李凡长版组合数学课后习题标准答案习题
李凡长版 组合数学课后习题答案 习题1

1第一章 排列组合1、 在小于2000的数中,有多少个正整数含有数字2?解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10;千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1;故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。
2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。
(2) 串中有5个1,除去0111110,个数为()62-1=14。
(或:()()4142*2+=14)(3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53-1种;②其中两个0一组,另外一个单独,则有()()2*)2,2(4152-P 种。
(4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。
所以满足条件的串共48个。
3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。
如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*64、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。
求n 和m 。
解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。
以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则m = a 1+10a 2+100a 3+1000a 4。
因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。
因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。
人教B版高中数学选择性必修第二册课后习题 第三章 排列、组合与二项式定理 基本计数原理

第三章排列、组合与二项式定理3.1 排列与组合3.1.1 基本计数原理必备知识基础练1.某校教学大楼共有五层,每层均有两个楼梯,一学生由一层到五层的走法有( )A.10种B.25种C.52种D.24种2.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )A.30种B.50种C.60种D.90种3.如果x,y∈N+,且1≤x≤3,x+y<7,则满足条件的有序数对(x,y)的个数是( )A.15B.12C.5D.44.如果一个三位正整数如“a1a2a3”满足a1<a2,且a3<a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )A.240B.204C.729D.9205.已知A={-3,-2,-1,0,1,2,3},a,b ∈A,则|a|<|b|的情况有 种.6.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有 种不同的取法.7.椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为 .8.将4种蔬菜种植在如图所示的5块试验田里,每块试验田种植一种蔬菜,相邻试验田不能种植同一种蔬菜,不同的种法有 种.(种植品种可以不全)关键能力提升练9.某校高一年级共16个班,高二年级共15个班,从中选出一个班级担任学校星期一早晨升旗任务,共有的安排方法种数是( )A.16B.15C.31D.24010.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.27911.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,但甲工厂必须有班级要去,则不同的参观方案的种数为( )A.16B.18C.37D.4812.5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是( )A.10B.60C.54D.4513.某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为.14.在某运动会的百米决赛上,8名男运动员参加100米决赛,每人一条跑道,其中甲、乙、丙3人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,求安排这8名运动员比赛的方式的种数.学科素养创新练15.用红、黄、蓝三种颜色涂四边形ABCD的四个顶点,要求相邻顶点的颜色不同,求不同的涂色方法的种数.16.某学校高二年级有12名语文教师、13名数学教师、15名英语教师,市教育局拟召开一个新课程研讨会.(1)若选派1名教师参会,有多少种派法?(2)若三个学科各派1名教师参会,有多少种派法?(3)若选派2名不同学科的教师参会,有多少种派法?参考答案第三章排列、组合与二项式定理3.1 排列与组合3.1.1 基本计数原理1.D 共分4步:一层到二层2种走法,二层到三层2种走法,三层到四层2种走法,四层到五层2种走法,根据分步乘法计数原理,一共有24种.选故D.2.B ①若甲同学选择牛,则乙同学有2种选法,丙同学有10种选法,共有1×2×10=20(种)满意的选法,②若甲同学选择马,则乙同学有3种选法,丙同学有10种选法,共有1×3×10=30种满意的选法,所以总共有20+30=50(种)令三位同学满意的选法.故选B.3.B 当x=1时,y=1,2,3,4,5;当x=2时,y=1,2,3,4;当x=3时,y=1,2,3.由分类加法计数原理得,有序数对有5+4+3=12(个).4.A 分8类.当中间数为2时,有1×2=2(个);当中间数为3时,有2×3=6(个);当中间数为4时,有3×4=12(个);当中间数为5时,有4×5=20(个);当中间数为6时,有5×6=30(个);当中间数为7时,有6×7=42(个);当中间数为8时,有7×8=56(个);当中间数为9时,有8×9=72(个).故共有2+6+12+20+30+42+56+72=240(个).5.18 当a=-3时,符合条件的情况有0种;当a=-2时,符合条件的情况有2种;当a=-1时,符合条件的情况有4种;当a=0时,符合条件的情况有6种;当a=1时,符合条件的情况有4种;当a=2时,符合条件的情况有2种;当a=3时,符合条件的情况有0种.依据分类加法计数原理,共有2+4+6+4+2=18(种).6.242 任取两本不同类的书分为三类:①取数学、语文各一本;②取语文、英语各一本;③取数学、英语各一本.在每一类中利用分步乘法计数原理,再利用分类加法计数原理即可.