高电压之电介质的电气强度讲解
《高电压技术系列》--电介质的极化、电导和损耗

I
I IR IC
IR
IC
~U
I
U
IR
R CP
IC
δ
φ U
在交流电压的作用下,流过电介质的电流 I 包含有功分量IR 和无功分量 IC ,即
I IR IC
此时的介质功率损耗:
P UI cos UIR UIC tan U 2CP tan 式中:ω——电源角频率
φ——功率因数角
δ——介质损耗角 tanδ又称为介质损耗因数
二、气体、液体和固体介质的损耗
1、气体介质损耗 当外加电场还不足以引起电离过程,气体中只存在很小的 电导损耗( tanδ〈10-8);但当气体中的电场强度达到放电起 始场强E0时,气体中将发生局部放电,这时的损耗将急剧增大。
2、液体介质损耗
中性和弱极性液体介质(如变压器油)的极化损耗很小,其
主要损耗由电导引起,因而其单位体积损耗率P0可用下式求得
在电场作用下没有能量损耗的理想电介质是不存在的,实 际电介质中总有一定的能量损耗,包括由电导引起的损耗和某 些有损极化(偶极子极化、夹层极化等)引起的损耗,总称介 质损耗。
在直流电压的作用下,电介质中没有周期性的极化过程, 只要外加电压还没有达到引起局部放电的数值,介质中的损耗 将仅由电导所引起,所以用体积电导率和表面电导率两个物理 量就已能充分说明问题,不必再引入介质损耗这个概念。
强, 具有正r 的温度系数。
三、偶极子极化
有些电介质的分子,如蓖麻油、松香、橡胶、胶木等,在 无外电场作用时,其正负电荷作用中心是不重合的,这些电介 质称为极性电介质。
电介质
组成极性电介质的每一个分
电极
子成为一个偶极子(两个电荷
极),在外电场作用时,由于偶
《高电压技术》第一篇电介质的电气强度第八节沿面放电和污闪事故(“污秽”相关文档)共7张

2.91~3.45 (3.20~3.80)
3.10 (3.57)
3.10 (3.41)
注: 括号内的数据为以系统额定电压为基准的爬电比距值。
六、污闪事故的对策
随着环境污染的加重、电力系统规模的不断扩大以及对供电可靠性的 要求越来越 高,防止电力系统中发生污闪事故已成为十分重要的课题。在 现代电力系统中实际采 ●最容影易响发污生闪污电闪压的的气因用象素条的件防是雾污、闪露措、融施雪主和毛要毛有雨以下几项:
1.60 (1.84)
1.60 (1.76)
1.74~2.17
1.82~2.27
(2.00~2.50) (2.00~2.50)
2.00 (2.30)
2.00 (2.20)
2.17~2.78
2.27~2.91
(2.50~3.20) (2.50~3.20)
2.50 (2.88)
2.50 (2.75)
2.78~3.30 (3.20~3.80)
普 通 高 等 教 育 “十 二 五” 国 家 规 划 教 材
●●●定使调期用整或涂爬不料距定(期增的清大扫泄漏距离) 电(爬随●各爬爬所在在注污随 第电在所●爬由1电着污电电以污:秽着介污以电于气 影 现 一 影)比 环 秽 比 比 在 层 的 环质 层 在 比 污响代括响工污篇距境等距距工表导境 的表工距闪污电号污秽程(污级((程面电污 电面程(是闪力内闪的c染所cc中电率染 气电中c局及电系的电mmmm性的要常导越的 强导常部压统数压////其质kkkk加求将率高加 度率将电VVVV的中据的和自))))重的污一和重 一污弧因实为因污动、爬层定介、 定层不素际以素染电电表时质电时表断化采系程力比面,表力 ,面拉用统专度系距电泄面系 泄电长的额业统值导漏沉统 漏导的防定规率距积规 距率过系污电模作离的模 离作程闪压列的为越污的 越为,措为教不监长秽不 长监因施基材断测,量断 ,测此主准扩绝表越扩 表绝电要的大缘面多大 面缘压有爬以子电,以 电子作以电及脏阻则及 阻脏用下比对污的闪对 的污时几距供供项值严阻阻严电电:。重值值重可可程越越程靠靠度大大度性性的,,的的的一绝绝一要个缘要 缘个求特子求 子特越征的越 的征来参泄来 泄参越数漏越 漏数高。距高 距。,离, 离防是防 是止影止 影电响电 响力污力 污系闪系 闪统电统 电中压中 压发的发 的生重生 重污要污 要闪因闪 因事素事 素故。故 。已已成成为为十十分分重重要要的的课课题题。。
