新冀教版八年级数学上册第十二章单元测试(附答案)
冀教版八年级上第12章《分式和分式方程》单元测试(含答案解析)

第12章分式和分式方程单元测试一、单选题(共10题;共30分)1.化简分式bab+b2的结果为()A、1a+bB、1a+1bC、1a+b2D、1ab+b2.有理式①,②,③,④中,是分式的有()A、①②B、③④C、①③D、①②③④3.若x=3是分式方程的根,则a的值是().A、5B、﹣5C、3D、﹣34.给出下列式子:1a、3a2b3c4、56+x、x7+y8、9x+10y,其中,是分式的有()A.5个B.4个C.3个D.2个5.在式子y2、x、12π、2x-1中,属于分式的个数是()A.0B.1C.2D.36.如果1a+1b=1,则a-2ab+b3a+2ab+3b的值为()A.15B.-15C.-1D.-37.学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x根栏杆,根据题意列方程为()A. = +2B. = ﹣2C. = ﹣2D. = +28.下列分式中最简分式为()A. B. C. D.9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达、若设走路线一时的平均速度为x千米/小时,根据题意,得()A.25x−30(1+80%)x=1060B.25x−30(1+80%)x=10C.30(1+80%)x−25x=1060D.30(1+80%)x−25x=1010.如果,那么的值是( )A、B、C、D、二、填空题(共8题;共24分)11.计算÷的结果是________、12.分式方程= 的解是________、13.方程﹣=0的解是________、14.计算:-3xy24z•-8zy=________15.计算:3a22b·4b9a=________ .16.分式方程5x+3=1的解是________ 、17.关于x的方程mxx-3=3x-3无解,则m的值是________、18.若分式x2−1x+2 有意义,则x的取值范围是________、三、解答题(共5题;共36分)19.解方程:3xx-1=1+11-x、20.先化简,再求值:(1+1x−1)÷xx2−1 ,其中:x=﹣2、21.某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,问原计划每小时修路多少米?22.昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务、问原计划每天打通隧道多少米?23.下面是我校初二(8)班一名学生课后交送作业中的一道题:计算:x3x−1−x2−x−1 、解:原式= x3x−1−(x2−x−1)=x3−(x−1)(x2+x+1)=x3−(x3−1)=1 、你同意她的做法吗?如果同意,请说明理由;如果不同意,请把你认为正确的做法写下来、四、综合题(共1题;共10分)24.解方程:(1)1x=5x+3;(2)xx−1−2=32x−2 、答案解析一、单选题1、【答案】A【考点】约分【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分、判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分、【解答】原式=bb(a+b)=1a+b、故选:A、【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题、在解题中一定要引起注意、2、【答案】C【考点】分式的定义【解析】【解答】①③中分母中含有字,所以为分式. ②④中不含有字母.【分析】本题考查分式的定义,区分关键是分母中是否含有字母.3、【答案】A【考点】分式方程的解【解析】【分析】首先根据题意,把x=3代入分式方程,然后根据一元一次方程的解法,求出a的值是多少即可、【解答】∵x=3是分式方程的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5、故选:A、4、【答案】C【考点】分式的定义【解析】【解答】解:3a2b3c4、x7+y8的分母中均不含有字母,因此它们是整式,而不是分式、1a、56+x、9x+10y,分母中含有字母,因此是分式、故选C、【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式、5、【答案】B【考点】分式的定义【解析】【解答】解:式子y2、x、12π、2x-1中,属于分式的有2x-1 ,只有1个、故选B、【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,可得答案、6、【答案】B【考点】分式的化简求值【解析】【解答】解:∵1a+1b=1,即a+bab=1,∴a+b=ab,则原式=a+b-2ab3a+b+2ab=ab-2ab3ab+2ab=-ab5ab=-15 、故选B、【分析】已知等式左边通分并利用同分母分式的加法法则计算整理得到a+b=ab,代入原式计算即可得到结果、7、【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:设每天油x根栏杆,根据题意列方程:24000x = 24000x+400 +2 故选:D、【分析】如果设每天油x根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程、8、【答案】B【考点】最简分式【解析】【解答】解:A、42x=2x可以约分,错误;B、2xx2+1 是最简分式,正确;C、x−1x2−1=1x+1 可以约分,错误;D、1−xx−1=1 可以约分,错误;故选:B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分、判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分、9、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设走路线一时的平均速度为x千米/小时,25x﹣30(1+80%)x = 1060 、故选:A、【分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程、10、【答案】D【考点】分式的基本性质【解析】【解答】解:∵,,故选D.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】÷= = 、故答案为:、【分析】利用分式的乘除法求解即可、12、【答案】x=9【考点】解分式方程【解析】【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解、【解答】方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9、检验:把x=9代入x(x﹣3)=54≠0、∴原方程的解为:x=9、故答案为:x=9、13、【答案】x=6【考点】解分式方程【解析】【分析】先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根、【解答】去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根、故答案为:x=6、14、【答案】6xy【考点】分式的乘除法【解析】【解答】解:原式=24xy2z4yz=6xy、故答案为:6xy、【分析】原式利用分式相乘的方法计算,约分即可得到结果、15、【答案】23a【考点】约分,分式的乘除法【解析】【解答】解:原式=23a、故答案为23a【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母、