三次函数零点存在性探讨

合集下载

三次函数的图象与性质

三次函数的图象与性质

解:(1)由原式,得 = 3 − 2 − 4 + 4,
∴ ′ = 3 2 − 2 − 4.
1
1
(2)由′ −1 = 0,得 = 2.此时有 = ( 2 − 4)( − 2),
′ = 3 2 − − 4.
4
令′ = 0,得 = 3或 = −1
= −
求导:’ = 3 2 − 3 = 3( + 1)( − 1)
令’ = 0,则 = ±1.
列表:

−∞, −

−,

, +∞

+
0

0
+


极大

极小

y
y
o
−1
x
1
′ 图象
x
o
−1
1
图象
探究二:三次函数 = 3 + 2 + + ( ≠ 0)在R上
2 + 12 ≤ + 6,
由题意可知,1 ≥ −2, 2 ≤ 2,即൝
2 + 12 ≤ 6 − .
解不等式组,得−2 ≤ ≤ 2.
优解:因为′ = 3 2 − 2 − 4的图象是开口向上且过点(0,4)
的抛物线,
4 + 8 ≥ 0,
由条件,得′ −2 ≥ 0, ′ 2 ≥ 0,即ቊ
解:(1) ′ = 3 2 − 3 = 3( 2 − )
当 < 0时,对,有′ > 0,所以 的单调增区间为(−∞, +∞);
当 > 0时,由′ > 0,解得 < − 或 > ;由′ < 0,解得− < <