电介质的电气强度讲解

SVC的电抗可从电容性到电感性 按需要调节,从而使SVC安装点的电 压保持在一定的范围内。
我国电网分布
3. 高电压、高场强下的特殊问题 ( 1) ( 2) ( 3) ( 4) 绝缘问题 :绝缘材料、绝缘结构、电压形式 高电压试验问题 过电压防护问题 电磁环境问题:电磁兼容、生态效应
4. 高电压下的特殊现象及其应用 (1) 静电技术及其应用 (2) 液电技术及其应用 (3) 线爆技术及其应用 (4) 脉冲功率技术及其应用
1000kV特高压输电示范工程
(3 ) 直流输电、紧凑型输电及灵活交流输电技术 从输电的角度说,直流输电几乎没有距离的限制,也可以用 直流电缆在水下、地下输电,因此在远距离输电上很有前景。 但也存在一些难题:换流站设备昂贵、直流断路器的性能不 满意、直流绝缘子耐污性能差等。 紧凑型输电线路的特点是取消常规线路杆塔的相间接 地构架而将三相线路置于同一塔窗中,使导线相间距离显 著减小。 因此,与常规线路相比,紧凑型输电线路的电感减小, 电容增大,即线路的波阻抗减小,从而增大了输电线路的 自然功率,也就是说可以有效地提高线路的输送能力。紧 凑型输电的另一个显著优点是线路走廊减小,因而占地减 少。
部分与电力有关的网站: 1.中国国家电力信息网 : 2.国际电工委员会(International Electrotechnical Commission ) :www.iec.ch 3.电气电子工程师协会: 4.电力论坛: 5.电力网: 6.美国电力公司: 8.ABB评论:/abbreview
▲研究意义:将电能大容量、远距离、低损耗地输送,
提高电力系统运行的经济效益,防止过电压,提高耐压水平, 保持电网运行的安全可靠性。
二. 研究内容
1. 提高绝缘能力 电介质理论研究—介质特性 放电过程研究—放电机理 高电压试验技术—高压产生、测量
高电压技术复习资料要点

⾼电压技术复习资料要点第⼀章电介质的电⽓强度1.1⽓体放电的基本物理过程1.⾼压电⽓设备中的绝缘介质有⽓体、液体、固体以及其他复合介质。
2.⽓体放电是对⽓体中流通电流的各种形式统称。
3.电离:指电⼦脱离原⼦核的束缚⽽形成⾃由电⼦和正离⼦的过程。
4.带电质点的⽅式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离⼦撞击阴极表⾯、光电⼦发射、强场发射、热电⼦发射。
6.带电质点的消失可分带电质点受电场⼒的作⽤流⼊电极、带电质点的扩散、带电质点的复合。
7.附着:电⼦与⽓体分⼦碰撞时,不但有可能引起碰撞电离⽽产⽣出正离⼦和新电⼦,也可能发⽣电⼦附着过程⽽形成负离⼦。
8.复合:当⽓体中带异号电荷的粒⼦相遇时,有可能发⽣电荷的传递与中和,这种现象称为复合。
(1)复合可能发⽣在电⼦和正离⼦之间,称为电⼦复合,其结果是产⽣⼀个中性分⼦;(2)复合也可能发⽣在正离⼦和负离⼦之间,称为离⼦复合,其结果是产⽣两个中性分⼦。
9.1、放电的电⼦崩阶段(1)⾮⾃持放电和⾃持放电的不同特点宇宙射线和放射性物质的射线会使⽓体发⽣微弱的电离⽽产⽣少量带电质点;另⼀⽅⾯、负带电质点⼜在不断复合,使⽓体空间存在⼀定浓度的带电质点。
因此,在⽓隙的电极间施加电压时,可检测到微⼩的电流。
由图1-3可知:(1)在I-U 曲线的OA 段:⽓隙电流随外施电压的提⾼⽽增⼤,这是因为带电质点向电极运动的速度加快导致复合率减⼩。