然后进行约分、化简即可、16、【答案】x=2【考点】分式方程的解【解析】【解答】解:方程的两边同乘(x+3),得5=x+3,解得x=2、检验:把x=2代入(x+3)=5≠0、所以原方程的解为:x=2、故答案为x=2、【分析】观察可得最简公分母是(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解、17、【答案】1或0【考点】分式方程的解【解析】【解答】解:去分母得mx=3,∵x=3时,最简公分母x﹣3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3m=3,解得m=1,当m=0时,整式方程无解∴m的值为1或0时,方程无解、故答案为:1或0、【分析】先把分式方程化为整式方程得到mx=3,由于关于x的分式方程mxx-3=3x-3无解,当x=3时,最简公分母x﹣3=0,将x=3代入方程mx=3,解得m=1,当m=0时,方程也无解、18、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:由题意得:x+2≠0,解得:x≠2,故答案为:x≠2、【分析】根据分式有意义的条件可得x+2≠0,再解即可、三、解答题19、【答案】解:去分母得:3x=x﹣1﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解、【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解、20、【答案】解:,= ,= ,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1【考点】分式的化简求值【解析】【分析】本题需先对要求的式子进行整理,再把x的值代入即可求出答案、21、【答案】解:设原计划每小时修路x米,,解得,x=50,经检验x=50时分式方程的解,即原计划每小时修路50米【考点】分式方程的应用【解析】【分析】根据题意可以列出相应的分式方程,然后解分式方程即可,本题得以解决、22、【答案】解:设原计划每天打通隧道x米,由题意得:﹣=20,解得:x=80,经检验:x=80是原分式方程的解,答:原计划每天打通隧道80米【考点】分式方程的应用【解析】【分析】首先设原计划每天打通隧道x米,则实际每天打通隧道1.8x米,根据题意可得等量关系:原计划所用时间﹣实际所用时间=20天,根据等量关系列出方程,再解即可、23、【答案】解:原式= ﹣﹣﹣=【考点】分式的加减法【解析】【分析】根据分式的加减,可得答案、四、综合题24、【答案】(1)解:去分母得:x+3=5x,解得:x= 34 ,经检验x= 34 是分式方程的解(2)解:去分母得:2x﹣4x+4=3,解得:x= 12 ,经检验x= 12 是分式方程的解【考点】解分式方程【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解、。
冀教版八年级数学上册第十二章分式与分式方程练习题(附答案)

冀教版八年级数学上册第十二章分式与分式方程练习题(附答案)1.已知=3,求的值.2.(1)计算:(﹣2)3÷()﹣1+()﹣2﹣|﹣2|+(2022﹣π)0;(2)解分式方程:=1.3.(1)化简:;(2)下面是小明计算分式的过程,请认真阅读,完成下列任务:解:原式=……第一步=……第二步=x﹣x……第三步=0.……第四步任务一:①第一步变形采用的方法是;②第步开始出现错误;任务二:③请直接写出正确的结果,该结果是.4.先化简,再求值:,其中x=1.5.“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?6.(1)计算:;(2)解分式方程:.7.阅读以下材料,并解答下列问题:下列一组方程:①x+=3,②x+=5,③x+=7,…,小贤通过观察,发现了其中蕴含的规律,并顺利地求出了前三个方程的解,他的解答过程如下:由①x+=1+2得x=1或x=2;由②x+=2+3得x=2或x=3;由③x+=3+4得x=3或x=4.(1)若n为正整数,请直接写出第n个方程及其方程的解.(2)若n为正整数,关于x的方程x+=2n﹣2的一个解是x=7,求n的值.8.嵊州榨面是嵊州美食的一张名片,某面馆推出两款经典美食榨面,一款是色香味俱全的“炒榨面”,另一款是清香四溢的“汤水榨面”.已知2份“炒榨面”和1份“汤水榨面”需46元;1份“炒榨面”和2份“汤水榨面”需38元.(1)求“炒榨面”、“汤水榨面”的单价.(2)鸭蛋是两款美食必不可少的配料,该面馆老板发现本月的每千克鸭蛋价格比上个月涨了25%,同样花160元买到的鸭蛋数量比上个月少了2千克,求本月鸭蛋的价格.9.先化简,再求值:,其中x=2.10.先化简,再求值:,其中a=﹣1.11.(1)解分式方程:=+1;(2)先化简(﹣)÷,然后从2,0,﹣1三个数中选一个合适的数代入化简后的结果中进行求值.12.某工厂计划招聘甲、乙两种工人生产同一种零件,每小时甲种工人比乙种工人多生产10个零件,甲种工人生产150个这种零件所用时间与乙种工人生产120个这种零件所用时间相等.(1)甲、乙两种工人每小时各生产多少个这种零件?(2)若该工厂计划招聘90名工人,且甲种工人人数不超过乙种工人人数的2倍,如何招聘才能在10小时内生产最多的这种零件?最多能生产多少个这种零件?13.某村计划对面积为1600m2的农场进行数字化硬件改造升级,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的3倍,如果两队各自独立完成面积为720m2区域的改造时,甲队比乙队少用8天.(1)求甲、乙两工程队每天各能完成多少面积的改造;(2)若甲队每天改造费用是2.7万元,乙队每天改造费用为0.8万元,要使这次改造的总费用不超过22万元,则至少应安排乙工程队改造多少天?14.已知,关于x的分式方程=1.(1)当a=2,b=1时,求分式方程的解;(2)当a=1时,求b为何值时分式方程=1无解;(3)若a=3b,且a、b为正整数,当分式方程=1解为整数时,求b的值.15.对于一些特殊的方程,我们给出两个定义:①若两个方程有相同的一个解,则称这两个方程为“相似方程”;②若两个方程有相同的整数解,则称这两个方程为“相伴方程”.(1)判断一元一次方程3﹣2(1﹣x)=4x与分式方程是否是“相似方程”,并说明理由;(2)已知关于x,y的二元一次方程y=mx+6与y=x+4m是“相伴方程”,求正整数m 的值.16.为响应阳光体育运动的号召,某中学从体育用品商店购买一批足球和篮球,购买足球花费了2500元,购买篮球花费了2000元,且购买足球数量是购买篮球数量的2倍,已知购买一个篮球比购买一个足球多花30元.(1)求购买一个足球和篮球各需要花费多少元?(2)该中学决定再次购进足球和篮球共50个,且此次购买足球和篮球的总费用不超过3100元,则该中学此次最多可购买多少个篮球?17.2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.(1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;(2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?18.为了满足市民的物质需求,某超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:甲乙进价(元/袋)m m﹣2售价(元/袋)2013已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,问至少购进甲种袋装食品多少袋?19.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人工作效率的20倍,若用一台机器人分拣8000件货物,比原先16名工人分拣这些货物要少用小时.(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,石家庄某京东仓库11月11日当天收到快递72万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和20名分拣工人,工作3小时之后,又调配了15台机器人进行增援,该公司能否在规定的时间内完成任务?请说明理由.20.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用30天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前8天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?。