谈二次函数与三次函数的零点式应用

谈二次函数与三次函数的零点式应用

谈二次函数与三次函数的零点式应用作者:黄旭东来源:《中学数学杂志(高中版)》2015年第05期对于二次函数f(x)=ax2+bx+c(a≠0)若有根x1,x2,则可写成零点式f(x)=ax-x1x-x2(a≠0).同理对一个三次函数f(x)=ax3+bx2+cx+d(a≠0)若有根x1,x2,x3,则可写成零点式f(x)=ax-x1x-x2x-x3(a≠0),其应用广泛,下面简单讨论其应用.1巧证不等式例1证明:-33≤sinx2-cosx≤33.证明依题设结构,构造以±33为零点的二次函数,记f(t)=t-33t+33,由二次函数图像性质,欲证-33≤sinx2-cosx≤33成立,只需证f(sinx2-cosx)≤0即可.由f(sinx2-cosx)=sin2x2-cosx2-13=3sin2x-2-cosx232-cosx2=-1-2cosx232-cosx2≤0成立,故原不等式成立.点评此题证明没用到三角中变形求值域方法,而是由结构巧妙构造二次函数零点式,依二次函数的函数值与不等式解集之间的紧密关系,数与形有机结合,方法美妙,令人印象深刻.对于证a≤f(x)≤b的形式的不等式,一般可考虑构造二次函数零点式来解决.例2(数学通报201412期问题征解2217)设长方体的长宽高分别为a,b,c(a>b>c),p 为长方体各棱长之和,为表面积,d为一条对角线,求证:a>13p4+d2-12s,c解析由求证结构形式,不妨构造以x1=13p4+d2-12s,x2=13p4-d2-12s为零点的二次函数,由韦达定理知x1+x2=p6=23a+b+c,x1x2=19p216-d2+12s=19[a+b+c2-a2+b2+c2+ab+bc+ac]=13ab+bc+ac,构造二次函数f(x)=3(x-x1)(x-x2)=3x2-2a+b+cx+ab+bc+ac,由函数对称轴为x=a+b+c3,又a>b>c,故a>a+b+c3>c,又由f(a)=3a2-2a+b+ca+ab+bc+ac=a2-ab+bc-ac=(a-b)(a-c)>0,f(c)=3c2-2a+b+cc+ab+bc+ac=c2+ab-bc-ac=(c-b)(c-a)>0,故c13p4+d2-12s,c点评此题用一般方法较难下手,而构造二次函数的零点式,问题的解决得以易乎寻常的顺畅.2巧比大小例3设函数f(x)=ax2-x,g(x)=x-a(a>0),若p,q是方程f(x)-g(x)=0的两根,且满足0证明由f(x)-g(x)=0的两根为p,q,构建零点式,则f(x)-g(x)=a(x-p)(x-q),由x∈(0,p),且00,即f(x)>g(x).又f(x)-p-a=g(x)+a(x-p)(x-q)-p-a=x-p+a(x-p)(x-q)=x-pax-q+1a,由0综上所述,gx例4已知三次函数f(x)=x3+ax2+bx+c,方程f(x)-x=0的三根满足0解析由题意,x1,x2,x3为方程f(x)-x=0的三根,构建零点式得f(x)-x=x-x1x-x2x-x3,由-ca+b+c=-f(0)[f(1)-1]=x1x2x31-x11-x21-x3,又由0点评例3与例4是涉及到二次或三次函数的根的不等关系的证明问题,若按常规采用一般式方程进行处理,问题将变得较为复杂.一般地,一些二次或三次函数的题目中涉及方程的根时,常利用其零点式进行化归处理,可大大优化解题过程与步骤.例5(2010年湖北龙泉中学考试题)已知实数a1a1a2+a1a3+a2a3=b1b2+b1b3+b2b3,且a1b1b2b3;(4)(1-a1)(1-a2)(1-a3)A.1B.2C.3D.4解析由三次方程根与系数关系,构建三次函数f(x)=x-a1x-a2x-a3=x3-a1+a2+a3x2+a1a2+a1a3+a2a3x-a1a2a3,a1b1b2+b1b3+b2b3x-b1b2b3,b1b1b2+b1b3+b2b3,则函数g(x)即为函数f(x)向下作了部分平移而得,如右图示:故由图知(1)(2)显然正确,且a1a2a30,即(1-a1)(1-a2)(1-a3)>(1-b1)(1-b2)(1-b3),则(4)不对.故正确的为2个,选B.点评在一些题目中,根据一元二次方程或一元三次方程的根与系数的关系可构造二次函数或三次函数零点式,巧妙解决一些数学问题,可起到让人耳目一新的效果.3解决不定方程问题例6两个正整数的和比积小2015,并且其中一个是完全平方数,则较大数与较小数的差是.解析由两正数的和与积,联想二次函数零点式,不妨设此两正整数分别为m,n(m>n>0),记f(x)=(x-m)(x-n),依题意,mn-m-n=2015,故f(1)=(1-m)(1-n)=2016=25×7×32,由m,n中有一个为完全平方数,则m-1=672,n-1=3,或m-1=84,n-1=24,或m-1=288,n-1=7.故m=673,n=4,或m=85,n=25,或m=289,n=8.所以m-n=669或60或281.例7已知函数f(x)=x2+ax-a+2(a∈Z)有两个不同的正整数零点,求整数a的值.解析不妨设此函数零点为m,n,则f(x)=x-mx-n,则由题意,m+n=-a,mn=2-a,故mn-m-n=2,则f(1)=1-m1-n=3,由m,n为不同的正整数零点,则m-1=1,n-1=3,或m-1=3,n-1=1.所以两正整数只能为2,4,则a=-6.点评当涉及两数和与积结构时,可联想二次函数零点式,在解决不定方程问题时,有时可使有关问题的解法变得简洁、明快.零点式的应用是相当广泛的,不但二次与三次可利用其零点式解决问题,甚至一次函数也是如此.如像不等式证明中af(x)可构建一次函数零点式f(t)=t-a,也可用零点视角来研究.当然二次函数与三次函数零点式的应用肯定不止本文中所提到的这些,由于本人知识水平有限,欢迎同行进行交流与补充.作者简介黄旭东,1975年6月生,湖北黄石人,中级职称.主研方向为中学数学解题规律与教学规律.发表文章若干篇.。

三次函数性质的再探索凸凹性拐点及对称中心——教师用卷

三次函数性质的再探索凸凹性拐点及对称中心——教师用卷

三次函数性质的再探索——凸凹性,拐点及对称中心在前面我们学习了三次函数的相关性质了解了三次函数的图像特征,从中也得到了三次函数及类三次函数的分类讨论的标准和三次函数零点问题的处理方法,如下图所示在11周的测试中我们遇到了这样一道题目:16.对于三次函数,定义:是函数的导函数的导数,若方程有实数解,则称点,为的对称中心点”有同学发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是“对称中心”请你将这一发现作为条件,则函数的对称中心为______ .【答案】,我们发现函数的二阶导数对函数的图像也有很大的影响,这些影响主要体现在那些方面,我们下面一一道来。

1、曲线的凹凸性从图1(a),(b)直观上可以观察到:如果在某区间内的连续且光滑曲线弧总是位于其任一点切线的上方,则称此曲线弧在该区间内是凹的;如果在某区间内的曲线弧总是位于其任一点切线的下方,则称此曲线弧在该区间内是凸的,相应的区间分别称为凹区间与凸区间。

2、曲线的凹凸性的定义定义1 设)(x f 在区间I 上连续,如果对于I 上任意的两点21,x x ,恒有()()222121x f x f x x f +<⎪⎭⎫ ⎝⎛+ 那么称)(x f 在I 上的图形是凹的; 如果恒有 ()()222121x f x f x x f +>⎪⎭⎫⎝⎛+,那么称)(x f 在I 上的图形是凸的。

