排列组合典型例题(带详细答案)
排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
补课排列组合典型例题与详细答案

典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。
选项D正确。
2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。
选项B正确。
3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。
选项D 错误。
4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。
5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。
6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。
选项B正确。
7.首先从8个元素中选出2个排在前排,有8选2种选择方式。
然后从剩下的6个元素中选出1个排在后排,有6种选择方式。
最后将剩下的5个元素排在后排,有5!种排列方式。
因此不同的排法有8选2×6×5!=28×720=20,160种。
8.首先将甲、乙、丙三人排成一排,有3!种排列方式。
然后将其余4人插入到相邻的位置中,有4!种排列方式。
因此不同的排法有3!×4!=144种。
9.首先将10个名额排成一排,有10!种排列方式。
然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。
因此不同的分配方案有10!÷(6×8)=21,000种。
10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。
然后将甲和乙插入到相邻的位置中,有2种插入方式。
因此不同的派遣方案有8!×2=80,640种。
11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。
(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
(完整版)排列组合练习题与答案

(完整版)排列组合练习题与答案排列组合习题精选⼀、纯排列与组合问题:1.从9⼈中选派2⼈参加某⼀活动,有多少种不同选法?2.从9⼈中选派2⼈参加⽂艺活动,1⼈下乡演出,1⼈在本地演出,有多少种不同选派⽅法?3. 现从男、⼥8名学⽣⼲部中选出2名男同学和1名⼥同学分别参加全校“资源”、“⽣态”和“环保”三个夏令营活动,已知共有90种不同的⽅案,那么男、⼥同学的⼈数是()A.男同学2⼈,⼥同学6⼈B.男同学3⼈,⼥同学5⼈C. 男同学5⼈,⼥同学3⼈D. 男同学6⼈,⼥同学2⼈4.⼀条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到⼄站与⼄站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个答案:1、2936C = 2、2972A = 3、选 B. 设男⽣n ⼈,则有2138390n n C C A -=。
4、2258m nm A A +-= 选C.⼆、相邻问题:1. A 、B 、C 、D 、E 五个⼈并排站成⼀列,若A 、B 必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的⽂艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在⼀起,⽂艺书也连在⼀起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排⼀个有4个歌唱节⽬和3个舞蹈节⽬的演出节⽬单,任何两个舞蹈节⽬都不相邻,有多少种不同排法?2、1到7七个⾃然数组成⼀个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男⽣和4名⼥⽣站成⼀排,若要求男⼥相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成⼀排的8个空位上,坐3⼈,使每⼈两边都有空位,有多少种不同坐法?5.8张椅⼦放成⼀排,4⼈就坐,恰有连续三个空位的坐法有多少种?6. 排成⼀排的9个空位上,坐3⼈,使三处有连续⼆个空位,有多少种不同坐法?7. 排成⼀排的9个空位上,坐3⼈,使三处空位中有⼀处⼀个空位、有⼀处连续⼆个空位、有⼀处连续三个空位,有多少种不同坐法?8. 在⼀次⽂艺演出中,需给舞台上⽅安装⼀排彩灯共15只,以不同的点灯⽅式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进⾏设计,那么不同的点亮⽅式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424AC = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男⽣,3名⼥⽣。
排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.70[解析] 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A.36种B.48种 C.72种D.96种[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人[解析] 设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.144[解析] 分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种B.60种 C.120种D.210种[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析] 先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析] 先将6名志愿者分为4组,共有C26C 24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 *s 5* o*m 解析:先选一个偶数字排个位,有3种选法*s 5* o*m①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