冀教版数学八年级上册第十二章综合测试(含答案)

第十二章综合测试班级: 姓名: 成绩:一、选择题1.如果把5x x y+中的x 与y 都扩大为原来的10倍,那么这个代数式的值( ) A .扩大为原来的10倍 B .扩大为原来的5倍C .缩小为原来的12D .不变 2.在85 ,3m n ,3x y +,1x ,3a b +中,分式的个数是( ) A .1 B .2 C .3 D .43.使分式22(2)(9)x x x ---有意义的x 应取( ) A .x ≠3且x ≠﹣3B .x ≠2或x ≠3或x ≠﹣3C .x ≠3或x ≠﹣3D .x ≠2且x ≠3且x ≠﹣34.不改变分式的值,下列分式变形正确的是( )A .223322x x y y= B .221a b a b a b +=++ C .22142x x x -=-+ D .222x x x y xy y -=- 5.若分式方程1x a x +-=a 无解,则a 的值为( ) A .﹣1B .1C .±1D .﹣2 6.计算2x 3÷1x 的结果是( ) A .2x 2 B .2x 4 C .2x D .47.为保证某高速公路在2018年底全线顺利通车,某路段规定在若干天内完成修建任务. 已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务. 若设规定的时间为x 天,由题意列出的方程是( )A .111104014x x x +=--+B .111101440x x x +=-+-C.111104014x x x-=++-D.111+104014x x x=++-8.若分式34xx-+的值为0,则x的值是()A.3 B.0 C.-3 D.-49.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是()A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+10.若31x-与4x互为相反数,则x的值是()A.1 B.2 C.3 D.411.若分式22423xx x---无意义,则()A.x=-1 B.x=3 C.x=-1且x=3 D.x=-1或x=3 12.下列各式成立的是()A.22b ba a=B.b b ca a c+=+C.222()a b a ba b a b--=++D.22a aa b a b=++13.下列变形错误的是()A.32364422x yx y y-=-B.33()1()x yy x-=--C.32312()4()27()9x a b x a ba b--=-D.22223(1)9(1)3x y a xxy a y-=--14.当x=__________时,424xx--的值与54xx--的值相等()A.-1 B.4 C.5 D.015.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元16.已知18x x -=,则2216x x +-的值是( ) A .60 B .64 C .66 D .7217.对于分式2||24x x --,下列说法正确的是( ) A .x =2时,它的值为0 B .x =-2时,它的值为0C .x =2或x=-2时,它的值为0D .不论x 取何值,它的值都不可能为018.下列说法正确的是( )A .3-的倒数是13B .2-的绝对值是2-C .()5--的相反数是5-D .x 取任意实数时,4x都有意义 19.已知关于x 的分式方程的根为正数,则m 的取值范围为( )A .B .C .D .20.在物理并联电路里,支路电阻R 1、R 2与总电阻R 之间的关系式为=+,若R ≠R1,用R 、R1表示R2正确的是( )A .R 2=B .R 2=C .R 2=D .R 2=21.若a b s b a+=-,则b 为( ) A .1a as s ++; B .1a as s -+ ; C .2a as s +- ; D .1a as s +-; 22.已知a-b 0≠,且2a-3b=0,则代数式2a b a b --的值是( ) A .-12 B .0 C .4 D .4或-1223.在数学活动课中老师出了这样一道题目让同学们讨论:现有铁丝重m 1克,铜丝重m 2克,铁丝、铜丝的截面半径分别为r 1cm 和r 2 cm,不用直接测量长度,分别计算它们的长度(铁的密度为7.8g/cm 3,铜的密度为8.9g/cm 3)正确的回答是( ) A .铁丝为 1217.8m r πcm 铜丝为2228.9m r πcm B .铁丝为 121m r cm 铜丝为222m r πcmC .铁丝为 121m r cm 铜丝为 222m r cmD .铁丝为 11m r cm 铜丝为 22m r cm 24.对于分式11x + 的变形永远成立的是( ) A .1212x x =++ B .21111x x x -=+- C .2111(1)x x x +=++ D .1111x x -=+- 25.甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( )A .(m+n)小时B .2m n +小时C .m n n m +小时D .mn m n +小时 二、填空题26.计算xx x 111的结果是__________.27.计算:232()x y-=____. 28.方程4044033x x-= 的解是______. 29.若ab a b -=34,则1a ﹣1b的值是_____. 30.不改变分式的值,把分子分母的系数化为整数:0.50.20.3a b a b +=-____________. 31.若方程 23(1)k x =- 的解是x=5,则k= ________. 32.当x=____时,分式无意义;当x________时,分式有意义.33.已知关于x 的分式方程211a x x +--=1的解是非负数,则a 的取值范围是__________. 34.已知1xy =,则11x y x y+=++_________________. 35.马小虎的家距离学校1 800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,则马小虎的速度为_________米/分钟.三、解答题36.解分式方程:(1)23133x x x --=+-; (2)22222222x x x x x x x++--=--. (3) 11x 3x 22x-+=-- . 37.计算: (1)212293m m --- (2)222299369x x x x x x x +-++++ (3) 22m n 2mn m n m n m n -+-+- ; 38.已知分式2218x 3x -+ (1)当x 取什么值时,分式有意义?(2)当x 取什么值时,分式为零?(3)当x 取什么值时,分式的值为负数?39.