最新组合数学习题解答

合集下载

(完整word版)组合数学课后答案

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。

证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。

假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。

假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。

证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。

现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。

证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。

证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。

由鸽巢原理知,至少有2个坐标的情况相同。

又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。

因为奇数+奇数= 偶数;偶数+偶数=偶数。

因此只需找以上2个情况相同的点。

而已证明:存在至少2个坐标的情况相同。

证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。

一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。

那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。

(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。

《组合数学》练习题一参考答案

《组合数学》练习题一参考答案

《组合数学》练习题一参考答案《组合数学》练习题一参考答案一、填空:1.!()!m n P n m m n m =- 2.2)1(-n n 3. 0. 4. 2675.),2,1,0(3)2(2321 =+-+=n c c c a n n n n .6.4207.78.()()!!11...!31!21!111n n n ??-++-+-9.22 10.267二、选择:1. 1—10 A B D D A D A B B C三、计算: 1. 解因为]250[=25, ]450[=12, ]850[=6, ]1650[=3, ]3250[=1, ]6450[=0, 所以, 所求的最高次幂是2(50!)=25+12+6+3+1=47.2. 解由我们最初观察的式子,有614,1124,634,144=??===, 再利用定理1,我们得到24!415,102)15(545,155==??=-?==, 3511642434435=+?=???+=, 5061141424425=+?=??+=. 所以,x x x x x x f 24503510)(23455+-+-=.3. 解:设所求为N ,令}2000,,2,1{ =S ,以A ,B ,C 分别表示S 中能被32?,52?,53?整除的整数所成之集,则53466663133200333 532200053220003532000522000322000 =+?-++=+-???????+???????+???????=+---++==C B A C B C A B A C B A CB A N 4. 解:记7个来宾为1A ,2A ,…,7A ,则7个来宾的取帽子方法可看成是由1A ,2A ,…,7A 作成的这样的全排列:如果i A (1≤i ≤7)拿了j A 的帽子,则把i A 排在第j 位,于是(1)没有一位来宾取回的是他自己的帽子的取法种数等于7元重排数7D ,即等于1854。

数学竞赛组合试题及答案

数学竞赛组合试题及答案

数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。

如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。

将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。

试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。

答案:首先计算没有红球的概率,即抽到3个蓝球的概率。

用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。

然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。

试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。

求这条弦的长度小于8的概率。

答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。

通过几何关系和圆的性质,可以计算出这个特定角度。

然后,利用面积比来计算概率。

圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。

最后,将扇形面积除以圆的面积得到概率。

试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。

答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。

将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。

试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。

现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。

问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。

组合数学课后习题答案

组合数学课后习题答案

组合数学课后习题答案问题1求解以下组合数:(a)C(5, 2)(b)C(7, 3)(c)C(10, 5)解答:(a)C(5, 2) 表示从5个不同元素中选取2个的组合数。

根据组合数的定义,我们可以使用公式 C(n, k) = n! / (k! * (n-k)!) 来计算组合数。

计算 C(5, 2): C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3!) / (2! * 3!) = (5 * 4) / 2 = 10所以 C(5, 2) = 10。

(b)C(7, 3) 表示从7个不同元素中选取3个的组合数。

计算 C(7, 3): C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5 * 4!) / (3! * 4!) = (7 * 6 * 5) / 3 = 35 * 2 = 70所以 C(7, 3) = 70。

(c)C(10, 5) 表示从10个不同元素中选取5个的组合数。

计算 C(10, 5): C(10, 5) = 10! / (5! * (10-5)!) = 10! / (5! * 5!) = (10 * 9 * 8 * 7 * 6 * 5!) / (5! * 5!) = (10 * 9 * 8 * 7 * 6) / (5 * 4 * 3 * 2 * 1) = 252所以 C(10, 5) = 252。

问题2在一个集合 {a, b, c, d, e} 中,求解以下问题:(a)有多少种不同的3个元素的子集?(b)有多少种不同的4个元素的子集?(c)有多少种不同的空集合?(a)在一个集合 {a, b, c, d, e} 中选取3个元素的子集。

子集的元素个数为3,所以我们需要从5个元素中选取3个。

利用组合数的公式 C(n, k) = n! / (k! * (n-k)!),我们可以计算组合数。

组合数学考试题目及答案

组合数学考试题目及答案

组合数学考试题目及答案**组合数学考试题目及答案**一、单项选择题(每题3分,共30分)1. 从10个不同的元素中取出3个元素的组合数为()。

A. 120B. 210C. 100D. 150答案:B2. 以下哪个不是排列数的性质?()。

A. \( P(n, n) = n! \)B. \( P(n, 0) = 1 \)C. \( P(n, k) = \frac{n!}{(n-k)!} \)D. \( P(n, k) = \frac{n!}{k!} \)答案:D3. 从5个不同的元素中取出2个元素的排列数为()。