从图1还可以看到如下事实:对于凹的曲线弧,其切线的斜率)(x f '随着x 的增大而增大,即)(x f '单调增加;对于凸的曲线弧,其切线的斜率)(x f '随着x 的增大而减少,即)(x f '单调减少.而函数)(x f '的单调性又可用它的导数,即)(x f 的二阶导数)(x f ''的符号来判定,故曲线)(x f y =的凹凸性与)(x f ''的符号有关。

三次函数零点存在性探讨

三次函数零点存在性探讨

三次函数零点存在性探讨三次函数是指函数的最高次幂是3的多项式函数,一般表示为f(x)= ax^3 + bx^2 + cx + d,其中a、b、c和d是实数且a不等于0。

在这篇文章中,我们将探讨三次函数的零点存在性。

首先,我们来看一下三次函数的图像特征。

由于三次函数的最高次幂是3,因此它的图像通常具有一条弯曲的形状,可能是上凸的也可能是下凸的。

另外,由于三次函数是多项式函数,它的图像是连续的。

这些特征对于探讨零点存在性非常重要。

在进一步探讨三次函数的零点存在性之前,我们先来回顾一下一次和二次函数的零点存在性。

一次函数的零点存在性:一次函数的图像是一条直线,它的零点存在与否取决于函数的斜率是否为零。

如果斜率不为零,那么函数的图像与x轴相交,从而存在一个零点。

如果斜率为零,那么函数的图像与x轴平行,从而不存在零点。

二次函数的零点存在性:二次函数的图像是一个抛物线,它的零点存在与否取决于函数的判别式。

如果判别式大于零,那么函数的图像与x轴有两个交点,从而存在两个零点。

如果判别式等于零,那么函数的图像与x轴有一个交点,从而存在一个零点。

如果判别式小于零,那么函数的图像与x轴没有交点,从而不存在零点。

现在我们来探讨三次函数的零点存在性。

对于一个三次函数f(x) =ax^3 + bx^2 + cx + d而言,它的零点是否存在与a、b、c和d的取值有关。

我们可以通过寻找函数的图像与x轴的交点来确定零点的存在性。

首先,如果三次函数的图像与x轴相交于三个不同的点,那么它必然存在三个不同的零点。

对于一个上凸函数而言,如果函数的极值点(也就是导数为零的点)在两个相邻的交点之间,那么函数的图像与x轴将会相交于三个不同的点。

同样地,对于一个下凸函数而言,如果函数的极值点在两个相邻的交点之间,那么函数的图像与x轴将会相交于三个不同的点。

其次,如果三次函数的图像与x轴相交于两个不同的点,那么它可能存在两个重复的零点。

也就是说,一些x值可以使函数的值等于0两次。

专题17 三次函数的图像与性质(解析版)

专题17 三次函数的图像与性质(解析版)