已知关于x 的方程4433x m m x x---=--无解,求m 的值. 40.阅读材料:关于x 的方程: 11x a x a +=+的解为:1x a =,21x a = 11x a x a -=-(可变形为11x a x a --+=+)的解为:1x a =,21x a -= 22x a x a +=+的解为:1x a =,22x a = 33x a x a +=+的解为:1x a =,23x a= …………根据以上材料解答下列问题:(1)①方程1122xx+=+的解为________________.②方程111313xx-+=+-的解为________________.(2)解关于x方程:①2211x ax a+=+--(1a≠)②3322x ax a-=---(2a≠)41.注意:为了使同学们更好的解答本题,我们提供了一种解题思路,你可以依照这个解题思路按下面的要求填空,完成本题的解答;也可以选用其它的解答方案,此时不必填空,只需按解答题的一般要求,进行解答.甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?解题方案设甲每天加工x个玩具,(1)用含x的代数式表示:①乙每天加工____个玩具,甲加工90个玩具所用的时间为______,乙加工120个玩具所用的时间为_______;②根据题意,列出相应方程__________________;③解这个方程得___________;④检验:____________;⑤答:甲每天加工________个玩具,乙每天加工_________个玩具.42.某施工队承包了高速公路上300米路段的维护施工任务,施工80米后,接上级指示,在保证施工质量的前提下,要求加快施工速度,在6天内完成施工任务。
冀教版八年级上册数学第十二章 分式和分式方程含答案

冀教版八年级上册数学第十二章分式和分式方程含答案一、单选题(共15题,共计45分)1、若分式的值不存在,则x的取值是()A.x=﹣2B.x≠﹣2C.x=3D.x≠32、化简:﹣=()A.0B.1C.xD.3、某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车捉速前的速度是x千米/小时,下列所列方程正确的是( )A. B. C. D.4、如果分式的值为0,那么的值为()A.-1B.1C.-1或1D.1或05、在代数式、、、中,分式的个数有()A.1个B.2个C.3个D.4个6、解分式方程- = 时,去分母后得到的方程正确是()A. B. C.D.7、不改变分式的值,把它的分子与分母中各项的系数化为整数,其结果正确的是( )A. B. C. D.8、分式方程的解为()A. B. C. D.无解9、若xy=x﹣y≠0,则分式=().A. B.y﹣ x C.1 D.﹣110、若关于x的不等式组无解,且关于y的方程=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个11、在式子, , , 中, 可以取到3和4的是( )A. B. C. D.12、某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A. =3B.C.D.13、下列分式, , , 中,不能再化简的有( )A.1个B.2个C.3个D.4个14、若式子有意义,则x的取值范围为().A.x≥2B.x≠2C.x≤2D.x<215、某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成二、填空题(共10题,共计30分)16、若分式无意义,且,那么=________.17、若有意义,则字母x的取值范围是________.18、关于x的方程=3有增根,则m的值为________.19、如图,点是反比例函数的图象上任意一点,轴交反比例函数的图象于点,以为边作平行四边形,其中、在轴上,则为________.20、一个圆柱形容器的容积为,开始用一根小水管向容器内注水,水面高度到达容器高度的一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时4个小时.设小水管每小时注水,依题意可列方程为________.21、在一个不透明的盒子中装有12个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数是________.22、如果时,那么代数式的值________.23、要使分式有意义,应满足的条件是________24、如果关于x的分式方程有增根,则m的值为________.25、分式方程的解是________.三、解答题(共5题,共计25分)26、先化简,再求值:()÷,其中a= +1,b=﹣1.27、当x为何值时,与的值相等.28、一辆汽车开往距离出发地320km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前30min到达目的地,求前一小时的汽车行驶速度.29、先化简,再求值:,其中与2,3构成的三边长,且为整数.30、阅读材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为,可设(b为整数),则.对于任意x,上述等式均成立,解得.这样,分式就被拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解决问题:将分式分别拆分成一个整式与一个分式(分子为整数)的和(差)的形式.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、B5、A6、C7、C8、D9、C10、D12、C13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。
冀教版八年级上第十二章分式和分式方程单元检测题有答案(数学)

147 冀教版数学八年级上册 第十二章 分式和分式方程 单元检测题 含答案一.选择题(每小题3分,共24分)1、当x=2时,其值为零的分式是 ( )232)(2+--x x x A 21)(-x B 142)(--x x C 12)(++x x D2、使分式65222++-+x x x x 的值等于零,则x 的值为 ( )A.1B.-2C.1或-2D.-1或23、分式()()311-+-x x x 有意义,则x 应满足条件 ( )A 、1-≠xB 、3≠xC 、1-≠x 或3≠xD 、1-≠x 且3≠x 4、分式a x y 434+,1142--x x ,y x y xy x ++-22,2222b ab aba -+中,最简分式有 ( )A.1个B.2个C.3个D.4个.5、若x 等于它的倒数,则分式1332622+-+÷--+x x x x x x 的值为 ( )A.-1B.5C.-1或5D.-41或4.6.已知为整数,且918232322-++-++x x x x 为整数,则符合条件的有()A .2个B .3个C .4个D .5个7、使方程(m+1)x=m-1有解的m 值是 ( )8、现有20%的盐水10千克,问加食盐多少千克,才能恰好配得40%的盐水?解设加食盐x 千克,则正确的方程是 ( )A 、004010=+x xB 、0040101002010=++⨯x xC 、004010020=+x xD 、0040100201002010=++⨯x x二、填空题(每小题3分,共24分)9、对于分式521-+x x ,当x 时,该分式有意义。
10、当x= 时,分式242--x x 的值为零.11、化简:1342+⋅⎪⎭⎫ ⎝⎛+-x xx 得__________。
14812、计算:3)3(32-+-x x x x =_________。
13、方程114112=---+x x x 的解为_____。
冀教版八年级数学上册《第十二章分式和分式方程》单元测试题含答案