共有10×9+9×8+10×8=242种不同取法.7.20 当m=1时,n=2,3,4,5,6,7,有6种取法;当m=2时,n=3,4,5,6,7,有5种不同取法;当m=3时,n=4,5,6,7,有4种不同取法;当m=4时,n=5,6,7,有3种不同取法;当m=5时,n=6,7,有2种不同取法,故这样的椭圆共有6+5+4+3+2=20(个).8.324 分五步,由左到右依次种植,种法分别有4,3,3,3,3种.由分步乘法计数原理,不同的种法有4×3×3×3×3=324(种).9.C 根据分类加法计数原理计算,N=16+15=31.故选C.10.B 由分步乘法计数原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900(个),组成无重复数字的三位数共有9×9×8=648(个),因此组成有重复数字的三位数共有900-648=252(个).11.C 根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64(种)情况.其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27(种)方案.则符合条件的参观方案有64-27=37(种).故选C.12.D 5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是4×4×4×4×4=45,故选D.13.54 甲有三个培训可选,甲乙不参加同一项,所以乙有两个培训可选,丙、丁各有三个培训可选,根据分步乘法计数原理,不同的报名方法种数为3×2×3×3=54.14.解分两步安排这8名运动员.第1步:安排甲、乙、丙3人,共有1,3,5,7四条跑道可安排,安排方式有4×3×2=24(种);第2步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,安排方式有5×4×3×2×1=120(种).所以安排这8人的方式有24×120=2880(种).即安排8人的方式种数为2880.15.解如果A,C同色,涂色方法有3×2×1×2=12(种),如果A,C不同色,涂色方法有3×2×1×1=6(种),所以不同的涂色方法有12+6=18(种).即不同方法的种数为18.16.解(1)分三类:第一类选语文老师,有12种不同选法;第二类选数学老师,有13种不同选法;第三类选英语老师,有15种不同选法,共有12+13+15=40(种)不同的选法.(2)分三步:第一步选语文老师,有12种不同选法;第二步选数学老师,有13种不同选法;第三步选英语老师,有15种不同选法,共有12×13×15=2340(种)不同的选法.(3)分三类:第一类选一位语文老师和一位数学老师共有12×13种不同的选法;第二类选一位语文老师和一位英语老师共有12×15种不同的选法;第三类选一位英语老师和一位数学老师共有15×13种不同的选法,共有12×13+12×15+13×15=531(种)不同的选法.。
李凡长版 组合数学课后习题答案 习题5

第五章 P ólya 计数理论1. 计算(123)(234)(5)(14)(23),并指出它的共轭类.解:题中出现了5个不同的元素:分别是:1,2,3,4,5。
即|S n |=5。
⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=512345432152431543215413254321)23)(14)(5)(234)(123(⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=51234543215214354321 ⎪⎪⎭⎫ ⎝⎛=5341254321 )5)(34)(12(=(5)(12)(34)的置换的型为1122而S n 中属于1122型的元素个数为1521!1!2!521=个其共轭类为(5)(14)(23),(5)(13)(24),(1)(23)(45),(1)(24)(35), (1)(25)(34),(2)(13)(45),(2)(14)(35),(2)(15)(34), (3)(12)(45),(3)(14)(25),(3)(15)(24),(4)(12)(35), (4)(13)(25),(4)(15)(24)2. 设D 是n 元集合,G 是D 上的置换群.对于D 的子集A 和B ,如果存在G ∈σ,使得}|)({A a a B ∈=σ,则称A 与B 是等价的.求G 的等价类的个数.解:根据Burnside 引理∑==ni i a c G l 11)(1,其中c 1(a i )表示在置换a i 作用下保持不变的元素个数,则有 c 1(σI )=n;设在σ的作用下,A 的元素在B 中的个数为i ,则c 2(σ)=n -2i ;若没有其他置换,则G 诱出来的等价类个数为l=i n i n n -=-+)]2([213. 由0,1,6,8,9组成的n 位数,如果把一个数调转过来读得到另一个数,则称这两个数是相等的.例如,0168和8910,0890与0680是相等的.问不相等的n 位数有多少个?解:该题可理解为相当于n 位数,0,1,6,8,9这5个数存在一定的置换关系对于置换群G={g 1,g 2}g 1为不动点置换,型为1n ;为5n ;g 2置换:(1n )(2(n-1))(3(n-2))…(⎥⎥⎤⎢⎢⎡⎥⎦⎥⎢⎣⎢22n n ) 分为2种情况:(1) n 为奇数时212n ,但是只有中间的数字是0,1,8的时候,才可能调转过来的时候是相同的,所以这里的剩下的中间数字只能是有3种。
组合数学第四版答案

组合数学第四版答案组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a- b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4 或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。
当|a- b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a 和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。
1.3题m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。
解:(a) 可以考虑插空的方法。
n个女生先排成一排,形成n+1个空。
因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。
则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。
李凡长版 组合数学课后习题谜底 习题3

1. 在平面上画 n 条无限直线,每对直线都在不同的点相交,它们构成的无限 区域数记为 f(n),求 f(n)满足的递推关系.
