人教版数学七年级上册期末考试试卷含答案

合集下载

人教版七年级上册数学期末考试试卷(含参考答案)

人教版七年级上册数学期末考试试卷(含参考答案)

人教版七年级上册数学期末考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×1074.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b5.如图所示几何体的俯视图是()A.B.C.D.6.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类B类C类50200400252015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡7.下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100二、填空题(本题共10小题,每小题3分,共30分)9.﹣1.5的绝对值是,﹣1.5的倒数是.10.在,3.14,0.161616…,中,分数有个.11.|x﹣3|+(y+2)2=0,则y x为.12.一个几何体的表面展开图如图所示,则这个几何体是.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.14.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为cm.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设,可得方程.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.三、解答题(本题共9小题,共96分)19.计算(12)(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].20.(12分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.21.解方程(12)(1)4(2x﹣3)﹣(5x﹣1)=7(2).22.(12分)如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段长就是点C到OA的距离;②比较大小:CE CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD∠ECO.23.(12)如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:cm3.24.(12分)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.25(12分).甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时km;快车的速度为每小时km;(2)当两车相距300km时,两车行驶了小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.26.(12分)已知△ABC中,∠ABC=∠ACB,D为射线CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=40°,∠DAE=30°,则α=,β=.②写出α与β的数量关系,并说明理由;(2)如图(2),当D点在BC边上,E点在CA的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3)如图(3),D在CB的延长线上,根据已知补全图形,并直接写出α与β的关系式.七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题2分,共16分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【考点】正数和负数.【专题】探究型.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣3【考点】有理数大小比较;有理数的加法.【专题】计算题.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258000用科学记数法表示为2.58×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.5.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:C.【点评】此题主要考查了简单几何体的三视图,关键是所看到的线都要用实线表示.y6.一家游泳馆的游泳收费标准为 30 元/次,若购买会员年卡,可享受如下优惠:会员年卡类型A 类B 类C 类办卡费用(元)50200400 每次游泳收费(元)252015例如,购买 A 类会员年卡,一年内游泳 20 次,消费 50+25×20=550 元,若一年内在该游泳馆游泳的次数介于 45~55 次之间,则最省钱的方式为()A .购买 A 类会员年卡B .购买 B 类会员年卡C .购买 C 类会员年卡D .不购买会员年卡【考点】一次函数的应用.【分析】设一年内在该游泳馆游泳的次数为 x 次,消费的钱数为 y 元,根据题意得: =50+25x ,y =200+20x , ABy =400+15x ,当 45≤x ≤55 时,确定 y 的范围,进行比较即可解答.C【解答】解:设一年内在该游泳馆游泳的次数为 x 次,消费的钱数为 y 元,根据题意得:y =50+25x ,Ay =200+20x ,By =400+15x ,C当 45≤x ≤55 时,1175≤y ≤1425;A1100≤y ≤1300;B1075≤y ≤1225;C由此可见,C 类会员年卡消费最低,所以最省钱的方式为购买 C 类会员年卡.故选:C .【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.7.下列结论中,不正确的是()A .两点确定一条直线B .两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行【考点】命题与定理.【分析】利用确定直线的条件、线段公理、对顶角的性质及平行线的定义分别判断后即可确定正确的选项.【解答】解:A、两点确定一条直线,正确;B、两点之间的所有连线中,线段最短,正确;C、对顶角相等,正确;D、过直线外一点有且只有一条直线与已知直线平行,故错误,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解确定直线的条件、线段公理、对顶角的性质及平行线的定义,属于基础题,难度不大.8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.二、填空题(本题共10小题,每小题2分,共20分)9.﹣1.5的绝对值是 1.5,﹣1.5的倒数是.【考点】倒数;绝对值.【分析】根据倒数和绝对值的定义解答即可.【解答】解:﹣1.5的绝对值是1.5,﹣1.5的倒数是,故答案为:1.5;.【点评】本题考查了倒数、绝对值的定义,熟练掌握定义是解题的关键.10.在,3.14,0.161616…,中,分数有3个.【考点】有理数.【分析】根据整数和分数统称为有理数解答即可.【解答】解:,3.14,0.161616…是分数,故答案为:3.【点评】本题考查的是有理数的概念,掌握整数和分数统称为有理数是解题的关键.11.|x﹣3|+(y+2)2=0,则y x为﹣8.