专题17 三次函数的图像与性质一、例题选讲题型一 运用三次函数的图像研究零点问题遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.例1,(2017某某,某某,某某,某某三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值X 围是.【答案】3(2)2-,【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即30260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤,(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x ax x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,a≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1),(2),得实数a 的取值X 围为3(,2)2-.例2,(2017某某学情调研)已知函数f (x )=⎩⎪⎨⎪⎧12x -x3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值X 围为[-16,+∞),则实数m 的取值X 围是________.【答案】 [-2,8]【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值X 围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值X 围进行确定.当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.题型二 三次函数的单调性问题研究三次函数的单调性,往往通过导数进行研究.要特别注意含参的讨论.例3,已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当94a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;②当94a <时,2max 99(),984|3|max{,}994()48a a x x a a a a a ⎧<<⎪⎪-+=-=⎨⎪-⎪⎩≤; 由①②,得9(),8()99()48a a g a a a ⎧>⎪⎪=⎨⎪-⎪⎩≤; (3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-,令()0f x =,得0x =或230x x a -+=,当94a <时,由230x x a -+=,解得132x =232x =令()0f x '=,得23(1)30x a -+-=,当3a <时,由23(1)30x a -+-=,解得31x =41x =+1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;2)当934a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞;3)当904a <<时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞.例4,(2018某某期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值X 围是________.【答案】 (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|.令g(x)=x 3+(2-a)x 2+(1-2a)x -a,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a).令g ′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g ′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫-1,2a -13,(a,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值X 围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.,图3)例5,(2018某某期末)已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax ,x ≥0,其中常数a ∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,某某数a 的取值X 围;规X 解答 (1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分)(2) 当x>0时,f(x)=e x -ax,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分) 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x2=(x -1)(2x2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分)所以g(x)的值域是[5,+∞),即实数a 的取值X 围是[5,+∞).(10分)题型三 三次函数的极值与最值问题①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.函数,方程和不等式的综合题,常以研究函数的零点,方程的根,不等式的解集的形式出现,大多数情况下会用到等价转化,数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.例6,(2018苏锡常镇调研)已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;规X 解答 (1)①由2()32f x x ax b '=++及02=+b a ,得22()32f x x ax a '=+-,令()0f x '=,解得3ax =或a x -=.由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-. ② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点; 当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<,即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<,则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ①3222222()10f x x ax a x =+-+=, ②3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=,因为310x x ->,所以2310x x x a +++=,又1322x x x +=,所以23ax =-.所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.例7,(2017⋅某某)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值X 围.解析(1)2'()32f x x ax b =++有零点,24120a b ∆=->,即23a b >,又''()620f x x a =+=,解得3a x =-,根据题意,()03a f -=,即3210333a a a a b ⎛⎫⎛⎫⎛⎫-+-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2239b a a =+,又203a a b >⎧⎨>⎩,所以3a >,即223(3)9b a a a =+>;(2)设2433224591()3(427)(27)81381g a b a a a a a a a =-=-+=--,而3a >,故()0g a >,即23b a >;(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33b ax x x x =+=-, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++ 22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3324242232()202732739a ab a a a a =-+=-++=.记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2'()33a a f b -=-, 则221237()()()'()3392a a a S a f x f x f b a =++-=-=--≥, 而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7(6)2S =-,故36a <≤.法二:下面证明()f x 的图像关于(,())33a af --中心对称,233232()1()()()1333327a a a ab a f x x ax bx x b x =+++=++-++-+23()()()()3333a a a ax b x f =++-++-,所以()()2()0333a a a f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.例8,(2018某某学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax,a ∈R .(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值X 围;(3) 若a >1,设函数f (x )在区间[1,2]上的最大值,最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f ′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =53.规X 解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a,所以曲线y =f(x)在x =0处的切线的斜率k =f ′(0)=6a,所以6a =3,所以a =12.(2分)(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2lnxx2.(4分)令g(x)=2lnx x2,x >0,则g ′(x)=2(1-2lnx )x3.令g ′(x)=0,解得x = e.当x ∈(0,e)时,g ′(x)>0,所以g(x)在(0,e)上单调递增;当x ∈(e,+∞)时,g ′(x)<0,所以g(x)在(e,+∞)上单调递减.所以g(x)max =g(e)=1e,(6分)所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值X 围为⎝⎛⎦⎥⎤-∞,-1-1e .(8分)(3) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f ′(x)=0,则x =1或x =a.(10分)f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =53.①当1<a ≤53时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在⎝ ⎛⎦⎥⎤1,53上单调递减,所以当a ∈⎝ ⎛⎦⎥⎤1,53时,h(a)的最小值为h ⎝ ⎛⎭⎪⎫53=827.(12分)②当53<a <2时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在⎝ ⎛⎭⎪⎫53,2上单调递增,所以当a ∈⎝ ⎛⎭⎪⎫53,2时,h(a)>h ⎝ ⎛⎭⎪⎫53=827.(14分)③当a ≥2时,当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a -1-4=3a -5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.(16分)二、达标训练1,(2017某某暑假测试) 已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x3,-1≤x ≤1,)若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值X 围是________.