经典排列组合问题100题配超详细解析版

1.n N 且n 55,则乘积(55 n)(56 n)L (69 n) 等于A.55 nA B .69 n15A C.55 n15A D .69 n14A69 n【答案】 C【分析】依据摆列数的定义可知,(55 n)(56 n)L (69 n) 中最大的数为69-n, 最小的数为55-n ,那么可知下标的值为69-n, 共有69-n- (55-n )+1=15 个数,所以选择C2.某企业新招聘8 名职工,均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不能分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,则不一样的分派方案共有()A. 24 种B. 36 种C. 38 种D. 108 种【答案】 B【分析】因为均匀分派给部下的甲、乙两个部门,此中两名英语翻译人员不可以分在同一部门,此外三名电脑编程人员也不可以全分在同一部门,那么特别元素优先考虑,分步来达成可知所有的分派方案有36 种,选B*3.n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于()A.80A B.100 n20A100nnC.81A D.100 n81 A20 n【答案】 C*【分析】因为依据摆列数公式可知n∈N,则(20-n )(21-n) ⋯⋯(100-n) 等于81A ,选C 100 n4.从0,4,6 中选两个数字, 从中选两个数字,构成无重复数字的四位数. 此中偶数的个数为()B. 96C. 36【答案】 B【分析】因为第一确立末端数为偶数,那么要分为两种状况来解,第一种,末端是0,那么3其余的有 A 5=60,第二种状况是末端是4,或许6,首位从 4 个人选一个,其余的再选2个摆列即可 4 3 3,共有96 种5.从6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不一样的工作,若此中甲、乙两名志愿者不可以从事翻译工作,则选派方案共有()A. 280 种B. 240 种C. 180 种D. 96 种【答案】B【解析】依据题意,由摆列可得,从 6 名志愿者中选出 4 人分别从事四项不一样工作,有4A6 360 种不一样的状况,此中包含甲从事翻译工作有3A5 60 种,乙从事翻译工作的有3A5 60 种,若此中甲、乙两名增援者都不可以从事翻译工作,则选派方案共有360-60-60=240 种.6.如图,在∠AOB的两边上分别有A1、A2、A3、A4 和B1、B2、B3、B4、B5 共9 个点,连接线段A iB j(1≤i ≤4,1 ≤j ≤5),假如此中两条线段不订交,则称之为一对“友善线”,则图中共有()对“友善线”.A.60 B .62 C.72【答案】A【解析】在∠AOB的两边上分别取 A , A (i j), 和B p ,B q (p q) ,可得四边形A i A j B p B qi j中,恰有一对“友善线”( A B 和A j B q ),而在OA上取两点有i p2C 种方法,在OB 上取两5点有 2C 种方法,共有10 6 60对“友善线”.47.在某种信息传输过程中,用 4 个数字的一个摆列(数字同意重复)表示一个信息,不一样摆列表示不一样信息,若所用数字只有0 和1,则与信息0110 至多有两个对应地点上的数字同样的信息个数为()A.10 B.11 C.12 D.15【答案】B【解析】由题意知与信息0110 至多有两个对应地点上的数字同样的信息包含三类:第一类:与信息0110 有两个对应地点上的数字同样有C42=6(个)第二类:与信息0110 有一个对应地点上的数字同样的有C41=4 个,第三类:与信息0110 没有一个对应地点上的数字同样的有C4 =1,由分类计数原理知与信息0110 至多有两个对应地点数字同样的共有6+4+1=11 个8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中起码有1门不同样的选法共有()A.6 种B.12 种C.30 种D.36 种【答案】C【解析】分有一门不相同和二门不相同两种情况,所以共有 2 1 1 2C4 C2C2 C4 30 9.从一个不透明的口袋中摸出红球的概率为1/5 ,已知袋中红球有 3 个,则袋中共有球的个数为() .A.5 个 B .8 个 C .10 个 D .15 个【答案】D【解析】由于从一个不透明的口袋中摸出红球的概率为1/5 ,而且袋中红球有 3 个,设袋中共有球的个数为n,则3 1 ,n 5 所以n 15.10.从编号为1,2,3,4 的四个不一样小球中取三个不一样的小球放入编号为1,2,3 的三个不一样盒子,每个盒子放一球,则1号球不放 1 号盒子且 3 号球不放 3 号盒子的放法总数为A.10 B.12 C .14 D .16【答案】 C解决,,要分类意知元素的限制条件比许多【分析】解:由题,从前一组为例,当选出的三个球是1、2、3 或1、3、4时1 号球在2 号盒子里, 2 号和3 号只有一种方法,1 号球在 3 号盒子里,2 号和3 号各有两种结果,选1、2、3时共有 3 种结果,选1、3、4时也有 3 种结果,,各有C2当选到1、2、4 或2、3、4时1A 2=4 种结果,2果,数原理获取共有3+3+4+4=14 种结和分步计由分类应选C.11..在实验室进行的一项物理实验中,要先后实行 6 个程序,此中程序A只好出此刻第一或最后一步,程序B和C 在实行时一定相邻,则实验次序的编排方法共有()A.34 种B.48 种C.96 种 D .144种【答案】 C题,数问【分析】解:此题是一个分步计刻第一步或最后一步,意知程序 A 只好出此∵由题1果∴从第一个地点和最后一个地点选一个地点把A摆列,有A2 =2 种结一定相邻,时∵程序 B 和C实行还有一个摆列,共有∴把 B 和C看做一个元素,同除 A 外的 3 个元素摆列,注意B和C之间A44A 2=48 种结果. 依据分步计数原理知共有2×48=96 种结果,2应选C.12.由两个1、两个2、一个3、一个4这六个数字构成6 位数,要求同样数字不可以相邻,则这样的 6 位数有A. 12 个B. 48 个C. 84 个D. 96 个【答案】 C依据同样数字不可以相邻【分析】解:因为先排雷1,2,3,4 而后将其与的元素插入进去,则意的 6 位数有84 个。
(完整版)排列组合练习试题和答案解析

一、排列与组合
1.从9人中选派2人参加某一活动,有多少种不同选法?