解: f(n)=f(n-1)+2
f(1)=2,f(2)=4 解得 f(n)=2n. 2. n 位三进制数中,没有 1 出现在任何 2 的右边的序列的数目记为 f(n), 求 f(n)满足的递推关系. 解:设 an-1an-2…a1 是满足条件的 n-1 位三进制数序列,则它的个数可以用 f(n-1)表示。 an 可以有两种情况: 1) 不管上述序列中是否有 2,因为 an 的位置在最左边,因此 0 和 1 均可选; 2)当上述序列中没有 1 时,2 可选; 故满足条件的序列数为
解:这种序列有两种情况:
1)最后一位为 0,这种情况有 f(n-3)个;
2)最后一位为 1,这种情况有 2f(n-2)个;
所以
f(n)=f(n-3)+2f(n-2)
f(1)=2,f(2)=3,f(3)=5. 5. 求 n 位 0,1 序列中“00”只在最后两位才出现的序列数 f(n). 解:最后两位是“00”的序列共有 2n-2 个。
f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在 n-1
位第一次出现“00”的可能;
f(n-1)表示在第 n-1 位第一次出现“00”的序列数,同时同时排除了在
n-2 位第一次出现“00”的可能;
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
人教B版高中数学选择性必修第二册课后习题 第3章 排列、组合与二项式定理 3.1.1 基本计数原理

第三章3.1 排列与组合3.1.1 基本计数原理A级必备知识基础练1.[探究点二]某校教学大楼共有五层,每层均有两个楼梯,一学生由一层到五层的走法有( )A.10种B.25种C.52种D.24种2.[探究点三]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )A.30种B.50种C.60种D.90种3.[探究点一]如果x,y∈N*,且1≤x≤3,x+y<7,则满足条件的有序数对(x,y)的个数是( )A.15B.12C.5D.44.[探究点三]如果一个三位正整数如“a1a2a3”满足a1<a2,且a3<a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( ) A.240 B.204 C.729 D.9205.[探究点三·广东雷州高二阶段练习](多选题)已知数字0,1,2,3,4,由它们组成四位数,下列说法正确的有( )A.组成可以有重复数字的四位数有500个B.组成无重复数字的四位数有96个C.组成无重复数字的四位偶数有66个D.组成无重复数字的四位奇数有28个6.[探究点三]有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中分两次选两本不同类的书,共有种不同的取法.7.[探究点二·人教A版教材习题](1)4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,不同报法的种数是34还是43?(2)3个班分别从5个景点中选择一处游览,不同选法的种数是35还是53?8.[探究点三·江苏连云港高二检测]用0,1,2,3,4,5,6,7,8,9这十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?B级关键能力提升练9.某校高一年级共16个班,高二年级共15个班,从中选出一个班级担任学校星期一早晨升旗任务,共有的安排方法种数是( )A.16B.15C.31D.24010.某学校有东、南、西、北四个校门,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有2名教师和3名学生要进入校园(不分先后顺序),请问进入校园的方式共有( )A.6种B.12种C.24种D.32种11.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,但甲工厂必须有班级要去,则不同的参观方案的种数为( )A.16B.18C.37D.4812.(多选题)现有不同的红球4个,黄球5个,绿球6个,则下列说法正确的是( )A.从中选出2个球,正好一红一黄,有9种不同的选法B.若每种颜色选出1个球,有120种不同的选法C.若要选出不同颜色的2个球,有31种不同的选法D.若要不放回地依次选出2个球,有210种不同的选法13.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有种不同的选法.14.