冀教版八年级数学上册第十二章分式和分式方程测试题一、选择题(每小题4分,共32分)1.在代数式3x +12,5a ,6x 2y π,35+y ,2ab 2c 23,x 2x中,分式有( ) A .4个 B .3个C .2个D .1 个2.若分式x -3x +4的值为0,则x 的值是( ) A .3 B .0C .-3D .-43.下列等式中正确的是( )A.a b =2a 2bB.a b =2+a 2+bC.a b =a -1b -1D.a b =a 2b 2 4.使等式7x +2=7x x 2+2x从左到右变形成立的条件是( ) A .x <0 B .x >0C .x ≠0D .x =05.分式方程12x =1x +3的解是( ) A .x =-2 B .x =1C .x =2D .x =36.计算⎝ ⎛⎭⎪⎫2x x 2-1+x -1x +1÷1x 2-1的结果是( ) A.1x 2+1 B.1x 2-1 C .x 2+1 D .x 2-17.若分式方程k -1x -1-1x -x =k -5x +x有增根x =-1,则k 的值为( ) A .1 B .3C .6D .98.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度分别为多少?设货车的速度为x 千米/时,依题意列方程正确的是( )A.25x =35x -20 B.25x -20=35x C.25x =35x +20 D.25x +20=35x二、填空题(每小题4分,共24分)9.当x________时,分式13-x有意义. 10.分式x +y 2xy ,y 3x 2,x -y 6xy 2的最简公分母为________.11.计算1a -1+a 1-a的结果是________. 12.当x =________时,1x +1与1x -1互为相反数. 13.某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工a 件这样的产品,机器加工所用的时间是手工加工所用时间的37,则手工每小时加工产品的数量为________件.14.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…,你规定的新运算a ⊕b =__________(用含a ,b 的代数式表示).三、解答题(共44分)15.(6分)计算:(1)-3a 2b 3cd 2·8a 2c 221bd ÷-2c 7a;(2)3a +⎝ ⎛⎭⎪⎫1+1a -2·a 2-2a a -1.16.(6分)解方程:x x +3=1+2x -1.17.(6分)已知1a -1=2,请先化简⎝ ⎛⎭⎪⎫1-1a +2÷a 2+2a +1a 2-4,再求该式子的值.18.(8分)一般情况下,一个分式通过适当的变形,可以化为整式与分式的和的形式,例如:①x +1x -1=(x -1)+2x -1=x -1x -1+2x -1=1+2x -1; ②x 2x -2=x 2-4+4x -2=()x +2(x -2)+4x -2=x +2+4x -2. (1)试将分式x -1x +2化为一个整式与一个分式的和的形式; (2)如果分式2x 2-1x -1的值为整数,求x 的整数值.19. (8分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20.(10分)在某城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程合作完成该工程省钱?答案1.B 2.A 3.A .4.C 5.D 6.C 7.D 8.C9.≠3 10.6x 2y 2 11.-112.0 13.2714.2a +2b ab 或2a +2b(符合题意的式子均可) 15.解:(1)原式=-3a 2b 3cd 2·8a 2c 221bd ·7a -2c =4a 53d 3. (2)原式=3a +a -2+1a -2·a (a -2)a -1=3a +a =4a. 16.解:方程两边同乘(x -1)(x +3),得x(x -1)=(x +3)(x -1)+2(x +3).解得x =-35. 检验:当x =-35时,(x -1)(x +3)≠0. ∴x =-35是原方程的解. 17.解:原式=a +2-1a +2·(a +2)(a -2)(a +1)2=a -2a +1. ∵1a -1=2,∴a -1=12,∴a =32. 当a =32时,原式=⎝ ⎛⎭⎪⎫32-2÷⎝ ⎛⎭⎪⎫32+1=-12÷52=-15. 18.解:(1)原式=(x +2)-3x +2=1-3x +2. (2)原式=2x 2-2+1x -1=2(x +1)(x -1)+1x -1=2(x +1)+1x -1. ∵分式的值为整数,且x 为整数,∴x -1=±1,∴x =2或x =0.19.解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米.根据题意,得360x -3601.6x=4,解得x =33.75, 经检验x =33.75是原分式方程的解且符合题意,则1.6x =1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米.(2)设平均每年绿化面积增加a 万平方米.根据题意,得54×3+2(54+a)≥360,解得a ≥45.答:实际平均每年绿化面积至少还要增加45万平方米.20.解:(1)设乙队单独完成之项工程需x 天,根据题意,得160×20+⎝ ⎛⎭⎪⎫1x +160×24=1, 解这个方程,得x =90.经检验,x =90是原方程的解且符合题意.答:乙队单独完成这项工程需90天.(2)设甲、乙合作完成需y 天,则有⎝ ⎛⎭⎪⎫160+190y =1, 解得y =36.甲单独完成需付工程款为60×3.5=210(万元);由(1)知乙单独完成超过计划天数,不符合题意;甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).因为198<210,所以在不超过计划天数的前提下,由甲、乙两队合作完成该工程省钱.。
冀教版八年级上册数学第十二章 分式和分式方程含答案(黄金题型)

冀教版八年级上册数学第十二章分式和分式方程含答案一、单选题(共15题,共计45分)1、在,,﹣3xy+y2,,,分式的个数为()A.2B.3C.4D.52、己知分式方程有增根,则n的值为多少()A.xB.0C.4D.0或43、在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()A.不变B.是原来的2倍C.是原来的4倍D.无法确定4、为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A. B. C.D.5、若点在反比例函数的图像上,则分式方程的解是()A. 或B.x=6C.D.6、在实数范围内,下列各式一定不成立的有( )(1)=0; (2)+a=0; (3)+=0;(4)=0.A.1个B.2个C.3个D.4个7、A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A. ﹣=30B. ﹣=C. ﹣=D. + =308、如果把的x与y都扩大到原来的10倍,那么这个代数式的值()A.不变B.扩大10倍C.扩大100倍D.无法确定9、下列式子是分式的是( )A. B. C. +y D. +110、函数y=中,自变量x的取值范围是()A.x 且x≠1B.x 且x≠1C.x 且x≠1D.x且x≠111、若关于x的分式方程=3+ 无解,则a的值为()A.a=5B.a=﹣5C.a=D.a=﹣12、化简的结果为()A. B. C. D.