当电压接近时,电流趋于饱和,因为此时由外电离因素产⽣的带电质点全部进⼊电极,所以电流值仅取决于外电离因素的强弱⽽与电压⽆关。
(2)在I-U 曲线的B 、C 点:电压升⾼⾄时,电流⼜开始增⼤,这是由于电⼦碰撞电离引起的,因为此时电⼦在电场作⽤下已积累起⾜以引起碰撞电离的动能。
电压继续升⾼⾄时,电流急剧上升,说明放电过程⼜进⼊了⼀个新的阶段。
此时⽓隙转⼊良好的导电状态,即⽓体发⽣了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很⼩,⼀般在微安级,且此时⽓体中的电流仍要靠外电离因素来维持,⼀旦去除外电离因素,⽓隙电流将消失。
高电压复习提纲(赵智大版)1-3章

一.电介质的电气强度「一」气体放电的基本物理过程㈠带电粒子的产生和消失⑴表征运动的物理量①平均自由行程长度:单位行程中的碰撞次数Z的倒数(电子最大)②带电粒子的迁移率:k=v/E (电子大于离子)③扩散:电子大于离子⑵带电粒子的产生(电离)①光电离②热电离③碰撞电离(主要由电子完成)④表面电离(金属表面电离比空间电离更容易发生)◇阴级表面电离可在下列情况发生:⒈正离子碰撞阴级表面⒉光电子发射⒊热电子发射⒋强场发射⑶附着:电子与中性分子结合成负离子。
气体中带电粒子数不变。
使自由电子数减少⑷带电粒子消失:①带电粒子定向运动②扩散现象③复合㈡气体放电过程*电子碰撞电离系数α:一个电子沿电场方向运动1cm的行程中所完成的碰撞电离次数平均值*γ过程:正离子碰撞阴级表面时产生的二次自由电子数自持放电条件:⑴巴申曲线: T恒定:Ub=f(pd)T非恒定:Ub=F(δd)⑵汤逊理论:⑶流注理论:*初始阶段,气体放电以碰撞电离和电子崩的形式*均匀电场,自持放电条件αd≈20◆汤逊理论与流注理论比较⑷不均匀电场放电过程①划分:电场不均匀系数f=E/Eavf=1 均匀电场f<2稍不均匀电场f>4极不均匀②电晕放电:*现象:淡紫色辉光,嘶嘶噪声,臭氧气味*危害:电晕损耗,谐波电流,非正弦电压,无线电干扰,可闻噪声,空气的有机合成*预防途径:设法限制和降低导线表面场强扩径导线或空心导线或分裂导线③极性效应起晕电压:U正棒-负板>U负棒-正板击穿电压:U正棒-负板<U负棒-正板*输电线常处于不均匀电场中,击穿发生在正极性半周,进行外绝缘冲击高压实验时,施加正极性冲击电压「二」气体介质的电气强度㈠不同电场下气隙击穿特性⑴均匀电场:①放电即击穿,无电晕,无极性,击穿时间短②击穿场强约为30kv/cm③直流,工频,冲击电压作用下击穿电压均相同,分散性小,β≈1⑵稍不均匀电场:①放电即击穿,无稳定电晕,极性效应不明显②直流,工频,冲击电压作用下击穿电压近似相同,分散性小,β≈1③实例:*球间隙:d<D/4 电场均匀d>D/4电场不均匀一般在d≦D/2范围内工作*同轴圆筒r/R<0.1 不均匀r/R>0.1 稍不均匀⑶极不均匀电场:①直流电压:棒板:击穿电压:正棒-负板<棒-棒<负棒-正板棒棒:无明显极性效应②工频交流:*击穿在正极性半周峰值附近*击穿电压:棒-棒(更均匀)>棒-板*增加气隙长度能提高"棒-板"气隙平均击穿场强,但存在饱和现象③雷电冲击电压*冲击系数β>1,分散性大*击穿通常在波尾*击穿电压:正棒-负板<棒-棒<负棒-正板④操作冲击电压1.放电时间tb*上升时间t1:所加电压从0-Us(静态击穿电压)*统计时延ts:从t1到气隙中出现第一个有效电子*放电形成时延tf:出现有效电子到间隙击穿tb=t1+ts+tftlag=ts+tf(放电时延)2.冲击电压波形标准化a标准雷电冲击电压全波:非周期性双指数衰减波(1.2/50μs)b标准雷电冲击电压截波:1.2/2~5μsc标准操作冲击电压波:非周期性双指数波(250/2500μs)3.50%冲击击穿电压*均匀稍不均匀场:U50%≈Us β≈1*极不均匀场β>14.