【答案】 ⎝ ⎛⎭⎪⎫0,12【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.2,(2017苏北四市期末) 已知函数f (x )=⎩⎪⎨⎪⎧sinx ,x <1,x3-9x2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________.【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x,联立⎩⎪⎨⎪⎧y =sinx ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x=0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a,联立⎩⎪⎨⎪⎧y =x3-9x2+25x +a ,y =x ,得a =-x 3+9x 2-24x,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:32数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.3,(2019某某,某某二模)已知函数f(x)=⎪⎩⎪⎨⎧>+-≤+0,3120,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的图像经过四个象限,则实数k 的取值X 围为________.【答案】 ⎝⎛⎭⎪⎫-9,13【解析】解法1 y =⎩⎪⎨⎪⎧|x +3|-(kx +1),x ≤0,x 3-(k +12)x +2,x>0,若其图像经过四个象限.①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y=x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>⎝ ⎛⎭⎪⎫x2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2x2=2(x3-1)x2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当0<x<1时,h ′(x)<0,h(x)在(0,1)上递减,当x =1时取得极小值,也是最小值,h(x)min =h(1)=3,所以k +12>3,即k>-9.②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<|x +3|-1x,即k<⎝⎛⎭⎪⎫|x +3|-1x max .令φ(x)=|x +3|-1x=⎩⎪⎨⎪⎧-1-4x ,x ≤-3,1+2x ,-3<x<0,易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.综上,由①②得实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足0<k<13.②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x30-12x 0+3),由k =3x20-12=x30-12x 0+3-1x 0,解得x 0=1,切线斜率k =-9,所以k∈(-9,0).③当k =0也符合题意.综上可知实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.4,(2018苏中三市,苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值X 围是 ▲ .【答案】a <0或a >2【解析】当a <0时,10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 (0,+∞)恒成立,所以图象仅在第一象限,所以a <0时显然满足题意; 当a ≥0时,10y ax x =-,≤的图象仅经过第三象限,由题意 3|2|0y x ax x x =-+->,的图象需经过第一,二象限.【解法1】(图像法)3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).如图,3|2|y x x =+-=332,022,2x xx x xx,设切点坐标为3000(,2)x x x ,231yx,则有32000231x x x x ,解得01x ,所以临界直线l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x,使得3|2|0,yxax x即2|2|x a xx 设函数22221,02|2|()21,2x x x x g x x xx x x,当02x,322222()2x g x xx x()g x 在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a >2,则实数a 的取值X 围为a <0或a >2.5,(2019某某期末)已知函数f(x)=ax 3+bx 2-4a(a,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,某某数b 的取值X 围.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t2=0,-st2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分)令f ′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-∞,-23和(0,+∞).(4分)(2)法一:f ′(x)=3ax 2+2bx,令f ′(x)=0,得x =0或x =-2b3a,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝ ⎛⎭⎪⎫-2b 3a =0.当f(0)=0时,得a =0,不合题意,舍去;(8分)当f ⎝ ⎛⎭⎪⎫-2b 3a =0时,代入得a ⎝ ⎛⎭⎪⎫-2b 3a +b ⎝ ⎛⎭⎪⎫-2b 3a 2-4a =0,即-827⎝ ⎛⎭⎪⎫b a 3+49⎝ ⎛⎭⎪⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x3x2=4x2-x(x ≠0).(6分)设h(x)=4x2-x,h ′(x)=-8x3-1,令h ′(x)=0,得x =-2, 当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增,当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增,当x>0时,h(x)的值域为R ,故不论b a取何值,方程b a=4-x3x2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3)当a =0时,因为f (x )<ln x ,所以bx 2<ln x ,设g (x )=ln x -bx 2,则g ′(x )=1x-2bx =1-2bx2x(x >0),当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分)当b >0时,令g ′(x )=1-2bx2x=0,得x =12b,所以g (x )在⎝ ⎛⎭⎪⎪⎫0,12b 递增,在⎝⎛⎭⎪⎪⎫12b ,+∞递减, 所以g (x )max =g ⎝⎛⎭⎪⎪⎫12b =ln12b -12,要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e. ①(13分)又因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln2-4b>0,ln3-9b ≤0,解得ln39≤b <ln24. ②(15分)设h (x )=lnx x,则h ′(x )=1-lnx x2,当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e,+∞)时,h ′(x )<0,h (x )递减.所以h (x )max =h (e)=1e>h (2)=ln22,所以12e >ln24,所以由①和②得,ln39≤b <ln24.(16分)(注:用数形结合方法做只给2分)6,(2019某某,某某一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.设函数f(x)=x 3-tx 2+1(t ∈R ).(1) 若函数f (x )在(0,1)上无极值点,求t 的取值X 围;(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.规X 解答 (1)由函数f(x)=x 3-tx 2+1,得f ′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =23t.因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥32.(4分)(2)令f ′(x)=3x 2-2tx =p,即3x 2-2tx -p =0,Δ=4t 2+12p.当p >-t23时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)设这两条切线方程为分别为y =(3x21-2tx 1)x -2x31+tx21+1和y =(3x22-2tx 2)x -2x32+tx22+1.若两切线重合,则-2x31+tx21+1=-2x32+tx22+1,即2(x21+x 1x 2+x22)=t(x 1+x 2),即2=t(x 1+x 2).而x 1+x 2=2t 3,化简得x 1·x 2=t29,此时(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4t29-4t29=0,与x 1≠x 2矛盾,所以,这两条切线不重合.综上,对任意实数t,函数f(x)的图像总存在两条切线相互平行.(10分)(3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x.由(2)知x 1+x 2=2时,两切线平行.设A(x 1,x31-3x21+1),B(x 2,x32-3x22+1),不妨设x 1>x 2,则x 1>1.过点A 的切线方程为y =(3x21-6x 1)x -2x31+3x21+1.(11分)所以,两条平行线间的距离 d =|2x32-2x31-3(x22-x21)|1+9(x21-2x 1)2=|(x2-x1)|1+9(x21-2x 1)2=4,化简得(x 1-1)6=1+92,(13分)令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解.因为x 1-1>0,所以x 1有3解,所以满足此条件的平行切线共有3组.(16分)7,(2018某某,某某一调)已知函数g(x)=x 3+ax 2+bx(a,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g ′(-a -1)=0且g ′(x)=0有两个不等的实数解,解之得b 与a 的关系.(2) 求导得F ′(x)=(x +a +1)(e x -3x +a +3),解方程F ′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规X 解答 (1) 因为f ′(x)=e x +(x +a)e x =(x +a +1)e x ,令f ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g ′(x)=3x 2+2ax +b,由题意可知g ′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a ≠-32.所以b =-a 2-4a -3⎝⎛⎭⎪⎫a ≠-32.(6分)(2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F ′(x)=f ′(x)-g ′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h ′(x)=e x -3,令h ′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a=3ln e23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e -a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e -a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m ′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m ′(t)>0,所以m(t)单调递增.(14分)所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)。