甲、乙、丙、丁四位同学决定乘坐地铁去观洲、人民公园、新城大市场三个地方游览,每人只能去一个地方,人民公园一定要有人去,则不同游览方案的种数为.15.将摆放在编号为1,2,3,4,5五个位置上的5件不同商品重新摆放,则恰有一件商品的位置不变的摆放方法数为.(用数字作答)16.[人教A版教材习题]口袋中装有8个白球和10个红球,每个球编有不同的号码,现从中取出2个球.(1)恰好是白球、红球各一个的取法有多少种?(2)恰好是两个白球的取法有多少种?(3)至少有一个白球的取法有多少种?(4)两球的颜色相同的取法有多少种?C级学科素养创新练17.用红、黄、蓝三种颜色涂四边形ABCD的四个顶点,要求相邻顶点的颜色不同,求不同的涂色方法的种数.18.某学校高二年级有12名语文教师、13名数学教师、15名英语教师,市教育局拟召开一个新课程研讨会.(1)若选派1名教师参会,有多少种派法?(2)若三个学科各派1名教师参会,有多少种派法?(3)若选派2名不同学科的教师参会,有多少种派法?参考答案3.1 排列与组合3.1.1 基本计数原理1.D 共分4步:一层到二层2种走法,二层到三层2种走法,三层到四层2种走法,四层到五层2种走法,根据分步乘法计数原理,一共有24种.选故D.2.B ①若甲同学选择牛,则乙同学有2种选法,丙同学有10种选法,共有1×2×10=20种满意的选法,②若甲同学选择马,则乙同学有3种选法,丙同学有10种选法,共有1×3×10=30种满意的选法,所以总共有20+30=50种令三位同学满意的选法.故选B.3.B 当x=1时,y=1,2,3,4,5;当x=2时,y=1,2,3,4;当x=3时,y=1,2,3.由分类加法计数原理得,有序数对有5+4+3=12(个).4.A 分8类.当中间数为2时,有1×2=2个;当中间数为3时,有2×3=6个;当中间数为4时,有3×4=12个;当中间数为5时,有4×5=20个;当中间数为6时,有5×6=30个;当中间数为7时,有6×7=42个;当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个.故共有2+6+12+20+30+42+56+72=240个.5.AB 对A:四位数的首位不能为0,有4种情况,其他数位有5种情况,则组成可以有重复数字的四位数有4×5×5×5=500个,故选项A正确;对B:四位数的首位不能为0,有4种情况,在剩下的4个数字中任选3个,排在后面3个数位,有4×3×2=24种情况,则组成无重复数字的四位数有4×24=96个,故选项B正确;对C:若0在个位,有4×3×2=24个四位偶数,若0不在个位,有3×3×2×2=36个四位偶数,则组成无重复数字的四位偶数共有24+36=60个四位偶数,故选项C错误;对D:组成无重复数字的四位奇数有3×3×2×2=36个,故选项D错误.故选AB.6.242 任取两本不同类的书分为三类:①取数学、语文各一本;②取语文、英语各一本;③取数学、英语各一本.在每一类中利用分步乘法计数原理,再利用分类加法计数原理即可.共有10×9+9×8+10×8=242种不同取法.7.解(1)一件事情是“4名同学分别参加3个运动队中的一个,每人限报其中的一个运动队”,应该是人选运动队,完成“这件事”是指给4名同学逐一选择运动队,分四步完成.根据分步乘法计数原理,不同报法种数是3×3×3×3=34.(2)一件事情是“3个班分别从5个景点中选择一处游览”,应该是班选景点,完成这件事需分三步,根据分步乘法计数原理,不同的选法种数是53.8.解(1)由于0不能在百位,故百位上数字有9种选法,十位与个位上的数字均有10种选法,所以不同的三位数共有9×10×10=900个.(2)百位上的数字有9种选法,十位上的数字有除百位上的数字以外的9种选法,个位上的数字应从剩余8个数字中选取,所以共有9×9×8=648个无重复数字的三位数.(3)满足条件的一位自然数有10个,两位自然数有9×9=81个,三位自然数有4×9×8=288个,由分类加法计数原理知共有10+81+288=379个小于500且无重复数字的自然数.9.C 根据分类加法计数原理计算,N=16+15=31.故选C.10.D 因为学生只能从东门或西门进入校园,所以3名学生进入校园的方式共23=8种.因为教师只可以从南门或北门进入校园,所以2名教师进入校园的方式共有22=4种.所以2名教师和3名学生要进入校园的方式共有8×4=32种情况.故选D.11.C 根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64种情况.