伏秒特性*电压不高,击穿在波尾,取峰值为冲击电压*电压较高,击穿在波头,取瞬时值为冲击电压*取50%伏秒特性曲线来表征气隙冲击击穿特性*均匀电场伏秒特性平缓,不均匀电场伏秒特性陡峭5.击穿特性*220kv的超高压输电系统,按操作过电压下电气特性进行绝缘设计*各种类型电压中,以操作冲击电压下的电气强度为最小*极不均匀电场长气隙的操作冲击击穿特性具有显著"饱和"特征(正棒负板最严重) *分散性远大于雷电冲击电压(伏秒特性带宽)㈡不同大气条件下击穿特性气压↑,空气密度↑,温度↓,湿度↑ Ub↑湿度越大,水电负性捕捉自由电子数越多,极不均匀场中影响明显㈢沿面放电与污闪事故⑴沿面放电:表面闪络电压要比固体介质本身击穿电压低。
电介质的电气强度

●负离子的形成: 中性分子或原子与电子相结合,形
成负离子(附着) 附着过程中放出能量(亲合能E)- 电负性气体 E大 , 易形成负离子-强电负性气体,如SF6 负离子的形成使自由电子数减少,对气体放电的发展 起抑制作用
带电粒子的消失(去电离、消电离) 1. 中和-在电场作用下作定向运动,消失于电极 而形成外电路中的电流 2. 扩散-因扩散而逸出气体放电空间 3. 复合-带有异号电荷的粒子相遇,发生电荷的传递、 中和而还原为中性粒子的过程
●碰撞电离:气体介质中粒子相撞,撞击粒子传给被
撞粒子能量,使其电离
是气体中产生带电粒子的 最重要的形式
动能、位能
条件:⑴
撞击粒子的总能量>被撞粒子的电离能
⑵ 一定的相互作用的时间和条件 通过复杂的电磁力的相互作用达到两粒子间能量转换 主要的碰撞电离由电子完成 电子引起碰撞电离的条件:
Wi qEx ≥ Wi x ≥ xi qE
1. 赵智大:高电压技术,中国电力出版社,1999/2006
2. 文远芳:高电压技术,华中科技大学出版社, 2001
3. 林福昌:高电压工程,中国电力出版社,2006/2011
4. 梁曦东等:高电压工程,清华大学出版社,2003
参考文献:
1. 朱德恒,严璋:高电压绝缘,清华大学出版社,1992 2. 刘丙尧:电气设备绝缘试验,水利电力出版社,1993
高电压技术 High Voltage Technology
绪论(INTRODUCTION)
高电压技术:
电力系统中涉及的绝缘、过电压、电气设备试验等问题的技术。 如: ▲雷击变电所、发电厂的过电压及防护 ▲绝缘材料的研制 ▲合闸、分闸、空载运行以及短路引起的过电压 ▲电气设备的耐压试验
高电压技术知识

高电压技术知识第一篇电介质的电气强度第1章气体的绝缘特性与介质的电气强度1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围击穿电压与气体相对密度和极间距离乘积之间的关系。
两者乘积大于0.26cm时,不再适用5、流注理论考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。
7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。
10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用第2章液体和固体介质的绝缘的电气强度1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。
介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。
极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。
由中性分子构成的电介质。
