高中物理必修二之知识讲解 宇宙航行 基础
高中物理必修二万有引力与宇宙航行知识点总结归纳完整版

千里之行,始于足下。
高中物理必修二万有引力与宇宙航行知识点总结归纳完整版引力与宇宙航行是高中物理必修2的重要内容之一,涉及到引力定律、行星运动、卫星运动、宇宙探索等知识点。
在学习这些内容时,我们需要掌握以下几个重点知识。
第一,引力定律。
牛顿引力定律是描述两个物体之间相互作用的力的大小与方向的关系。
它的数学表达式为F=G*m1*m2/r^2,其中F表示两物体之间的引力,m1和m2分别表示两物体的质量,r表示两物体之间的距离,G为万有引力常量。
第二,行星运动。
行星围绕太阳运动的规律可以利用开普勒定律来描述。
开普勒第一定律,也称作椭圆轨道定律,指出行星绕太阳的轨道是一个椭圆。
开普勒第二定律,也称作面积速度定律,指出行星在同一时间内扫过的面积相等。
开普勒第三定律,也称作调和定律,指出行星公转周期的平方与半长轴的立方成正比。
第三,卫星运动。
卫星围绕地球运动的规律也可以利用开普勒定律来描述。
卫星的轨道一般为近似圆形,其运动速度与高度成正比。
卫星的速度分为正轨道速度和逃逸速度两种,前者用于保持卫星绕地球做圆周运动,后者用于使卫星摆脱地球引力束缚。
第四,宇宙探索。
人类对宇宙的探索主要依靠航天器和火箭。
卫星是用于研究地球和宇宙的重要工具,包括地球观测卫星、太阳观测卫星、星际探测器等。
火箭是宇宙运载工具,可以将航天器送入太空。
火箭原理是利用燃料的燃烧产生大量的气体推动火箭飞行,同时利用牛顿第三定律。
第1页/共2页锲而不舍,金石可镂。
除了上述知识点,我们还需要掌握一些相关的数学计算方法。
例如,通过引力定律计算两物体之间的引力大小;通过开普勒定律计算行星公转周期等等。
在学习过程中,我们还需要注意一些常见的误区。
例如,引力是所有物体之间都存在的,而不仅仅是行星或卫星之间;行星绕太阳运动的轨道并非完全是椭圆,而是近似椭圆等。
通过对引力与宇宙航行的学习,我们可以更加深入地了解宇宙的构成和演化过程,为未来的宇宙探索提供基础知识和理论支撑。
经典:高一物理必修2宇宙航行

半径约为地球半径的 1 4
81
,地球上的第一宇宙速度约为 7.9k m s,则该探月卫星
绕月运行的速度约为 ( B)
A 、0.4kms B 、1.8kms C 、 11km s D 、 36k m s
解析:因为该探月卫星贴近月球表面运行,所以该探月卫星绕月运行的速度 就是月球表面的第一宇宙速度。
即:v G M 月 R月
因为:其在地面上发射卫星的速度大于第一宇宙速度,
所以:此时的 万有引力不足以提供向心力, 卫星将做离心运动,不能再在地球表面附近绕地球做匀速圆周运动。
三、第二宇宙速度
1、定义:物体刚好克服__地__球__的吸引,而需要的_最__小__地面 发射速度。
2、大小:_1_1_._2_k_m__s_。
四、第三宇宙速度
r
GM
2
T r 3 , 周期 =
r3
GM ,
GM
向心加速度a =___r _2 ___。
【知识拓展】
①②卫设星地离球地半面径越为高R,,其则线卫速星度最越大_运_小_行__速_度_。的表达式为_v____G_R_M__,因此前面 讲的第一宇宙速度又是人造卫星绕地球运动的_最__大__运行速度。
7
【合作探究】 人造卫星绕地球运行时的最短周期为多少?