其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27种方案.则符合条件的参观方案有64-27=37种.故选C.12.BD 对A,从中选出2个球,正好一红一黄,有4×5=20种不同的选法,所以该选项错误;对B,若每种颜色选出1个球,有4×5×6=120种不同的选法,所以该选项正确;对C,若要选出不同颜色的2个球,有4×5+5×6+4×6=74种不同的选法,所以该选项错误;对D,若要不放回地依次选出2个球,有15×14=210种不同的选法,所以该选项正确.故选BD.13.20 共分三类:第一类,当选出的会英语的人既会英语又会日语时,选会日语的人有2种选法;第二类,当选出的会日语的人既会英语又会日语时,选会英语的人有6种选法;第三类,当既会英语又会日语的人不参与选择时,则需从只会日语和只会英语的人中各选一人,有2×6=12种选法.故共有2+6+12=20种选法.14.65 由题可知没有限制时,每人有3种选择,则4人共有34种,若没人去人民公园,则每人有2种选择,则4人共有24种,故人民公园一定要有人去的不同游览方案有34-24=81-16=65种.15.45 根据题意,分2步进行分析:(1)将5件不同商品中选出1件,放回原来的位置,有5种情况,假设编号为5的位置不变;(2)剩下4件都不在原来位置,即编号为1,2,3,4的4件商品都不在原来位置,编号为1的商品有3种放法,假设其放在了2号商品原来的位置,则2号商品有3种放法,剩下编号为3,4的两件商品只有1种放法,则其余4件商品的放法有3×3=9种.故恰有一件商品的位置不变的摆放方法有5×9=45种.16.解(1)一件事情是“取出一个白球一个红球”,可分2步解决,第1步取一个白球,8种取法;第2步取一个红球,10种取法,由分步乘法计数原理,共有8×10=80种不同取法.(2)一件事情是“取出两个白球”,可分为2步解决,先从8个白球中取一个,8种取法;再从余下的7个白球中取一个,有7种取法,但先取1号球后=28种不同的取2号球与先取2号球后取1号球,结果是相同的.故共有8×72取法.(3)一件事情是“取出一个白球一个红球或者取出两个白球”,可分两类解决,取出一个白球一个红球有80种不同取法;取出两个白球有28种不同取法,由分类加法计数原理,共有80+28=108种不同取法.(4)一件事情是“取出两白球或取出两红球”,可分两类解决,取出两白球有28种不同取法;取出两红球有10×9=45种不同取法,由分类加法计数原2理知,共有28+45=73种不同取法.17.解如果A,C同色,涂色方法有3×2×1×2=12(种),如果A,C不同色,涂色方法有3×2×1×1=6(种),所以不同的涂色方法有12+6=18(种).即不同方法的种数为18.18.解(1)分三类:第一类选语文老师,有12种不同选法;第二类选数学老师,有13种不同选法;第三类选英语老师,有15种不同选法,共有12+13+15=40(种)不同的选法.(2)分三步:第一步选语文老师,有12种不同选法;第二步选数学老师,有13种不同选法;第三步选英语老师,有15种不同选法,共有12×13×15=2340(种)不同的选法.(3)分三类:第一类选一位语文老师和一位数学老师共有12×13种不同的选法;第二类选一位语文老师和一位英语老师共有12×15种不同的选法;第三类选一位英语老师和一位数学老师共有15×13种不同的选法,共有12×13+12×15+13×15=531(种)不同的选法.。
组合数学姜建国著-课后习题答案完全版

组合数学(第2版)-姜建国,岳建国习题一(排列与组合)1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数;(1)选1个,即构成1位数,共有15P个;(2)选2个,即构成两位数,共有25P个;(3)选3个,即构成3位数,共有35P个;(4)选4个,即构成4位数,共有45P个;由加法法则可知,所求的整数共有:12345555205P P P P+++=个。
2.比5400小并具有下列性质的正整数有多少个(1)每位的数字全不同;(2)每位数字不同且不出现数字2与7;解:(1)比5400小且每位数字全不同的正整数;按正整数的位数可分为以下几种情况:①一位数,可从1~9中任取一个,共有9个;②两位数。
十位上的数可从1~9中选取,个位数上的数可从其余9个数字中选取,根据乘法法则,共有9981⨯=个;③ 三位数。
百位上的数可从1~9中选取,剩下的两位数可从其余9个数中选2个进行排列,根据乘法法则,共有299648P ⨯=个;④ 四位数。