三次函数零点存在性问题探讨

三次函数零点存在性问题探讨
(2)若 f x 在 x 1处取得极值,直线 y m 与 y f x 的图象有三个不同的交点,
求 m 的取值范围. 【答案】(1)见解析;(2) 3,1 .
【解析】(1) f x 3x2 3a 3 x2 a ,
当 a 0 时,对 x R ,有 f x 0 , f x 的单调增区间为 , , 当 a 0 时,由 f x 0 解得 x a 或 x a , 由 f x 0 解得 a x a ,
0得
x1

1 3

x2
1,

x


,

1 3

时,f

(x)

0
;当
x



1 3
,1
时,f

(x)

0
;当
x

1,

时,f

(
x)

0

x1

1 3

x2
1分别为
f
x
的极大值点与极小值点,

f
( x)极大值

f
( 1) 3

a
5 27

f
( x)极小值
的两个极值为
f
(0)

b,
f


2a 3


4 27
a3

b

则函数
f
(x)
有三个不同的零点等价于
f
0
f


2a 3


0

三次函数图象性质问题探究


-b+
姨b2-3ac 3a

f(' x)>0 x<x1 或 x<x2 (f x)在(-∞,x1)和(x2,+∞)
上为增函数.
f(' x)>0 x1<x<x2 (f x)在(x1,x2)上为减函数.
之前我们利用三次函数的对称性简化了三次函数
的形式,从而使三次函数单调性的探究变的简单.那么 三次函数单调性的结论对三次函数的其他性质是否也
△x→ 0
△x
=lim[2n-(f x-△x)]-[2n+(f x)]
△x→ 0
△x
=lim (f x)-(f x-△x)
△x→ 0△xFra bibliotek=f(' x).
∴y=f(' x)图象关于直线 x=m 对称.
推论 2:y=(f x)是可导函数,若 y=(f x)图象关于直线
x=m 对称,则 y=f(' x)图象关于点(m,0)对称.
在 x=x1 处取得极大值,在 x=x2 处取得极小值.
其中
x1=
-b-
姨b2-3ac 3a
,x2=
-b+
姨b2-3ac 3a

显而易见,三次函数如果有极值点一定有两个,两
个极值点之间的函数图象是单调的.由极值点函数值的 正负,我们联想到零点存在定理,接下来我们研究三次
函数的零点. 我们依旧考虑刚才研究过的 8 个函数, 其中(1)(2)两个属于单调递增的函数恰有一个零
∴y =ax3-(6ma +b)x2+(12m2a +4mb +c)x -(8m3a +4m2b +
2mc+d-2m),
{ { b=-6ma-b,