9
2003年10月15日,神州五号 载人宇宙飞船发射升空
2005年10月12日,神州六号 载人宇宙飞船发射升空
2008年9月25日,神州七 号载人宇宙飞船发射升空
10
课堂小结:三个宇宙速度
V3=16.7km/s V2=11.2km/s
地球
V1=7.9km/s
11.2km/s>v>7.9km/s
人教版高中物理必修二《宇宙航行》知识全解

《宇宙航行》知识全解【教学目标】1.了解人造地球卫星的最初构想,会推导第一宇宙速度。
2.知道同步卫星和其他卫星的区别,会分析人造地球卫星的受力和运动情况并解决涉及人造地球卫星运动的较简单的问题。
3.了解发射速度与环绕速度的区别和联系,理解天体运动中的能量观。
4.了解宇宙航行的历程和进展,感受人类对客观世界不断探究的精神和情感。
【内容解析】1.人造卫星绕地球运行的动力学原因人造卫星在绕地球运行时,只受到地球对它的万有引力作用,人造卫星作圆周运动的向心力由万有引力提供。
2.人造卫星的运行速度设地球质量为M ,卫星质量为m ,轨道半径为r ,由于万有引力提供向心力,则22Mm v G m r r=,得:v = 可见:高轨道上运行的卫星,线速度小。
提出问题:角速度和周期与轨道半径的关系呢?v r ω==22T πω==可见:高轨道上运行的卫星,角速度小,周期长。
3.宇宙速度(1)第一宇宙速度:在地面附近绕地球运行,轨道半径即为地球半径。
由万有引力提供向心力:22Mm v G m R R=,得:v =又因为2Mm mg G R =所以7.9km/s v ==。
意义:第一宇宙速度是人造卫星在地面附近环绕地球作匀速圆周运动所必须具有的速度,所以也称为环绕速度。
(2)第二宇宙速度大小:v 2=11.2km/s 。
意义:使卫星挣脱地球的束缚,成为绕太阳运行的人造行星的最小发射速度,也称为脱离速度。
注意:发射速度大于7.9km/s ,而小于11.2km/s ,卫星绕地球运动的轨迹为椭圆;等于或大于11.2km/s 时,卫星就会脱离地球的引力,不再绕地球运行。
(3)第三宇宙速度大小:v 3=16.7km/s 。
意义:使卫星挣脱太阳引力束缚的最小发射速度,也称为逃逸速度。
注意:发射速度大于11.2km/s ,而小于16.7km/s ,卫星绕太阳作椭圆运动,成为一颗人造行星。
如果发射速度大于等于16.7km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
高一物理人教版必修2课件:宇宙航行

1981年4月12日,世界上第一架航 天飞机哥伦比亚号发射成功。同年 11月12日和1982年3月22日、6月 27日又相继进行了3次试飞,均获 得成功。 但在2003年2月1日,哥伦比亚号航 天飞机在重返地面的过程中突然发 生解体燃烧,航天飞机上的七名宇 航员全部遇难。(其中有6名美国 人、1名以色列人)
则 v gR 9.86.4106 m / s
7.9km/ s 宇宙航行
思考:地面上的物体如何才能获得这么大的速度?