2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?
3.现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是
4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
由分类计数原理得,不同的三角形共有5+20+10=35个.
12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。
五、元素与位置——位置分析
1.7人争夺5项冠军,结果有多少种情况?
2. 75600有多少个正约数?有多少个奇约数?
(2)甲乙必须站两端,丙站中间,有多少种不同排法?
2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?
3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是
A.3761 B.4175 C.5132 D.6157
4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数
例2三个女生和五个男生排成一排
(1)如果女生必须全排在一起,可有多少种不同的排法
(2)如果女生必须全分开,可有多少种不同的排法
(3)如果两端都不能排女生,可有多少种不同的排法
(4)如果两端不能都排女生,可有多少种不同的排法
例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种
(2)歌唱节目与舞蹈节目间隔排列的方法有多少种
例4某一天的课程表要排入政治、语文、数学、物理、体育、美术
共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.
例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种
例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法
例7 7名同学排队照相.
(1)若分成两排照,前排3人,后排4人,有多少种不同的排法
(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必
须在后排,有多少种不同的排法
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法
例8计算下列各题:
(1) 2
15
A ; (2) 66
A ; (3) 1
1
11------⋅n n m n m
n m n A A A ;
例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.
例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法
例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、
5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有
例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).
例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).
例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数
1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“
2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,
十位上再从余下的八个数字中任选两个来排,按乘法原理有281
814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有22961792504281
814
39=+=⋅⋅+A A A A
2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有
66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对
种不同的排法,因此共有43203366=⋅A A 种不同的排法.
(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.
(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有
36000662388=⋅-A A A 种不同的排法.
3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.
(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
所以歌唱节目与舞蹈节目间隔排列的排法有:44A 55A =2880种方法。
4、5042445566=+-A A A (种).
5、363333=⋅A A 种.
6、解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有34A 种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有232323A A A ⋅⋅种.综合以上两步,由分步计数原理得不同的填表方法有:518423232334=⋅⋅⋅A A A A 种.
7、解:(1) 5040774437==⋅A A A 种.(2)14405
51413=⋅⋅A A A 种.(3)7203355=⋅A A .
(4)14403544=⋅A A 种.
8、解:(1) 2101415215
=⨯=A ;(2) 720123456!66
6=⨯⨯⨯⨯⨯==A ; (3)原式!)1(1!)(]!)1(1[!)1(-⋅-⋅----=
n m n m n n 1!
)1(1
!)(!)(!)1(=-⋅-⋅--=n m n m n n ;
9、46A
10、解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:
6408551424551224=⋅⋅+⋅⋅A A A A A A (种).
11、将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有2
2
A 种排列.但4幅油画、5幅国画本身还有排列顺序要求.所以共有
554422A A A ⋅⋅种陈列方式.
12、300 13、将符合条件的偶数分为两类.一类是2作个位数,共有24A 个,另一类是4作个位数,也有24A 个.因此符合条件的偶数共有242424=+A A 个.
14、解:(1)就个位用0还是用42、分成两类,个位用0,其它两位从
4321、、、中任取两数排列,共有122
4
=A (个),个位用2或4,再确定首位,最后确定十位,共有32442=⨯⨯(个),所有3位偶数的总数为:
443212=+(个).
(2)从543210、、、、、中取出和为3的倍数的三个数,分别有下列取法:)210(、)510(、)420(、)540(、)321(、)531(、)432(、)543(,前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有162422=⨯⨯A (个),如果用后四组,共有24433=⨯A (个),所有被3整除的三位数的总数为402416=+(个).。