三次函数零点个数的判别

三次函数零点个数的判别
三次函数零点个数的判别是数学中一个重要的概念,它是指三次函数的零点的个数。

三次函数是指一个函数的形式为f(x)=ax^3+bx^2+cx+d,其中a,b,c,d为常数,x为变量。

三次函数零点的个数可以通过判别式来判断,判别式为:D=b^2-3ac。

如果D>0,则三次函数有一个零点;如果D=0,则三次函数有三个相同的零点;如果D<0,则三次函数有三个不同的零点。

三次函数零点的个数的判别可以用来解决很多数学问题,比如求解三次函数的极值问题,求解三次函数的拐点问题等。

此外,三次函数零点的个数的判别还可以用来分析函数的性质,比如判断函数是否是增函数、减函数或者是抛物线等。

总之,三次函数零点的个数的判别是一个重要的概念,它可以用来解决很多数学问题,也可以用来分析函数的性质。

三次函数性质总结

三次函数性质的研究我们已经学习了一次函数,知道图象是单一递加或单一递减,在整个定义域上不存在最大值与最小值,在某一区间获得最大值与最小值.那么,是什么决定函数的单一性呢?利用已学过的知识得出:当k>0时函数单一递加;当k<0时函数单一递加;b决定函数与y轴订交的地点.此中运用的许多的一次函数不等式性质是: fx 0在[m,n]上恒建立的充要条件fm 0fn 0接着,我们相同学习了二次函数,图象大概以下:图1 图2利用已学知识概括得出:当时(如图1),在对称轴的左边单一递减、右边单一递加,对称轴上获得最小值;当时(图2),在对称轴的左边单一递加、右边单一递减,对称轴上获得最大值.在某一区间获得最大值与最小值.此中a决定函数的张口方向, a、b同时决定对称轴,c决定函数与y轴订交的地点.总结:一次函数只有一个单一性,二次函数有两个单一性,那么三次函数能否就有三个单一性呢?1三次函数专题一、定义:定义1、形如y ax3bx2cx d(a 0)的函数,称为“三次函数”(从函数分析式的构造上命名)。

定义2、三次函数的导数y 3ax2 2bx c(a 0),把4b212ac叫做三次函数导函数的鉴别式。

因为三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热门和亮点。

特别是文科。

系列研究1:从最简单的三次函数yx3开始y反省1:三次函数y x31的有关性质呢?反省2:三次函数y x 3Ox 1的有关性质呢?反省3:三次函数y x31的有关性质呢?1(2012天津理)(4)函数f ()2xx32在区间(0,1)内的零点个数是B x(A)0(B)1(C)2(D)3系列研究2:研究一般三次函数f(x)ax3bx2cxd(a0)的性质:先求导f(x)3ax22bx c(a0)1.单一性:(1)若△(2b)212ac0,此时函数f(x)在R上是增函数;(2)若△(2b)212ac0,令f(x)3ax22bx c0两根为x1,x2且x1x2,则f(x)在(,x1),(x2)上单一递加,在(x1,x2)上单一递减。

高一数学函数的零点存在定理及其应用分析总结

在判断函数单调性中的应用
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则f(x)在区间(a, b)内有零点。
单调性判断:根据零点存在定理,如果函数f(x)在区间[a, b]上有零点,则f(x)在区间(a, b)上至少有一个单调区间。
应用实例:例如,判断函数f(x)=x^3-x在区间[-1, 1]上的单调性,可以通过零点存在定理来判断。
结合实际应用:结合实际例子,理解定理的应用方法和技巧
注意定理的局限性:了解定理的局限性和适用条件
掌握定理的应用范围:了解定理的应用条件和适用范围
感谢您的观看
注意事项:在使用零点存在定理判断函数单调性时,需要注意函数的连续性和零点的存在性。
在研究函数图像中的应用
求解函数方程:通过零点存在定理,可以求解函数方程,得到函数的解析式
确定函数图像的零点:通过零点存在定理,可以确定函数图像的零点位置
判断函数图像的性质:通过零点存在定理,可以判断函数图像的连续性、单调性等性质
研究函数图像的极限:通过零点存在定理,可以研究函数图像的极限,得到函数的极限值
在解决实际问题中的应用
零点存在定理在解决实际问题中的应用广泛,如求解方程、优化问题等
零点存在定理在解决实际问题时,需要注意定理的适用条件和范围,避免错误应用
零点存在定理在解决实际问题时,需要结合实际问题的具体情况,灵活运用
零点存在定理的数学表达
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则函数f(x)在区间(a, b)内至少有一个零点。
零点:函数f(x)的零点是指使得f(x)=0的x值。
பைடு நூலகம்
连续函数:如果函数f(x)在区间[a, b]上每一点x都有定义,且对于任意的ε>0,存在δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则称f(x)在区间[a, b]上是连续的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三次函数零点存在性探讨
利用导数解决函数的单调性,最值,极值等问题是高考的一个难点同时也是热点,尤其是对于含参的未知函数的性质讨论更是每年各省高考必然涉及的问题。

而三次函数的考查能够将导数的相关知识和二次函数的考点巧妙结合在一起,具有较强的综合性,在高考中颇受青睐,所以研究三次函数的图象和一些简单性质,让它们服务于高考解题势在必行。

本文从三次函数的图象入手,讨论三次函数的零点存在性条件,在此基础上节选近两年高考中涉及的三次函数的零点问题进行分析,并渗透等价转化与化归、数形结合等思想方法,旨在帮助学生站在一个高度审视三次函数的一些性质。