由此可见:要发射一颗绕地球半径运行的人造卫星, 发射速度必须等于7.9km/s 。所以宇宙第一速度是最 小的发射速度。
所谓发射速度是指卫星在地面附近离开发射火 箭的初速度。要发射一颗人造地球卫星,其发射 速度就不能小于第一宇宙速度。
Mm
2
G r2
m r
由此解出: GM
r
将地球质量M及轨道半径r代入,可得同步通讯
卫星的速率
GM r
6.67
10-11 6.0 4.2 107
1024
m
/
s
3.1103
m
/
s
宇宙航行
同步卫星发射过程
卫星的变宇轨宙航行问题
四、梦想成真 世界航天史
1957年10月4日,原苏联发 射了世界上第一颗人造地球卫 星。卫星重83.6kg,每96min 绕地球飞行一圈。
造地球卫星,简称 人造卫星
由此可见,人造地球卫星运行遵
从的规律是:卫星绕地球做匀速圆
周运动,地球对卫星的引力提供向
心力。
宇宙航行
思考与讨论:如图所示,A、B、C、D四条轨 道中可以作为卫星轨道的是哪一条? 探究问题一:
根据:卫星做圆周运动的 向心力必须指向地心。
人教版高中物理必修二宇宙航行(共33张PPT)

在低轨道上加速,使其沿椭
圆轨道运行,当行至椭圆轨
·
道的远点处时再次加速,即
可使其沿高轨道运行。
1、卫星在二轨道相切点 2、卫星在椭圆轨道运行
万有引力相同
速度—内小外大(切点看轨迹) 近地点---速度大,动能大 远地点---速度小,动能小
人 教 版 高 中 物理必 修二 6 .5宇宙 航行 (共 33张 PPT)
联立解得
M1 M 2 GT 2
人 教 版 高 中 物理必 修二 6 .5宇宙 航行 (共 33张 PPT)
人 教 版 高 中 物理必 修二 6 .5宇宙 航行 (共 33张 PPT)
• 例2.在天体运动中,把两颗相距很近的恒星 称为双星,这两颗星必须各自以一定的速 率绕某一中心转动才不至于由于万有引力 而吸在一起。已知两恒星的质量分别为M1 和M2两恒星距离为L。求:(1)两恒星转动 中心的位置;(2)转动的角速度。
第三宇宙速度(逃逸速 度)v3 16.7Km / s
一.地球同步卫星
人类在宇宙发射了多种多样的人 造卫星,其中有一种特别的卫星称 为地球同步卫星(常用做通讯卫星)
1.地球同步卫星:相对于地面静止 且与地球自转具有相同周期的卫 星叫地球同步卫星。
2.同步卫星特点(1)在赤道平面内 (2)周期一定T=24h(3)高度一定 所有同步卫星只能分布在赤道上 方一个确定轨道上,定高度、定周 期、定速率、定角速度、定轨道
使 卫 星 加 速 到v4, 使
mv 4 2 L
G
Mm L2
v4 v3
人 教 版 高 中 物理必 修二 6 .5宇宙 航行 (共 33张 PPT)
卫 星 的 回 收
人 教 版 高 中 物理必 修二 6 .5宇宙 航行 (共 33张 PPT)
人教版高一物理必修2第章六第5节宇宙航行课件

二、宇宙速度
1.卫星环绕地球运转的动力学方程是什么?
2.人造卫星绕地球运转时速度究竟有多大呢?
答案
1.动力学方程:F引=F心
2.由于卫星运动所需的向r
v GM r
可见:卫星轨道半径越大即离地心越远,它的运行速度越小。
对于靠近地面运行的卫星,即近地卫星 (方法1)可认为轨道半径近似等于地球半径R
第一宇宙速度(环绕速度):
是人造卫星近地环绕地球做匀速 圆周运动必须具有的速度,是人造卫 星的最小发射速度,最大环绕速度。
V=7.9km/s
对第一宇宙速度的理解:
卫星绕地球运行的轨道最低时为近地卫星, 此时卫星的轨道半径近似等于地球半径R,由速 度公式可知,此时卫星运行速度最大,所以又
叫最大环绕速度。
3.若抛出速度足够大,物体飞行的距离也很大,由于地是一个圆 球体,故物体不会再落回地面,由于此时物体已具有速度,且地 球对它的引力提供绕地运行的向心力,所以物体将要绕地运行。
牛顿设想卫星发射原理 1.如果在地面上抛出一个物体时速度足够大,
那么它将不再落回地面,而成为一个绕地 球运转的卫星。
2.发射速度越大,人造卫星的运转轨道越 大,即离地面越远。
5.宇宙航行
一、人造卫星
问题
1 .在地面上抛出的物体为什么要落回地面?