A. 10B. 20C. 15D. 25答案:B4. 组合数 \( C(n, k) \) 和排列数 \( P(n, k) \) 之间的关系是()。

A. \( C(n, k) = \frac{P(n, k)}{k!} \)B. \( P(n, k) = \frac{C(n, k)}{k!} \)C. \( C(n, k) = k \times P(n, k) \)D. \( P(n, k) = k \times C(n, k) \)答案:A5. 以下哪个是组合数的性质?()。

A. \( C(n, k) = C(n, n-k) \)B. \( C(n, k) = C(n-1, k-1) \)C. \( C(n, k) = C(n, k+1) \)D. \( C(n, k) = C(n+1, k+1) \)答案:A6. 从8个不同的元素中取出3个元素的组合数为()。

A. 56B. 54C. 48D. 35答案:A7. 以下哪个是排列数的递推关系?()。

A. \( P(n, k) = P(n-1, k) + P(n-1, k-1) \)B. \( P(n, k) = P(n-1, k) - P(n-1, k-1) \)C. \( P(n, k) = P(n-1, k) \times P(n, 1) \)D. \( P(n, k) = P(n-1, k-1) \times P(n, 1) \)答案:D8. 从7个不同的元素中取出4个元素的排列数为()。

(完整word版)组合数学习题解答

(完整word版)组合数学习题解答

第一章:1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。

1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式?解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。

而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。

1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式?解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!-2*8!。

1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数?解:(1)在1到9999中考虑,不是4位数的整数前面补足0,例如235写成0235,则问题就变为求:x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有F (4,5)=⎪⎪⎭⎫ ⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1将它们相加即得,F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。

组合数学练习题及解析

组合数学练习题及解析

组合数学练习题及解析组合数学是数学中的一个分支,主要研究离散对象之间的组合关系。

它在计算机科学、统计学、运筹学等领域中具有广泛的应用。

本文将提供一些组合数学的练习题,并附上详细的解析,以帮助读者更好地理解和掌握这一领域的知识。

一、排列组合1. 从10个人中选出3个人组成一个小组,问有多少种不同的选择方式?解析:这是一个从10个元素中选取3个元素的组合问题。

根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种选择方式。

2. 有10个小球,5个红色,5个蓝色,从中选取3个小球组成一个集合,问有多少种不同的集合?解析:这是一个从10个元素中选取3个元素并忽略其顺序的组合问题。

根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!)= 120种不同的集合。

3. 从字母A、B、C、D、E中任选3个字母组成一个字符串,问有多少种不同的字符串?解析:这是一个从5个元素中选取3个元素并考虑其顺序的排列问题。

根据排列的公式,可以得到答案为P(5, 3) = 5! / (5-3)! = 5*4*3 = 60种不同的字符串。

二、组合数学问题1. 假设有8本不同的书放在一排,问有多少种不同的放置方式?解析:这是一个考虑顺序的排列问题。

根据排列的公式,可以得到答案为P(8, 8) = 8! = 40320种不同的放置方式。

2. 有5个不同的水果,需要选择2个水果放入一个篮子中,问有多少种不同的放置方式?解析:这是一个从5个元素中选取2个元素并考虑其顺序的排列问题。

根据排列的公式,可以得到答案为P(5, 2) = 5! / (5-2)! = 5*4 = 20种不同的放置方式。

3. 一家公司有10个员工,其中3个员工必须参加一个会议,问有多少种不同的选取方式?解析:这是一个从10个元素中选取3个元素的组合问题。

根据组合的公式,可以得到答案为C(10, 3) = 10! / (3! * (10-3)!) = 120种不同的选取方式。

组合数学第一章习题解答

组合数学第一章习题解答

1.16、n个完全一样的球放到r个有标志的盒中,无一空盒, 试问有多少种方案? 取r个球每盒放一个,然后n-r个放入r个不同盒中,同充许空 盒的放法。 C(r+n-r-1,n-r)=C(n-1,n-r)=C(n-1,r-1)
1.18、8个盒子排成一列,5个有标志的球放到盒子中,每盒 最多放一个球,要求空盒不相邻,问有多少种排列方案? 5!×6×5×4 1.19、n+m位由m个0,n个1组成的符号串,其中n≤m+1,试问 不存在两个1相邻的符号串的数目? (m+1)*m*...*(m-n+2)/n!=C(m+1,n) 1.20、甲单位有10个男同志,4个女同志,乙单位有15个男同 志,10个女同志,由他们产生一个7人的代表团,要求其中甲单 位占4人,面且7人中男同志5位,试问有多少种方案? 按甲单位: C(10,4)C(15,1)C(10,2)+C(10,3)C(4,1)C(15,2)C(10,1)+ C(10,2)C(4,2)C(15,3)
习题:1.15试求从1到1000000的整数中,0出现的次数。 解:先将1到999999的整数都看作6位数,例如2就看作是 000002,这样从000000到999999。0出现了多少次呢? 6×105,某一位取0,其它各位任取。 0出现在最前面的次数应该从中去掉 000000到999999中最左1位的0出现了105次, 000000到099999中左数第2位的0出现了104次, 000000到009999左数第3位的0出现了103次, 000000到000999左数第4位的0出现了102次, 000000到000099左数第5位的0出现了10次, 000000到000009左数第6位的0出现了1次。 因此不合法的0的个数为105+104+103+102+101+1=111111, 不合法的应该去掉,再加整数1000000中的6个0,这样,从1到 1000000的整数中0出现的次数为6×105-111111+6=488895。 问题:在去掉多余的零的过程中,多减去了一部分,例如: 000000这种情况在每次减的过程中都出现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。