一.知识准备
三次函数)0()(23≠+++=a d cx bx ax x f 的导函数c bx ax x f ++='23)(2,记ac b 1242-=∆,设0)(='x f 的两根为21,x x ,则可以得出下面结论: (一)图像研究
0>a 0<a 0>∆ 0≤∆ 0>∆ 0≤∆
)(x f '的
图象
)(x f 的
图象
结合三次函数的图象,我们可以得出以下结论:
性质 若三次曲线与x 轴有三个交点,则0>∆且0)()(21<⋅x f x f ;
若三次曲线与x 轴有两个交点,则0>∆且0)()(21=⋅x f x f ;
若三次曲线与x 轴有一个交点,则0>∆且0)()(21>⋅x f x f 或0≤∆。

二.链接高考
题一(2014年高考课标1理科卷第11题)
已知函数32()31,f x ax x =-+若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )
.(2,)A +∞ .(1,)B +∞ .(,2)C -∞ .(,1)D -∞-
分析 该题的核心条件是“在唯一的零点0x ,且00x >”,作以下分析: 第一步 0=a 时显然不符合题意;
第二步 0≠a 时,求导x ax x f 63)(2-=',令0)(='x f ,解得a x x 2,021==。

由性质我们可以得出该三次函数有一个零点,即为0>∆且0)()(21>⋅x f x f ,即
0)2()0(>⋅a
f f 。

结合该三次函数图象以及特殊点(0,1)分析可得0<a ; 第三步 解不等式组⎪⎩
⎪⎨⎧>⋅<0)2()0(0a f f a 可得2-<a ,选C 。

总结 本题的切入点即为三次函数有唯一零点,在具体的解题过程中,应该充分把握函数的特殊点,并结合函数的图像加以分析,可以取得事半功倍的效果。

无独有偶,在2015年的江苏卷中,再次出现了三次函数的零点存在性问题,许多考生在解题时束手无策,关键还是对三次函数的图象以及零点存在的条件把握不到位。

题二(2015高考题江苏卷第19题)
已知函数32()(,)f x x ax b a b R =++∈.
(1) 试讨论()f x 的单调性;
(2) 若b c a =-(实数c 是与a 无关的常数),当函数()f x 有三个不同的零点
时,a 的取值范围恰好是()),2
3()23,1(3,+∞⋃⋃-∞-,求c 的值. 分析 第(1)题是常规题,着重考虑求导以后对参数a 的讨论。

第(2)题许多学生会感觉参数混乱,事实上把握住三次函数有三个零点的等价条件,并将其转化成关于a 的四次不等式问题,结合多项式不等式的解集与对应方程的解的关系,整个题目就迎刃而解了。

简解(1))3
2(323)(2a x x ax x x f +=+=' 当0a =时, ()f x 在(),-∞+∞上单调递增;
当0a >时, ()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭
上单调
递减;
当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝
⎭上单调递减. (2)第一步 函数()f x 有三个不同的零点等价于0)32()0(<-
⋅a f f ,即不等式0227
42742234<+-++-c ca a a c a ,由题可得该四次不等式的解集为()),2
3()23,1(3,+∞⋃⋃-∞-; 第二步 令22342274274)(c ca a a c a a g +-++-=,讨论该函数的图象。

)(a g 的导函数为c a a c a a g 22942716)(23-++-=',29
8916)(2++-=''a c a a g ,其中09
12881642>+=∆c 恒成立,即0)(=''x g 有两解21,x x ; 第三步 依次分析)(),(),(a g a g a g '''的图象,由图象可得0)2
3(='f ,即可求得1.c =
总结 本题的第一问是讨论含参的三次函数的单调性,对其导函数二次函数的根的情况作为最终研究对象加以分析可得;第二问利用三次函数三个零点的等价关系,巧妙的引入一个新的函数进行讨论,突出了转化的思想,同时再次体现了三次函数作为导函数出现对该题的重大意义,导函数的工具性作用亦是发挥得淋漓尽致。

利用上述性质讨论三次函数的零点存在性问题十分便捷,但是在研究中结合三次函数的图象必不可少,因此熟练掌握三次函数的图象走势十分重要,尤其研究三次函数在定区间上的零点问题时,更应该兼顾极值点处的函数值以及定区间上的图象分布,以下题目作为练习可供大家深入研究。

题三 (2015新课标全国卷高考题第21题)
已知函数31()4
f x x ax =++,()ln
g x x =-. (1) 当a 为何值时,x 轴为曲线()y f x =的切线;
(2) 用min{,}m n 表示,m n 中的最小值,设函数()min((),())(0)h x f x g x x =>,讨论
()
h x零点的个数。

三次函数的导函数的特殊性决定了它在高考中的重要地位,回顾三次函数在高考中的考点,可以说是涉及了三次函数图象,切线,极值,最值,单调性,零点等方方面面的内容,深入研究就会发现“又一村”。

学习时需要兼顾导函数的性质,充分渗透数形结合,分类讨论的思想,把图形量化从而达到出其不意的效果。

相关文档
最新文档