2.月球也要受到地球引力的作用,为什么月球不会落到地面上 来? 3.若抛出物体的水平速度足够大,物体将会怎样?
结论
1.在地面上抛出的物体,由于受到地球引力的作用,所以最终
要落回地面。 2.月球绕地球沿近似圆轨道运动,月球受到的地球引力用来提供 绕地运转的向心力,故月球不会落到地球上。
发射卫星时,发射的轨道越高,需克服地球引 力做功越多,所以发射近地卫星时,克服地球引 力做功最少,所需的发射速度也就最小,所以第
高中物理(人教版)必修第二册讲义—宇宙航行

高中物理(人教版)必修第二册讲义—宇宙航行【学习目标】1.通过阅读课本资料了解牛顿对人造卫星的猜想、外推的思路和思想,能写出第一宇宙速度的推导过程。
2.通过第一宇宙速度的推导总结,能说出人造地球卫星的原理及运行规律。
3.通过阅读教材第三部分,能够介绍世界和我国航天事业的发展历史,感知人类探索宇宙的梦想,激发爱国热情,增强民族自信心和自豪感。
【学习重点】第一宇宙速度的推导。
【学习难点】第一宇宙速度的推导;环绕速度与发射速度的区分。
知识梳理一、宇宙速度1.人造地球卫星(1)牛顿的设想:如图所示,把物体水平抛出,如果速度足够大,物体就不再落回地面,它将绕地球运动,成为人造地球卫星。
(2)运动规律:一般情况下可认为人造卫星绕地球做匀速圆周运动。
(3)向心力来源:人造地球卫星的向心力由地球对它的万有引力提供。
2.宇宙速度宇宙速度数值/(km·s-1)物理意义是使人造卫星绕地球做匀速圆周运动的最小发射速度;也是人造卫星绕第一宇宙速度7.9(环绕速度)地球运动的最大运行速度第二宇宙速度11.2(脱离速度)是物体挣脱地球引力束缚的最小发射速度第三宇宙速度16.7(逃逸速度)是物体挣脱太阳引力束缚的最小发射速度梦想成真1957年10月苏联成功发射了第一颗人造卫星;1969年7月美国“阿波罗11号”登上月球;2003年10月15日我国航天员杨利伟踏入太空;2007年10月24日我国“嫦娥一号”发射升空;2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务;2010年10月1日“嫦娥二号”发射升空。
2011年9月29日“天宫一号”发射升空。
2011年11月1日“神舟八号”发射升空。
2011年11月3日“天宫一号”与“神舟八号”对接成功。
2012年6月16日“神舟九号”发射升空,与在轨运行的“天宫一号”目标飞行器进行载人交会对接,航天员进入“天宫一号”工作和生活,开展相关空间的科学实验。
2013年6月11日“神舟十号”发射升空,并在6月13日与“天宫一号”交会对接;6月20日上午,中国载人航天史上的首堂太空授课开讲。
高中物理必修二宇宙航行知识点

高中物理必修二《宇宙航行》知识点总结要点一、天体问题的处理方法要点诠释:(1)建立一种模型天体的运动可抽象为一个质点绕另一个质点做匀速圆周运动的模型(2)抓住两条思路天体问题实际上是万有引力定律、牛顿第二定律、匀速圆周运动规律的综合应用,解决问题的基本思路有两条:①利用在天体中心体表面或附近,万有引力近似等于重力 即2RMm G mg =(g 为天体表面的重力加速度) ②利用万有引力提供向心力。
由此得到一个基本的方程2G Mm ma r =,式中a 表示向心加速度,而向心加速度又有2v a r=、2a r ω=、224r a T π=、a g =这样几种表达式,要根据具体问题,把这几种表达式代入方程,讨论相关问题。