﹣2b13、若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3B.1,2C.1,3D.2,314、若分式中的的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍C.是原来的10倍D.是原来的15、下列代数式是最简形式的是()A. B. C. D.二、填空题(共10题,共计30分)16、若用去分母法解分式方程会产生增根,则m的值为________.17、方程的根是________.18、化简:=________19、分式的值为零,则x的值为________20、若关于x的方程无解,则a的值是________.21、分式在实数范围内有意义,则x的取值范围是________.22、在函数y=+(x﹣5)﹣1中,自变量x的取值范围是________.23、化简的结果是________ .24、若分式有意义,则应满足的条件是________.25、在代数式,,,,中,是分式的有________个.三、解答题(共5题,共计25分)26、已知x+ =2,求.27、先化简,再讨论:,讨论当原式的值为整数时,整数x的取值.28、一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙两种车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.29、甲、乙两辆客车分别从相距40千米的A、B两站同时出发,相向而行,相遇时乙车行驶了25千米,如果乙车每小时比甲车多走2千米,求甲、乙两车速度.30、先化简,再求值:﹣,其中a=1+,b=﹣1+参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、A5、B6、C7、B8、B9、B11、B12、B13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
冀教版八年级数学上册第十二章达标测试卷附答案

冀教版八年级数学上册第十二章达标测试卷一、选择题(每小题2分,共28分) 1.若x是分式,则 可以是( )A .2B .3C .-6D .x +22.若分式x -2x +2的值为0,则x 的值为( )A .2B .-2C .2或-2D .03.在分式:①a3x ;②x +y x 2-y 2;③a -b (a -b )2;④x +y x -y中,最简分式的个数是( )A .1B .2C .3D .44.一辆汽车以80千米/时的速度行驶,从石家庄到北京需t 小时,如果该汽车的速度增加v 千米/时,那么从石家庄到北京需要( ) A.80tvB.80tv +80 C.vt v +80D.vt 80 5.【创新考法】已知关于x 的分式方程2x x -2=1-a2-x 有增根,则分式y -1y +a无意义时y 的值是( ) A .2B .1C .3D .-46.关于分式2xy3x -4y,下列说法正确的是( )A .分子、分母中的x ,y 均扩大到原来的3倍,分式的值也扩大到原来的3倍B .分子、分母中的x 扩大到原来的3倍,y 不变,分式的值扩大到原来的3倍C .分子、分母中的y 扩大到原来的3倍,x 不变,分式的值不变D .分子、分母中的x ,y 均扩大到原来的3倍,分式的值不变 7.下列各式从左到右的变形中,正确的是( )A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +ba +2bC .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b8.化简x 2x -1+x1-x的结果为( )A .x +1B .x -1C .-xD .x9.计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .a B .a 5C .a 6D .a 910.分式方程2x -3=3x的解为( ) A .x =0 B .x =3 C .x =5D .x =911.如果a -b =2,那么代数式⎝ ⎛⎭⎪⎫a 2+b 22a -b ·aa -b的值为( ) A .1 B .2C .3D .412.化简2x 2-1÷1x -a 的结果是2x +1,则a 的值是( ) A .1B .-1C .2D .-213.已知m 2-3m +2=0,则分式mm 2-m +2的值是( )A .3B .2 C.13D.1214.若m 为整数,则能使m 2-2m +1m 2-1也为整数的m 的值有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共12分) 15.不改变分式0.02x +0.09y0.01x -0.3y的值,使该分式的分子与分母中各项系数都化为整数的结果是________.16.若关于x的分式方程m-3x-1=1的解为x=2,则m的值为________.17.小明同学不小心弄污了练习本上的一道题,这道题是:“化简mm2-1÷”,其中“”处被弄污了,但他知道这道题的化简结果是mm-1,则“”处的式子为________.18.某服装制造厂要在开学前赶制3 000套校服,为了尽快完成任务,厂领导合理调配人力使每天完成的校服比原计划多20%,结果提前4天完成任务.问:原计划每天完成多少套校服?设原计划每天完成校服x套,则可列出方程为____________.三、解答题(19,20小题各8分,21~23小题各10分,24小题14分,共60分) 19.解下列方程:(1)x-3x-2+1=32-x;(2)32-13x-1=56x-2.20.先化简:⎝ ⎛⎭⎪⎫2x +2x 2-1-x -1x 2-2x +1÷1x +1,然后解答下列问题: (1)当x =2时,求代数式的值; (2)原代数式的值能等于0吗?为什么?21.学习了分式运算后,老师布置了这样一道计算题:2x 2-1-1x -1,甲、乙两名同学的解答过程如图:(第21题)老师发现这两名同学的解答过程都有错误.请你从甲、乙两名同学中,选择一名同学的解答过程,帮助他分析错因,并加以改正.(1)我选择__________同学的解答过程进行分析(填“甲”或“乙”);该同学的解答从第________步开始出现错误(填序号),错误的原因是___________________________________________________________;(2)请写出正确的解答过程.22.当m为何值时,关于x的分式方程xx+3-x+1x-2=x-2mx2+x-6的解不小于1?23.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元;(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元,则大本作业本最多能购买多少本?24.阅读下面的材料:∵11×3=12×⎝ ⎛⎭⎪⎫1-13,13×5=12×⎝ ⎛⎭⎪⎫13-15,15×7=12×⎝ ⎛⎭⎪⎫15-17,…,117×19=12×⎝ ⎛⎭⎪⎫117-119, ∴11×3+13×5+15×7+…+117×19=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫117-119=12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+117-119=12×⎝ ⎛⎭⎪⎫1-119=919. 解答下列问题:(1)在和式11×3+13×5+15×7+…中,第6项是__________,第n 项是________________(n 为正整数);(2)材料是通过逆用____________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以______________,从而达到求和的目的; (3)根据上面的方法,请你解下面的方程:1x (x +3)+1(x +3)(x +6)+1(x +6)(x +9)=32x +18.