1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式?解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。

而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。

1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!-2*8!。

1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数?解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求:x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有 F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1 将它们相加即得,F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。

第二章:2.3. 在边长为1的正三角形内任意放置5个点,则其中至少有两个点的距离≤1/2。

解:将边为1的正三角形分成边是为1/2的四个小正三角形,将5个点放入四个小正三角形中,由鸽笼原理知,至少有一个小正三角形中放有2个点,而这两点的距离≤1/2。

1/2 1/2 1/22.5. 在图中,每个方格着红色或蓝色,证明至少存在两列有相同的着色。

解:每列着色的方式只可能有224⨯=种,现有5列,由鸽笼原理知,至少有二列着色方式相同。

⎪2.7. 一个学生打算用37天总共60学时自学一本书,他计划每天至少自学1学时,证明:无论他怎样按排自学时间表,必然存在相继的若干天,在这些天内其自学总时数恰好为13学时。

解:设1a 是第一天自学的时数,2a 是第一,二天自学的时数的和,j a 是第一,二,… ,第j 天自学时数的和,1,2,,37j =⋅⋅⋅⋅⋅⋅于是,序列1237,,,a a a ⋅⋅⋅⋅⋅⋅是严格递增序列(每天至少一学时),而且,1371,60a a ≥= 于是序列13713,,13a a +⋅⋅⋅⋅⋅⋅+也是严格递增的序列,故371373a +=因此74个数137137,,13,,1373a a a a ⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+=都在1和73两个整数之间,由鸽笼原理知,这74个数中必有两个是相等的,由于1237,,,a a a ⋅⋅⋅⋅⋅⋅中任何两数都不相等,故13713,,13a a +⋅⋅⋅⋅⋅⋅+中任何两个数也是不相等的,因此,一定存在两个数,i j 使得 1313i j i j a a a a =+→-=因此,在1,2,,j j i ++⋅⋅⋅⋅⋅⋅这些天中,这个学生自学总时数恰好为13。

⎪2.10. 证明:在任意52个整数中,必存在两个数,其和或差能被100整除。

证明:设52个整数a 1,a 2,….,a 52被100除的余数分别为r 1,r 2,…., r 52,而任意一整数被100除可能的余数为0,1,2,….,99,共100个,它可分为51个类:{0},{1,99},{2,98},…..{49,51},{50}。

因此,将51个类看做鸽子笼,则由鸽笼原理知,将r 1,r 2,….,r 52 个鸽子放入51个笼中,,至少有两个属于同一类,例如r i ,r j,于是r i =r j 或r i +r j =100,这就是说a i —a j 可100整除,或a i + a j 可被100整除。

第三章3.2. 求1到1000中既非完全平方又非完全立方的整数个数。

解:设S ={1,2,…,1000};1A 表示1到1000中完全平方数的集合,则1A 表示1到1000中不是完全平方数的集合;2A 表示1到1000中完全立方数的集合,则2A 表示1到1000中不是完全立方数的集合。

故__2__1A A 表示1到1000中既非完全平方又非完全立方的整数的集合,由容斥原理((3.5)式)知:212121A A A A S A A +--= (3.5)其中||S =1000,1||31A ==,2||10A == 21A A 表示1到1000中既是完全平方又是完全立方的数的集合,故21A A ==3,将以上数值代入(3.5)式得21A A =1000-(31+10)+3=962故1到1000中既非完全平方又非完全立方的整数个数为962。

3.8. 在所有的n 位数中,包含数字3,8,9但不包含数字0,4的数有多少?解:除去0,4,则在1,2,3,5,6,7,8,9这8个数字组成的n 位数中, 令S 表示由这8个数字组成的所有n 位数的集合。