要点二、人造卫星要点诠释:1. 人造卫星将物体以水平速度从某一高度抛出,当速度增加时,水平射程增大,速度增大到某一值时,物体就会绕地球做圆周运动,则此物体就成为地球的卫星,人造地球卫星的向心力是由地球对卫星的万有引力来充当的.(1)人造卫星的分类:卫星主要有侦察卫星、通讯卫星、导航卫星、气象卫星、地球资源勘测卫星、科学研究卫星、预警卫星和测地卫星等种类.(2)人造卫星的两个速度:①发射速度:将人造卫星送入预定轨道运行所必须具有的速度.②环绕速度:卫星在轨道上绕地球做匀速圆周运动所具有的速度.由于发射过程中要克服地球的引力做功,所以发射速度越大,卫星离地面越高,实际绕地球运行的速度越小.向高轨道发射卫星比向低轨道发射卫星要困难得多.2.卫星的轨道卫星绕地球运动的轨道可以是椭圆轨道,也可以是圆轨道.卫星绕地球沿椭圆轨道运动时,地心是椭圆的一个焦点,其周期和半长轴的关系遵循开普勒第三定律.卫星绕地球沿圆轨道运动时,由于地球对卫星的万有引力提供了卫星绕地球运动的向心力,而万有引力指向地心,所以,地心必须是卫星圆轨道的圆心.卫星的轨道平面可以在赤道平面内(如同步卫星),也可以和赤道平面垂直,还可以和赤道平面成任一角度,如图所示.要点诠释:1.第一宇宙速度(环绕速度)指人造卫星近地环绕速度,它是人造卫星在地面附近环绕地球做匀速圆周运动所必须具有的速度,是人造卫星的最小发射速度,其大小为17.9/v km s=说明:(1)由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,故人造卫星的最小发射速度对应将卫星发射到近地表面运行,此时发射时的动能全部转化为绕行的动能而不需要转化为重力势能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宇宙航行【学习目标】1.会推导第一宇宙速度2.掌握地球(或天体)的卫星各物理量的关系3.理解同步卫星的特点,了解三种宇宙速度4.了解卫星的变轨问题 【要点梳理】要点一、天体问题的处理方法 要点诠释:(1)建立一种模型天体的运动可抽象为一个质点绕另一个质点做匀速圆周运动的模型 (2)抓住两条思路天体问题实际上是万有引力定律、牛顿第二定律、匀速圆周运动规律的综合应用,解决问题的基本思路有两条:①利用在天体中心体表面或附近,万有引力近似等于重力即2R MmGmg =(g 为天体表面的重力加速度) ②利用万有引力提供向心力。
由此得到一个基本的方程2G Mm ma r =,式中a 表示向心加速度,而向心加速度又有2v a r =、2a r ω=、224ra Tπ=、a g =这样几种表达式,要根据具体问题,把这几种表达式代入方程,讨论相关问题。
要点二、人造卫星 要点诠释:1. 人造卫星将物体以水平速度从某一高度抛出,当速度增加时,水平射程增大,速度增大到某一值时,物体就会绕地球做圆周运动,则此物体就成为地球的卫星,人造地球卫星的向心力是由地球对卫星的万有引力来充当的.(1)人造卫星的分类:卫星主要有侦察卫星、通讯卫星、导航卫星、气象卫星、地球资源勘测卫星、科学研究卫星、预警卫星和测地卫星等种类.(2)人造卫星的两个速度:①发射速度:将人造卫星送入预定轨道运行所必须具有的速度.②环绕速度:卫星在轨道上绕地球做匀速圆周运动所具有的速度.由于发射过程中要克服地球的引力做功,所以发射速度越大,卫星离地面越高,实际绕地球运行的速度越小.向高轨道发射卫星比向低轨道发射卫星要困难得多.2.卫星的轨道卫星绕地球运动的轨道可以是椭圆轨道,也可以是圆轨道. 卫星绕地球沿椭圆轨道运动时,地心是椭圆的一个焦点,其周期和半长轴的关系遵循开普勒第三定律.卫星绕地球沿圆轨道运动时,由于地球对卫星的万有引力提供了卫星绕地球运动的向心力,而万有引力指向地心,所以,地心必须是卫星圆轨道的圆心.卫星的轨道平面可以在赤道平面内(如同步卫星),也可以和赤道平面垂直,还可以和赤道平面成任一角度,如图所示.要点三、宇宙速度 要点诠释:1.第一宇宙速度(环绕速度)指人造卫星近地环绕速度,它是人造卫星在地面附近环绕地球做匀速圆周运动所必须具有的速度,是人造卫星的最小发射速度,其大小为17.9/v km s =说明:(1)由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,故人造卫星的最小发射速度对应将卫星发射到近地表面运行,此时发射时的动能全部转化为绕行的动能而不需要转化为重力势能。