答案一、1.D 2.A 3.B 4.B 5.D 【点拨】2x x -2=1-a2-x,去分母得2x =x -2+a .∵该分式方程有增根,∴x -2=0,∴x =2, 把x =2代入2x =x -2+a ,得a =4, 则y -1y +a =y -1y +4. 要使分式y -1y +4无意义, 则y +4=0,即y =-4. 6.A 7.A 8.D 9.A 10.D 11.A 12.A 【点拨】根据题意,得2x 2-1÷1x -a =2x +1, ∴1x -a =2x 2-1÷2x +1=2(x -1)(x +1)·x +12=1x -1. ∴a =1.13.D 【点拨】∵m 2-3m +2=0,∴m ≠0.∴m -3+2m =0.∴m +2m =3. 则原式=1m +2m -1=13-1=12. 14.C 【点拨】∵m 2-2m +1m 2-1=(m -1)2(m +1)(m -1)=m -1m +1=1-2m +1,∴能使m 2-2m +1m 2-1也为整数的m 的值可以是-2或-3或0,故选C. 二、15.2x +9yx -30y16.4 17.m +1 18.3 000x =4+ 3 000(1+20%)x三、19.解:(1)方程两边同时乘x -2,得x -3+x -2=-3, 解得x =1.检验:当x =1时,x -2≠0, ∴x =1是原分式方程的解. (2)方程两边同时乘2(3x -1), 得3(3x -1)-2=5, 解得x =109.检验:当x =109时,2(3x -1)≠0, ∴x =109是原分式方程的解. 20.解:⎝ ⎛⎭⎪⎫2x +2x 2-1-x -1x 2-2x +1÷1x +1=⎣⎢⎡⎦⎥⎤2(x +1)(x +1)(x -1)-x -1(x -1)2·(x +1) =⎝ ⎛⎭⎪⎫2x -1-1x -1·(x +1) =1x -1·(x +1) =x +1x -1. (1)当x =2时,原式=2+12-1=3.(2)原代数式的值不能等于0. 理由:令x +1x -1=0,得x =-1, 当x =-1时,原代数式无意义, 故原代数式的值不能等于0. 21.解:(1)甲;②;通分时,将1x -1的分母乘x +1,而分子没有乘x +1(答案不唯一)(2)2x 2-1-1x -1=2(x +1)(x -1)-1x -1 =2(x +1)(x -1)-x +1(x +1)(x -1) =1-x(x +1)(x -1)=-(x -1)(x +1)(x -1) =-1x +1. 22.解:由原方程,得x (x -2)-(x +1)(x +3)=x -2m .整理,得-7x =3-2m , 解得x =2m -37. ∵分式方程x x +3-x +1x -2=x -2m x 2+x -6的解不小于1,且x ≠-3,x ≠2, ∴⎩⎪⎨⎪⎧2m -37≥1,2m -37≠-3,2m -37≠2,解得m ≥5且m ≠8.5.23.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元,依题意,得8x +0.3=5x , 解得x =0.5.经检验,x =0.5是原分式方程的解. ∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元. (2)设大本作业本购买m 本,则小本作业本购买2m 本, 依题意,得0.8m +0.5×2m ≤15.解得m≤25 3.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.24.解:(1)111×13;1(2n-1)(2n+1)(2)分数减法;相互抵消(3)将分式方程变形为13(1x-1x+3+1x+3-1x+6+1x+6-1x+9)=32x+18.整理,得1x-1x+9=92(x+9).方程两边都乘2x(x+9),得2(x+9)-2x=9x,解得x=2.经检验,x=2是原分式方程的解.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是() A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,则可列方程为()A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B .同位角相等,两直线平行C .若a =b ,则a 2=b 2D .若a >0,b >0,则a 2+b 2>015.x 2+x x 2-1÷x 2x 2-2x +1的值可以是下列选项中的( )A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD 上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新冀教版八年级数学上册第十二章单元测试一、选择题(每小题3分,共30分)1.在b a b a x x x b a -+++-,5,3,2π,a12+中,是分式的有 ( ) A.1个 B.2个 C.3个 D.4个2.若2||123x x x -+-的值为零,则x 的值是( )A .1±B .1C .1-D .不存在3x 的取值范围为( ) A .0x > B .0x ≥ C .0x ≠ D .0x ≥且1x ≠4.下列各式从左到右的变形正确的是( )A .122122x yx y x y x y --=++ B .0.220.22a b a ba b a b ++=++C .11x x x y x y+--=-- D .a b a ba b a b+-=-+ 5.将()()2013,2,61--⎪⎭⎫ ⎝⎛-这三个数按从小到大的顺序排列,正确的结果是( )A .()02-<161-⎪⎭⎫ ⎝⎛<()23- B .161-⎪⎭⎫ ⎝⎛<()02-<()23-C .()23-<()02-<161-⎪⎭⎫ ⎝⎛D .()02-<()23-<161-⎪⎭⎫ ⎝⎛6.已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B7.计算:262393m m m m -÷+--的结果为( ) A.1 B.33m m -+ C.33m m +- D.33mm +8.若分式x -51与x322-的值互为相反数,则x=( )A .—2.4B .125C .—8D .2.49.某工地调来72人挖土或运土,已知3人挖出的土恰好被1人全部运走.怎样分配好劳动力才能使挖出来的土及时运走且不窝工?设派x 人挖土,根据题意,列出方程: ①3172=-x x ; ②372x x =-;③723=+x x ;④372=-xx. 则正确的方程的个数为( )A .1个B .2个C .3个D .4个10.有两块面积相同的小麦试验田,分别收获小麦9000kg 和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,若设第一块试验田每公顷的产量为x kg ,根据题意,可得方程( ) A.x x 1500030009000=+ B.3000150009000-=x x C.3000150009000+=x x D.xx 1500030009000=- 二、填空题(每小题3分,共30分) 1.纳米级材料由于具备传统材料不具备的奇异或反常的物理化学性质,而被广泛用于建筑、家电制造等行业,其实纳米是一种长度度量单位,1那米=0.000000001米,用科学记数法表示6.19纳米=____________米.2.若代数式(x -2)(x -1)|x |-1的值为零,则x 的取值应为_______________.3.不改变分式的值,使它的分子、分母的最高次项的系数都是正数,则2311a a a a--=+-__________. 