又可分三种情况:千位上的数从1~4中选取,剩下的三位数从剩下的9个数字中选3个进行排列,根据乘法法则,共有3942016P ⨯=个;千位上的数取5,百位上的数从1~3中选取,剩下的两位数从剩下的8个数字中选2个进行排列,共有283168P ⨯=个;千位上的数取5,百位上的数取0,剩下的两位数从剩下的8个数字中选2个进行排列,共有2856P =个;根据加法法则,满足条件的正整数共有:9816482016168562978+++++=个;(2)比5400小且每位数字不同且不出现数字2与7的正整数;按正整数的位数可分为以下几种情况:设{0,1,3,4,5,6,8,9}A = ① 一位数,可从{0}A -中任取一个,共有7个;② 两位数。
十位上的数可从{0}A -中选取,个位数上的数可从A 中其余7个数字中选取,根据乘法法则,共有7749⨯=个;③ 三位数。
【免费下载】李凡长版 组合数学课后习题答案 习题3

第三章递推关系1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限区域数记为f(n),求f(n)满足的递推关系.解: f(n)=f(n-1)+2f(1)=2,f(2)=4解得f(n)=2n.2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求f(n)满足的递推关系.解:设a n-1a n-2…a1是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1)表示。
a n可以有两种情况:1)不管上述序列中是否有2,因为a n的位置在最左边,因此0和1均可选;2)当上述序列中没有1时,2可选;故满足条件的序列数为f(n)=2f(n-1)+2n-1 n 1,f(1)=3解得f(n)=2n-1(2+n).3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足的递推关系.解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。
则有h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1)f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2)将(1)得到的h(n)=(2n+4n)/2代入(2),可得f(n+1)= (2n+4n)/2-2f(n),f(1)=2.4.求满足相邻位不同为0的n位二进制序列中0的个数f(n).解:这种序列有两种情况:1)最后一位为0,这种情况有f(n-3)个;2)最后一位为1,这种情况有2f(n-2)个;所以f(n)=f(n-3)+2f(n-2)f(1)=2,f(2)=3,f(3)=5.5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n).解:最后两位是“00”的序列共有2n-2个。
f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能;f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能;依此类推,有f(n)+f(n-1)+f(n-2)+…+f(2)=2n-2f(2)=1,f(3)=1,f(4)=2.6.求n 位0,1序列中“010”只出现一次且在第n 位出现的序列数f(n).解:最后三位是“010”的序列共有2n-3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 容斥原理与鸽巢原理1、1到10000之间(不含两端)不能被4,5和7整除的整数有多少个? 解 令A={1,2,3,…,10000},则 |A|=10000.记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除的整数集合,则有:|A 1| = L 10000/4」=2500,|A 2| = L 10000/5」=2000,|A 3| = L 10000/7」=1428,于是A 1∩A 2 表示A 中能被4和5整除的数,即能被20 整除的数,其个数为| A 1∩A 2|=L 10000/20」=500;同理, | A 1∩A 3|=L 10000/28」=357,| A 2∩A 3|=L 10000/35」=285,A 1 ∩A 2 ∩ A 3 表示A 中能同时被4,5,7整除的数,即A 中能被4,5,7的最小公倍数lcm(4,5,6)=140整除的数,其个数为| A 1∩A 2∩A 3|=L 10000/140」= 71.