(2)第一宇宙速度的推导根据万有引力提供向心力可得:22Mm v G m R R=所以7.9/v km s == 若已知地球表面的重力加速度,则由万有引力和重力近似相等有2v mg m R=所以7.9/v km s ==2.第二宇宙速度(逃逸速度)在地面上发射物体,使之能够脱离地球的引力作用,成为绕太阳运动的人造卫星或飞到其他行星上去所必须的最小发射速度,其大小为211.2/v km s =3.第三宇宙速度在地面上发射物体,使之能够脱离太阳的引力范围,飞到太阳系以外的宇宙空间所必须的最小发射速度,其大小为316.7/v km s =要点四、同步卫星 要点诠释: 1.概念相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星,又叫通讯卫星. 2.基本特征(1)同步卫星的运行方向与地球自转方向一致.(2)同步卫星的运行周期与地球自转周期相同.且T =24 h . (3)同步卫星的运行角速度等于地球自转的角速度.(4)要与地球同步,卫星的轨道平面必须与赤道平面平行,又由于向心力是万有引力提供的,万有引力必须在轨道平面上,所以同步卫星的轨道平面均在赤道平面上,即所有的同步卫星都在赤道的正上方.不可能定点在我国某地上空. (5)同步卫星高度固定小变所有同步卫星的周期T 、轨道半径r 、环绕速度v 、角速度ω及向心加速度a 的大小均相同.由222GMm mr r T π⎛⎫= ⎪⎝⎭,知r =,由于T 一定,所以r 不变,而r =R+h ,h 为离地面的高度,h R =,又2GM gR =,代入数据T =24h =86400 s ,g =9.8 m /s 2,R =6400 km ,得h =3.6×104km .也就是说,同步卫星必须定位于赤道的正上方,离地面的高度约为3.6×104 km .(6)同步卫星的环绕速度大小一定:设其运行速度为v ,由于22()Mm v G m R h R h=++,则v ==/s =323.110m /s =⨯ (7)三颗同步卫星作为通讯卫星,则可覆盖全球.(两极有部分盲区)要点五、地球同步卫星与赤道上随地球做圆周运动的物体以及人造卫星的区别与联系 要点诠释:(1)地球同步卫星与赤道上随地球做圆周运动的物体相当于同轴转动的物体,它们的角速度相同,周期相同,线速度关系遵循v r ω=的关系;(2)地球同步卫星与人造卫星同属于地球卫星,它们之间的关系遵循天体运动所需的向心力由万有引力提供,符合的公式是:2GMa r=,r 越大a 越小; v = r 越大v 越小ω=,r 越大ω越小; T =r 越大T 越大要点六、卫星的稳定运行与变轨问题要点诠释:当卫星的速度突然增加时,2mv F r<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =当卫星的速度突然减小时,2mv F r>,即万有引力大于卫星所需的向心力,卫星将做向心运动,脱离原来的圆轨道,轨道半径变小,但卫星一旦进入新的轨道运行,由v =加。
由此,要想使卫星进入更高一级轨道,就要加速;反之要减速。
【典型例题】类型一、卫星运行的规律例1、(2016 黑龙江省哈尔滨校级二模)如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R (R 为地球半径)。
下列说法中正确的是( )A .a 、b 1B .a 、b 的周期之比是1∶C .a 、b 的角速度大小之比是4D .a 、b 的向心加速度大小之比是9∶4【答案】CD【解析】根据万有引力提供向心力得222224GMm mv r m r m ma r r Tπω====线速度v =R 和2R (R 为地球半径),所以轨道半径是2∶3,所以a 、b A 错误;周期2T =a 、b 的周期之比是B 错误;角速度ω=a 、b 的角速度大小之比是4,故C 正确; 向心加速度2GMa r =,所以a 、b 的向心加速度大小之比是9∶4,故D 正确,故选CD 。