4.若0)12(-x 有意义,则x 的取值为________;若2)83(-+x 无意义, 则x 的取值为________.5.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 6.化简:22193m m m -=-+ . 7. 使分式方程产生增根的m 值为______.8.观察下列各等式的数字特征:85358535⨯=-、1192911929⨯=-、17107101710710-=-、……,将你所发现的规律用含字母a 、b 的等式表示出来: .9.锅炉房储存了c 天用的煤m 吨,要使储存的煤比预定的多用d 天,每天应当节约____吨.10. 汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此官兵们发扬我军不怕苦,不怕累的优良传统,找出晚归,使实际施工速度提高到计划的1.5倍,结果比计划提前10天完成,问该连实际每天加固河堤多少千米?列方程解此应用题时,若计划每天加固河堤x 千米,则实际每天加固1.5x 千米,根据题意可列方程为 _____________ .三、解答题(共60分) 1.(7分)请阅读下列计算过程,再回答所提出的问题:()4623)1(332)1)(1()1(3)1)(1(3113)1)(1(313132 --=+--=-++--+-=---+-=----x x x x x x x x x x x x x x x x )()()( ①上述计算过程是从哪一步开始出现错误的? ;②从(2)到(3)是否正确? ,若不正确,错误的原因是 ; ③请你写出你认为正确的完整的解答过程.2.(15分)计算:(1)2222111x x x x x x-+-÷-+. (2)22242442a a a a a a a a ⎛⎫----÷⎪++++⎝⎭. (3)解分式方程:5140x x+-= 3.(12分)化简并求值: (1)221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中33a b =-=. (2)先化简233211x x x +---,然后选择一个合适的你最喜欢的x 的值,代入求值. 4.(6分)课堂上,李老师给大家出了这样一道题:当x=3,数式22211x x x -+-÷221x x -+的值.小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体过程.5.(6分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数.6.(6分)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?7.(8分)探究题 (1)观察下列各式:6151651301,5141541201,4131431121,312132161-=⨯=-=⨯=-=⨯=-=⨯= 由此可以推测.________421=(2)请猜想出能表示(1)的特点的一般规律,用含字母m 的等式表示出来,并说明理由(m 表示整数)(3)请直接用(2)中的规律计算:)2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x 的结果.答案:一、1、C ;2、C ;3、A ;4、A ;5、A ;6、C ;7、A;8、D ;9、C ;10、C.二、1、91019.6-⨯;2、2;3、2311a a a a +---;4、38;21-≠x ;5、1m +;6、13m -;7、3;8、b a b a b a b a a b a b -----=⨯(只要表示正确的等式均可);9、 dc m c m +-;10、xx 5.1201020=-. 三、1、解:(1)第一步;(2)不正确,分母没有了;(3)原式=)1)(1(413)1)(1(3-+=-+-+-x x xx x x x2、(1)解:原式()()()()211111x x x x x x -+=+-- x =. (2)解:原式()2222242a a a a a a a ⎡⎤--+=-⎢⎥+-+⎢⎥⎣⎦()()()2224242a a a a a a ---+=-+ ()24242a a a a -+=-+ 12a =+. (3)解:去分母得:()5410x x -+= 去括号得:5440x x --= 解得:x =4经检验x =4是原方程的解. 所以原方程的解为x =4.3、(1)解:原式22111()22a b a b a a b a a b -=-+---··111()()22a b a b a a a b=-++--·a b =+当3a =-3b =时,33a b +=-=(2)解:原式3(1)2321(1)(1)1111x x x x x x x +=-=-=+-----.依题意,只要1x ≠±就行,如2x =,原式1=.4、解:原式=2(1)(1)(1)x x x -+-·12(1)x x +-=12所以,当x=3,12. 5、(1)解:设乙工程队单独完成这项工程需要x 天,根据题意得:101120140x x ⎛⎫++⨯= ⎪⎝⎭解之得:60x = 经检验:60x =是原方程的解. 答:乙工程队单独完成这项工程所需的天数为60天.(2)解:设两队合做完成这项工程所需的天数为y 天,根据题意得: 1114060y ⎛⎫+=⎪⎝⎭解之得:24y = 答:两队合做完成这项工程所需的天数为24天.6、解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,由题意得,25.120220xx =- 解得x = 2经检验x = 2是原方程的解. 1.25x = 2.5(元).答:B 城市每立方米水费2元,A 城市每立方米2.5元. 7、解:(1)7161-;(2)111)1(1+-=+m m m m ,理由:右边=+-++=)1()1(1m m m m m m )1(1+m m .(3)原式=.0211131113121=---+-+-----x x x x x x备用题:1、已知当x=-2时,分式ax bx -- 无意义,x=4时,此分式的值为0,则a+b=( ).C A .—6 B .—2 C .2 D .—62、 下列关于x 的方程,是分式方程的是( )D A .32325x x ++-= B.2172x x -= C.213x x π-+= D.1212x x=-+ 3、 某工厂原计划在x 天内完成120个零件,采用新技术后,每天可多生产3个零件,结果提前2天完成.可列方程( ) A A. B.C.D.4、 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.答案不唯一,如231x -,2||11x x +-,1||1x -等.5、方程1313x x =++的解是 .0x =; 6、 (2006 长沙课改)先化简再求值:2221412211a a a a a a --÷+-+- ,其中a 满足20a a -=. 解:原式221(2)(2)(1)(1)(2)(1)22(1)1a a a a a a a a a a a -+-+-==-+=--+-·· 由20a a -=得原式022=-=- 7、(本题8分)若方程122-=-+x ax 的解是正数,求a 的取值范围.关于这道题,有位同学作出如下解答:解 :去分母得,2x+a=-x+2. 化简,得3x=2-a.故x=32a-. 欲使方程的根为正数,必须032〉-a,得a<2. 所以,当a<2时,方程122-=-+x ax 的解是正数. 上述解法是否有误?若有错误请说明错误的原因,并写出正确解答;若没有错误,请说出每一步解法的依据. 解:有,应考虑x ≠2,4,232-≠≠-a a ,当a<2且a ≠—4时,方程122-=-+x ax 的解是正数。