极化的基本形式电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导:离子电导和电泳电导固体的电导:离子电导和电子电导3、电介质的损耗介质损耗针对的是交流电压作用下介质的有功功率损耗电介质的并联与串联等效回路介质损耗一般用介损角的正切值来表示气体、液体和固体电介质的损耗液体电介质损耗和温度、频率之间的关系4、液体电介质的击穿纯净液体介质的电击穿理论纯净液体介质的气泡击穿理论工程用变压器油的击穿理论5、影响液体电介质击穿的因素油品质、温度、电压作用时间、电场均匀程度、压力6、提高液体电介质击穿电压的措施提高油品质,采用覆盖、绝缘层、极屏障等措施7、固体电介质的击穿电击穿、热击穿、电化学击穿的击穿机理及特点8、影响固体电介质击穿电压的主要因素电压作用时间温度电场均匀程度受潮累积效应机械负荷9、组合绝缘的电气强度“油-屏障”式绝缘油纸绝缘第二篇电气设备绝缘试验第3章绝缘的预防性试验1、绝缘电阻与吸收比的测量用兆欧表来测量电气设备的绝缘电阻吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。
电介质的电气强度

阴极表面游离 ( 过程)
正离子
α
γ
——碰撞电离(游离)系数。
场强E越大,其值越大;气压(气密)很大或很小时,其值 比较小。 ——正离子表面电离(游离)系数。
与阴极材料、气体种类、阴极表面光洁度等有关。
二、低气压下均匀场自持放电的汤逊理论
(一)电子崩发展到阳极后的新游离
正离子撞击阴极板表面所产生的游离。 是维持自持放电的必要条件。
作用:既促进又阻碍放电的进行 电子复合和离子复合: 都以光子的形式放出多余的能量。 一定条件下会导致其他气体分子产生光游离,使气体放电 阶跃式发展。
2、扩散
带电质点从浓度较大区域转移到浓度较小 区域的现象。
作用:阻碍放电发生
3、进入电极
在外电场作用下,气隙中的正、负电荷 分别向两电极定向移动的现象。
若气隙上的电压达到其临界击穿电压,则由于正离子的动能大, 撞击阴极表面时就能使其逸出自由电子,此时即使取消外界游 离因素,仅靠外施电压就能维持阴极表面不断游离出新电子, 弥补初始电子崩的电子,产生新的电子崩,使放电继续进行下 去。这种放电称为自持放电,U0称为起始放电电压。
自持放电条件:
(e
d
汤逊理论适用于pd<26.66kPa· cm的情况。
三、高气压下均匀场自持放电的流注理论
以自然界的雷电为例,它发生在两块雷云之间或雷云与 大地之间,这时不存在金属阴极,因而与阴极上的γ过 程和二次电子发射根本无关。 气体放电流注理论以实验为基础,考虑了高气压、长气 隙情况下不容忽视的若干因素对气体放电的影响,主要 有以下方面: 空间电荷对原有电场的影响 空间光游离的作用
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
e
xi
1
e
Ui E
1.1.3
电子崩与汤逊理论
电子的平均自由行程长度λ与气温T成正比、与气压p成反比,即
当气温T不变时,碰撞电离系数α即可改写为:
式中A、B是两个与气体种类有关的常数。
1.1.3
电子崩与汤逊理论
可以看出: ①电场强度E 增大时,α急剧增大;
第一篇 电介质的电气强度
点击此处,写上您公司的名称
第一篇 电介质的电气强度
电介质在电气设备中是作为绝缘材料使用,按其物质形态可分为:
• 气体介质 • 液体介质 • 固体介质
第一篇 电介质的电气强度
电气设备中
外绝缘
通常由气体介质(空气)和固体介质(绝缘子)联合组成。 内绝缘 通常由固体介质和液体介质联合组成。
电子崩与汤逊理论
当放电达到某种平衡状态时,每秒钟从阴极上逸出的c(eαd-1),因此
nc=n0+ γ nc(eαd-1) γ 表示一个正离子撞击阴极表面时产生出来的二次自由电子数; α 碰撞电离系数。
1.1.1
带电质点的产生
电子与离子的迁移率相比较: • 电子的平均自由行程长度比离子大得多
• 电子的质量比离子小得多
