度为: 7.8g/cm³ ,液体的密度为:1g/cm³,液面高 0.8m,外伸端长 1m,试求贮液罐的计算简图。
解: q — 均布力
10
§ 4–2
一、弯曲内力:
梁的剪力和弯矩
a A l XA A YA P B RB P B
[举例]已知:如图,P,a,l。
求:距A端x处截面上内力。
解:①求外力