由容斥原理知,A 中不能被4,5,7整除的整数个数为||321A A A ⋂⋂= |A| - (|A 1| + |A 2| +|A 3|) + (|A 1∩A 2| + |A 1∩A 3| +|A 3∩A 2|) - |A 1∩A 2∩A 3|= 51432、1到10000之间(不含两端)不能被4或5或7整除的整数有多少个? 解 令A={1,2,3,…,10000},记A 1、A 2、A 3分别为在1与1000之间能被4,5和7整除的整数集合,A 中不能被4,5,7整除的整数个数为||321A A A ⋃⋃ = |A| - ||321A A A ⋂⋂ - 2 = 10000 - L 10000/140」- 2 = 99273、1到10000之间(不含两端)能被4和5整除,但不能被7整除的整数有多少个?解 令A 1表示在1与10000之间能被4和5整除的整数集,A 2表示4和5整除,也能被7整除的整数集。
则:|A 1| = L 10000/20」= 500,|A 2| = L 10000/140」= 71,所以1与10000之间能被4和5整除但不能被7整除的整数的个数为:500-71=429。
4、计算集合{2·a, 3·b, 2·c, 4·d }的5组合数.解 令S ∞={∞·a, ∞·b,∞·c,∞·d},则S 的5组合数为()1455-+ = 56 设集合A 是S ∞的5组合全体,则|A|=56,现在要求在5组合中的a 的个数小于等于2,b 的个数小于等于3,c 的个数小于等于2,d 的个数小于等于4的组合数. 定义性质集合P={P 1,P 2,P 3,P 4},其中:P 1:5组合中a 的个数大于等于3;P 2:5组合中b 的个数大于等于4;P 3:5组合中c 的个数大于等于3;P 4:5组合中d 的个数大于等于5.将满足性质P i 的5组合全体记为A i (1≤i ≤4). 那么,A 1中的元素可以看作是由S ∞的5-3=2组合再拼上3个a 构成的,所以|A 1| =()1422-+ = 10.类似地,有|A 2| =()144545-+-- = 4. |A 3| =()143535-+-- = 10. |A 1| =()145555-+-- = 1. |A 1∩A 2| =()14435435-+---- = 0. | A 1∩A 3| = | A 1∩A 4| = | A 2∩A 4| = | A 2∩A 3| = | A 3∩A 4| = | A 1∩A 2∩A 4|= | A 1∩A 2∩A 3| = | A 3∩A 2∩A 4| =| A 1∩A 2∩A 3∩A 4| = 0而a 的个数小于等于2,b 的个数小于等于3,c 的个数小于等于2,d 的个数小于等于4的5组合全体为||4321A A A A ⋂⋂⋂,由容斥原理知,它的元素个数为 56-(10+4+10+1)-(0+0+0+0+0+0)+(0+0+0)-0=31。
5、计算{∞·a, 3·b, 10·c }的10组合数.解 令S ∞={∞·a, ∞·b,∞·c },则S 的10组合数为()131010-+ = 66 设集合A 是S ∞的10组合全体,则|A|=66,现在要求在10组合中的b 的个数小于等于3,c 的个数小于等于10的组合数. 定义性质集合P={ P 1,P 2 },其中:P 1:10组合中b 的个数大于等于4;P 2:10组合中c 的个数大于等于11;将满足性质P i 的10组合全体记为A i (1≤i ≤4). 那么, |A 1| =()13410410-+-- = 28. 类似地,有 |A 2| =()1311101110-+-- = 0. |A 1∩A 2| = = 0. 故由容斥原理知,所求组合数为66-(28+0)-0 =38。
6、求集合{a·x, b·y, c·z }的m 组合数(a,b,c 全非无穷大).解 用上面的方法可以得出该集合的m 组合数为:()()()()[]()()()[]()()()()()[]()()()[]()122221212122133312321232123211311131113113----------+-+-+-+-----+--------+-------+-------+------+-----+-----+---+-+++++-=-+++++-c b a m b c m c a m ba m c mb m a m m m b ac m b a c r a c m a c r c b m c b r b a m b a r c m c r b m b r a m a r m m 7、某班学生25人可以选修二外,其中有14人选修日语,12人选修法语,5人选修日语和德语,6人选修法语和日语,2人选修这3种语言,而且6个选修德语的都选了另一种外语(这3种内的一种)。