【点评】本题考察卫星运动规律,明确各运动量与半径的关系,从而定量计算出各运动量之间的大小关系。
天体的运动及航天技术 例1】【变式】火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆.已知火卫一的周期为7小时39分.火卫二的周期为30小时18分,则两颗卫星相比( )A .火卫一距火星表面较近B .火卫二的角速度较大C.火卫一的运动速度较大D.火卫二的向心加速度较大【答案】AC类型二、第一宇宙速度的应用例2、关于第一宇宙速度,下面说法中正确的是( )A.它是人造地球卫星绕地球飞行的最小速度B.它是近地圆形轨道上人造地球卫星的运行速度C.它是能使卫星进入近地圆形轨道的最小发射速度D.它是卫星绕地球做匀速圆周运动的最大速度【思路点拨】明确第一宇宙速度的含义。
【答案】BCD【解析】第一宇宙速度是近地圆轨道上的最大环绕速度,又是卫星进入轨道的最小发射速度。
故BCD 选项正确。
类型三、同步卫星的规律例3、可发射一颗人造卫星,使其圆轨道满足下列条件()A.与地球表面上某一纬度线(非赤道)是共面的同心圆B.与地球表面上某一经度线是共面的同心圆C.与地球表面上的赤道线是共面同心圆,且卫星相对地面是运动的D.与地球表面上的赤道线是共面同心圆,且卫星相对地面是静止的【答案】CD【解析】卫星绕地球运动的向心力由万有引力提供,且万有引力始终指向地心,因此卫星的轨道不可能与地球表面上某一纬度线(非赤道)是共面的同心圆,故A是错误的。
由于地球在不停的自转,即使是极地卫星的轨道也不可能与任一条经度线是共面的同心圆,故B是错误的。
赤道上的卫星除同步卫星相对地球静止轨道外,其它卫星相对地球表面都是运动的,故C、D是正确的。
天体的运动及航天技术例4】【变式】如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ωo,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)B 2T π=2)t =例4、(2015 合肥期末联考)同步卫星离地球球心的距离为r ,运行速率为v 1,加速度大小为a 1,地球赤道上的物体随地球自转的向心加速度大小为a 2,第一宇宙速度为v 2,地球半径为R ,则( )A .12::a a r R =B .2212::a a R r =C .2212::v v R r=D.12:v v【答案】AD【解析】因同步卫星的角速度与地球自转的角速度相同,因此同步卫星的角速度与赤道上的物体的角速度相等,由2a r ω=,可知12::a a r R =,故A 正确;地球同步卫星与赤道上的物体做圆周运动的向心力都是由和地球间的万有引力提供,即:22Mm v G m R r=,可得:v =M 是地球的质量,r 是卫星的轨道半径,因此12:v v 。
【总结升华】地球同步卫星绕地球做匀速圆周运动,由地球的万有引力提供向心力;其次在比较加速度大小时,因地球同步卫星与地球自转角速度相同,所以选择用公式2a r ω=进行求解,解题时注意灵活选用公式。
类型四、卫星的变轨运动例5、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3。
轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( ) A .卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度小于在轨道1上的角速度C .卫星在轨道1上,经过点Q 时的速度大于它在轨道2上经过Q 点时的速度D .卫星在轨道2上经过点P 的速度小于它在轨道3上经过P 点的速度【思路点拨】此题为卫星变轨问题,要分清离心、向心运动。