因此,电子更易加速,其迁移率远大于离子。
1.1.1
扩散
带电质点的产生
热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而
使分布均匀化,这种过程称为扩散。 气压越低
温度越高
}
Wi:气体的电离能,eV。
外界高能辐射线 光子来源
}
气体放电本身
1.1.1
热电离
带电质点的产生
• 常温下,气体分子发生热电离的概率极小。
• 气体中发生电离的分子数与总分子数的比值m称为该气体的电离度。
1.1.1
带电质点的产生
• 当T>1000K时,才需要考虑热电离;
• 当T>2000K时,几乎全部空气分子都处于热电离状态。
去完成碰撞电离。电子引起碰撞电离的条件应为:
e E x ≥ Wi
电子为造成碰撞电离而必须飞越的最小距离:
(1-4)
Ui x E
Ui为气体的电离电位,在数值上与以eV为单位的Wi相等。
1.1.1
带电质点的产生
x的大小取决于场强E,增大气体中的场强将使x值减小,可见提
高外加电压将使碰撞电离的概率和强度增大。
电子崩
1.1.3
电子崩与汤逊理论
• 电子崩的形成过程 气体的放电与发展与气体种类、气压大小、气隙中的电场型式、 电源容量等因素有关。 无论何种气体放电都一定有一个电子碰撞电离导致电子崩的阶段, 它在所加电压达到某一数值时开始出现。
1.1.3
电子崩与汤逊理论
各种高能辐射线(外界电离因子)引起: • 阴极表面光电离 • 气体中的空间光电离 因此,空气中存在一定浓度的带电粒子。
1.1.2
带电质点的消失
带电粒子间相对速度越大,相互作用时间越短,复合可能性就越小。
因此,正、负离子间的复合要比电子、正离子复合容易得多。 上述两种复合都会以光子的形式放出多余能量,这种光辐射可能导 致其它气体分子电离。
1.1.3
电子崩与汤逊理论
• 电子崩的形成过程 • 碰撞电离和电子崩引起的电流 • 碰撞电离系数
1.1.1
带电质点的产生
电子在电场作用下与气体分子碰撞时,把自己的动能转给后者而
碰撞电离
引起碰撞电离。
电子在场强为E 的电场中移过x的距离时所获得的动能为:
1 2 W mv eEx 2
m :电子的质量;
e :电子的电荷量。
1.1.1
带电质点的产生
如果W等于或大于气体分子的电离能Wi,该电子就有足够的能量
电子崩与汤逊理论
外界电离因子在阴极附近产生一个
初始电子,该电子在向阳极运动时就会 引起碰撞电离,产生出一个新电子,初 始电子与新电子继续向阳极运动引起新
的碰撞电离,依次类推,电子数将按几
何级数增多,这种急剧增大的空间电子
流被称为电子崩。
1.1.3
电子崩与汤逊理论
• 碰撞电离和电子崩引起的电流
为了分析碰撞电离和电子崩引起的电流,引入电子碰撞电离系
1.1.1
带电质点的产生
粒子的自由行程长度等于或大于某一距离x的概率为: P(x)=
λ:粒子平均自由行程长度
令x = λ,可见粒子实际自由行程长度等于或大于平均自由行 程长度λ的概率为36.8%
1.1.1
带电质点的产生
由气体动力学可知,电子的平均自由行程长度:
r :气体分子的半径; N :气体分子的密度。
和正离子就能维持下去,这就变成自持放电了。
1.1.3
电子崩与汤逊理论
• 自持放电的条件 设阴极表面在单位时间内发射出来的电子数为nc,在到达阳极 时将增加为: na=nceαd
nc包括两部分电子:一部分是外界电离因子所造成的n0;另一部分是
前一秒钟产生出来的正离子在阴极上造成的二次电子发射。
1.1.3
1.1.1
带电质点的产生
光电离
光辐射引起的气体分子的电离过程称为光电离。
频率为f 的光子能量为: W=hf 式中:h为普朗克常量,h=6.63×10-34J· s (1-1)
1.1.1
带电质点的产生
光辐射要引起气体电离必须满足以下条件: hf ≥ Wi λ:光的波长,m; c :光速,3×108m/s; 或 λ≤hc/ Wi (1-2)