问有多少人没有选修二外? 解 设选修日语,法语,德语的学生集合分别为J ,F ,G ,则|J| = 14,|F| = 12,|G| = 6,|F ∩J| = 6,|G ∩J| = 5,|F ∩J ∩G| = 2,|F ∩G| =6-5+2=3。
故没有选修的人数为:|J G F |⋂⋂ = 25 – (12 + 14 + 6) + (6+5+3) – 2 = 5。
8、1到120的整数中有多少质数?多少合数?解 先求合数的个数。
设a 为合数,p 为a 的最小质因子,则p ≤a 。
由于120<11,故不超过120的合数必定是2,3,5,7的倍数。
根据容斥原理可得,合数的个数为89,质数为119-89 = 30。
9、求方程x 1 + x 2 + x 3 = 10的大于2的整数解的个数.解 相当于求S={∞·a, ∞·b,∞·c }的10-2*3=4组合数的个数。
()1344-+=1510、 求方程x 1 + x 2 + x 3 + x 4 = 18的非负整数解的个数,其中0≤x 1≤5, 0≤x 2≤6, 5≤x 3≤9, 2≤x 4≤10.提示 令y 1= x 1,y 2=x 2,y 3=x 3 -5,y 4= x 4-2。
相当于求{5·x 1 ,6·x 2 ,4·x 3 ,8·x 4}的11组合数。
11、 一花店某时只有6枝红玫瑰,7枝粉玫瑰和8枝黄玫瑰。
这时要从中选12枝做花篮,问有多少种选法?提示 相当于求S={6·a, 7·b,8·c }的12组合数的个数。
12、 某人要给5个朋友每人一件生日礼物,问礼物全部送错的概率是多少? 解 D 5 = 5!13、 对集合{1,2,…,10}的元素进行排列,恰有5个元素在其自然位置上的排列有多少种?.解 任意选出5个元素放在其自然位置上,其余的全部错排:()105D 5 14、 说明组合恒等式()()()0110D D D n nn n n n n+⋯++=-! 的组合意义.(设D 0 = 1)解 S={1,2,…,n}排列可分成下列情况:没有一个数在其自然位置上的排列数为()n 0D n 。
恰有i (i=1,2,…,n )个数在其自然位置上的排列数为()n i D n-i 。
S 的所有排列的个数为n!。
根据加法原理,有:n! = ()n0D n + ()n 1D n-1 +…+ ()n nD 0 15、 计算机接到n 个用户的信号,每个信号都由一个A 类数据加一个B 类数据组成;然后计算机随机发给这n 个用户每人一个A 类数据和一个B 类数据。
那么没有人接到的数据与他发出的相同的概率是多少?解 如果发给用户的A 类数据全排列,B 类错排:n!D n如果发给用户的B 类数据全排列,A 类错排:n!D n如果发给用户的A 类、B 类数据全部错排:D n 2则没有人接到的数据与他发出的相同的方案数为:n!D n + n!D n - D n 。
所求概率为:(2* n!D n - D n )/( n!)2。
16、 把20个相同的球放入5个不同的盒子,其中前2个盒子每个最多可以放6个球。
问共有多少种不同的方法?解 ()()∑=---+60202012i i ii i 17、10个人在舞会中跳舞。
问有多少种方法?若在第二支舞曲中,每个人都换了舞伴呢?解 从原来的每一对舞伴种选出一个,让这5个人错排:25D 5。
18、 证明:n 对夫妻围坐于一圆桌旁,假定n 位妻子w 1,w 2,…,w n 先坐好,将丈夫们h 1,h 2,,…h n 插在两个妻子之间,则正好有r 对夫妻相邻而坐的方案数为M(n,r)=()()∑=-----n r k kn kkr r k k n k n n )!()(2221 证明 设N 是h 1,h 2,…,h n 的所有排列的集合令 A 1:h 1坐在w 1右边的排列;A 2:h 1坐在w 1左边的排列;A 3:h 2坐在w 2右边的排列;A 4:h 2坐在w 2左边的排列;……A 2n-1:h n 坐在w n 左边的排列;A 2n :h n 坐在w n 左边的排列。
注意:A i 和A i+1不可能同时成立i=1,2,…,2n 。
若依序将A 1,A 2,…,A 2n 沿一圆周排列,则 |A i ∩A i+1| = 0 (i=1,2,…,2n ) 假如k i i i A A A ,...,,21沿圆周有两个相邻时,则k i i i A A A ⋂⋂⋂...21=0。