则|S|=8n . P 1表示这样的性质:一个n 位数不包含3; P 2表示这样的性质:一个n 位数不包含8; P 3表示这样的性质:一个n 位数不包含9;并令A i 表示S 中具有性质P i 的元素构成的集合(i=1,2,3)。

则A A A 321 表示S 中包含3,又包含8,又包含9的所有n 位数的集合。

由容斥原理((3.5)式)得|321A A A |=||||||||32131A A A AA A S ji jii i-+-∑∑≠= (3.5)而777321,,nnn A A A ===666323121,,nnnA A A A A A ===5321nA A A = ,代入(3.5)式得123837365n n n n A A A =-∙+∙-故所求的n 位数有n n n n 563738-⨯+⨯-个。

3.10. 求重集{}3,4,5B a b c =⋅⋅⋅的10-组合数。

解:构造集合B ′=},,{c b a ⋅∞⋅∞⋅∞。

令集合B ′的所有10-组合构成的集合为S 。

由第一章的重复组合公式(1.11)有||S =F (3,10)=⎪⎪⎭⎫⎝⎛-+101103=66。

令p 1表示S 中的元素至少含有4个a 这一性质,令p 2表示S 中的元素至少含有5个b这一性质,令p 3表示S 中的元素至少含有6个c 这一性质,并令A i (i =1,2,3)表示S 中具有性质p i (i =1,2,3)的元素所构成的集合,于是B 的10-组合数就是S 中不具有性质p 1,p 2,p 3的元素个数。

由容斥原理((3.5)式)有:|321A A A |=||||||||32131A A A AA A S ji jii i-+-∑∑≠= (3.5)由于已经求得||S =66,下面分别计算(3.9)式右端其他的项。

由于A 1中的每一个10-组合至少含有4个a ,故将每一个这样的组合去掉4个a 就得到集合B ′的一个6-组合。

反之,如果取B ′的一个6-组合并加4个a 进去,就得到了A 1的一个10-组合。

于是A 1的10-组合数就等于B ′的6-组合数。

故有||1A =F (3,6)=⎪⎪⎭⎫⎝⎛-+6163=28同样的分析可得||2A =F (3,5)=⎪⎪⎭⎫⎝⎛-+5153=21||3A =F (3,4)=⎪⎪⎭⎫⎝⎛-+4143=15用类似的分析方法可分别求得||21A A =F (3,1)=⎪⎪⎭⎫⎝⎛-+1113=3||31A A =F (3,0)=⎪⎪⎭⎫⎝⎛-+0103=1||32A A =0(因为5+6=11>10) ||321A A A =0 (同上)将以上数值代人(3.9)式得到:|321A A A |=66-(28+21+15)+(3+1+0)-0=6故所求的10-组合数为6。

3.14. 求由数字1,2,⋅⋅⋅8所组成的全排列中,恰有4个数字在其自然位置上的全排列个数。

解:4个数在其自然位置共有⎪⎪⎭⎫⎝⎛48种方式,对某一种方式,均有4个数字不在其自然位置,这正好是一个错排,其方式数为4D (见定理3.2),由乘法规则有,恰有4个数字在其自然位置上的全排列数为484D ⎛⎫⎪⎝⎭=630。

第四章4.6 求重集}7,5,3,{d c b a B ⋅⋅⋅⋅∞=的10-组合数。

解:设重集B 的n-组合数为n a ,则序列{n a }的普通母函数为2232345()(1)(1)(1)f x x x x x x x x x x x =+++++++++++234567(1)x x x x x x x ⨯+++++++=xx x x x x x --⋅--⋅--⋅-11111111864=(1-x 4-x 6-x 8+x 10+x 12+x 14-x 18)∑∞=⎪⎪⎭⎫ ⎝⎛+033k kx k所以a 10=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+3033233433633103=286-84-35-10+1=158 故重集B 的10-组合数为158。

4.9. 设重集{}123456,,,,,B b b b b b b =∞∞∞∞∞∞,并设r a 是B 满足以下条件的r-组合数,求序列()01,,,,r a a a 的普通母函数。

a. 每个I b 出现3的倍数次。

()1,2,3,4,5,6I =b. 1b ,2b 至多出现1次,34,b b 至少出现2次,56,b b 最多出现4次。

c. 1b 出现偶数次,6b 出现奇数次,3b 出现3的倍数次,4b 出现5的倍数次。

d. 每个I b ()1,2,3,4,5,6I =至多出现8次。

解:a. 3696()(1)f x x x x =++++30(6,)()k k F k x ∞==∑b. 223422342()(1)()(1)f x x x x x x x x x =++++++++c. 2435369510()(1)()(1)(1)f x x x x x x x x x x x =+++++++++++++(1x x x ⨯232++++) d. 2386()(1)f x x x x =++++4.10 有两颗骰子,每个骰子六个面上刻有1,2,3,4,5,6个点。

相关文档
最新文档