体的物理过程; (2)掌握气体介质的电气强度及其提高的方法。
1.1
气体放电的基本物理过程 1.1.1带电质点的产生 1.1.2带电质点的消失 1.1.3电子崩与汤逊理论 1.1.4巴申定律及其适用范围 1.1.5不均匀电场中的气体放电
1.1.1
带电质点的产生
自由行程长度 粒子在1cm的行程中碰撞次数Z的倒数λ 即为该粒子的平均自由行程长度。(两次碰 撞间粒子经过的距离)
1.1.3
电子崩与汤逊理论
当气隙上所加电压大于 Uc时,电流
• 自持放电的形成
I随电压U的增大不再遵循I=I0eαd的规律,
而是更快一些,可见这时又出现了促进
放电的新因素,这就是受到正离子的影
响。
1.1.3
电子崩与汤逊理论
汤逊理论认为:在电场的作用下,正离子向阴极运动,由于它的
平均自由行程长度较短,不易积累动能,所以很难使气体分子发生碰
为电离能Wi,单位是eV。
1.1.1
带电质点的产生
• 正离子产生:电子脱离原子核的束缚而形成自由电子和正离子; • 负离子产生:电子与分子(原子)碰撞时,附着在分子上而形成。
1.1.1
带电质点的产生
带电粒子产生的几种形式:
光电离 热电离 碰撞电离 分级电离 电极表面的电离
负离子的形成
• 碰撞电离是气体中产生带电粒子的最重要的方式;
• 主要的碰撞电离均由电子完成;
• 离子碰撞中性分子并使之电离的概率要比电子小得多。 因此在分析气体放电发展过程时,往往只考虑电子所引起的碰撞电离。
1.1.1
带电质点的产生
分级电离 原子或分子在激励态再获得能量而发生电离称为分级电离。因为
激励态是不稳定的,通常分级电离的概率很小。
• 探讨碰撞电离系数
与气体分子发生1/ λ次碰撞,不过并非每次碰撞都会引起电离。
只有电子积累的动能大于分子电离能Wi时,才能产生电离,此 时分子至少运动的距离为:
Wi U i xi eE E
1.1.3
电子崩与汤逊理论
实际自由行程长度等于或大于xi的概率为 e
xi
,所以它也就是
碰撞时能引起电离的概率。
1.1.3
电子崩与汤逊理论
在气隙两端电极施加电压时,即可
检测到微小的电流。 图中为实验所得的平板电极间气 体中的电流I与所加电压U的关系曲线。
1.1.3
电子崩与汤逊理论
在曲线的0a段,I随U的提高而增大,
这是由于电极空间的带电粒子向电极运
动的速度加快而导致复合数的减少所致。
1.1.3
电子崩与汤逊理论
②p很大或很小时,α值都比较小。高气压时,单位长度上碰撞次数很多, 但能引起电离的概率很小;低气压或真空时,电子虽然容易积累能量,
但碰撞次数太少。
可见,高气压高真空都不易发生放电,即具有较高的电气强度。
1.1.3
电子崩与汤逊理论
• 自持放电的形成 • 自持放电的条件 • 自持放电的物理含义
汤逊理论
1.1.1
由于
带电质点的产生
,代入上式即得
P :气压,Pa; T :气温,K; K :波尔茨曼常数,k=1.38*10-23。
在大气压和常温下,电子在空气中的平均自由行程长度的数量级为10-5cm。
1.1.1
带电质点的产生
带电粒子的迁移率
带电粒子在电场力驱动下,其速度υ与场强E之比,称为迁移率: k= υ/ E 它表示该粒子在单位场强下沿电场方向的漂移速度。
1.1.1
带电质点的产生
电子从金属表面逸出需要一定的能量,称为逸出功。金属的逸出
电极表面的电离
功要比气体分子的电离能小得多,这表明金属表面电离比气体空间电
离更易发生。 正离子撞击阴极表面;
光电子发射;
热电子发射;
强场发射(冷发射)。
1.1.1
带电质点的产生
当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正
负离子的形成
离子和新电子,而且也可能会发生电子与中性分子相结合而形成负离