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个几何体的表面展开图如图所示,则这个几何体是四棱锥.【考点】几何体的展开图.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥;故答案为:四棱锥.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是C.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“E”是相对面,“B”与“D”是相对面,“C”与盒盖是相对面.故答案为:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.如果一个角是23°15′,那么这个角的余角是66.75°.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义即可得出结论.【解答】解:∵一个角是23°15′,∴这个角的余角=90°﹣23°15′=66°75′=66.75°.故答案为:66.75.【点评】本题考查的是余角和补角,熟知如果两个角的和等于90°(直角),就说这两个角互为余角是解答此题的关键.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是﹣5.【考点】代数式求值.【分析】直接将代数式变形进而化简求值答案.【解答】解:∵代数式x+2y的值是3,∴代数式1﹣2x﹣4y=1﹣2(x+2y)=1﹣2×3=﹣5.故答案为:﹣5.【点评】此题主要考查了代数式求值,正确将所求代数式变形是解题关键.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为20cm.【考点】两点间的距离.【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故答案为:20.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设这堆糖果有x个,可得方程.【考点】由实际问题抽象出一元一次方程.【分析】设这堆糖果有x个,根据不同的分配方法,小朋友的人数是一定的,据此列方程.【解答】解:设这堆糖果有x个,若每人2颗,那么就多8颗,则有小朋友人,若每人3颗,那么就少12颗,则有小朋友人,据此可知=.故答案为这堆糖果有x个.【点评】本题考查了由实际问题抽象出的一元一次方程,比较简单,关键是根据题意设出未知数,此题还可以设糖果的总量为x,这样得出的方程会不一样,但最终的结果是一样的.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.【考点】列代数式.【分析】利用割补法可得阴影部分的面积等于正方形面积的一半.【解答】解:如图所示,S阴影=S=AC×BD=a2,正方形ABCD故答案为:a2.【点评】此题主要考查了列代数式的能力,利用割补法判断出阴影部分的面积是解决本题的难点.三、解答题(本题共9小题,共64分)19.计算(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20+2+10=﹣20+12=﹣8;(2)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值;合并同类项.【专题】计算题.【分析】先去括号,然后合并同类项,从而得出最简整式,然后将x及y的值代入即可得出答案.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2,当a=﹣1,b=﹣2时,原式=4.【点评】此题考查了整式的加减及化简求值的知识,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.21.解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.【考点】作图—复杂作图;角的大小比较;垂线段最短;点到直线的距离.【分析】根据已知条件画出图形,然后根据图形即可得到结论.【解答】解:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.故答案为:CG,>,=.【点评】本题考查了作图﹣复杂作图,角的大小的比较,垂线段的性质,点到直线的距离,熟记各概念是解题的关键.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:12cm3.【考点】展开图折叠成几何体.【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.24.如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有5对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.【考点】余角和补角.【分析】(1)根据角平分线的定义得到∠1=∠2,根据邻补角的性质解答即可;(2)根据角平分线的定义和补角的概念计算;(3)根据等角的补角相等证明.【解答】解:(1)∵OD平分∠AOC,∴∠1=∠2,∵∠DOE=90°,∴∠2+∠3=90°,∴∠1+∠4=90°,∴∠1与∠DOB互补,∠2与∠DOB互补,∠3与∠AOE互补,∠4与∠AOE互补,∠AOC与∠BOC,故答案为:5;(2)∵∠AOD=50°,∴∠AOC=2∠AOD=100°,∴∠BOC=180°﹣100°=80°;(3)∵∠1=∠2,∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∴OE平分∠BOC.【点评】本题考查的是余角和补角的概念、角平分线的定义,掌握如果两个角的和等于90°,这两个角互为余角.如果两个角的和等于180°,这两个角互为补角是解题的关键.25.如图,∠AOB=90°,在∠AOB的内部有一条射线OC.(1)画射线OD⊥OC.(2)写出此时∠AOD与∠BOC的数量关系,并说明理由.【考点】垂线.【分析】(1)根据垂线的定义,可得答案;(2)根据余角的性质,可得答案;根据角的和差,可得答案.【解答】解:(1)如图:,;(2)如图1:,∠AOD=∠BOC.因为∠AOB=90°,所以∠AOC+∠BOC=90°.因为OD⊥OC,所以∠AOD+∠AOC=90°.所以∠AOD=∠BOC;如图2:,∠AOD+∠BOC=180°.因为∠AOD=∠AOC+∠BOC+∠BOD,所以∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=180°.【点评】本题考查了垂线,利用了余角的性质,角的和差,要分类讨论,以防遗漏.26.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围不超过150千瓦时的部分超过150千瓦时,但不超过300千瓦时的部分超过300千瓦时的部分电费价格(单位:元/千瓦时)aba+0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费122.5元.(1)求上表中a、b的值.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费277.5元?(3)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价等于0.62元/千瓦时?【考点】一元一次方程的应用.【分析】(1)利用居民甲用电100千瓦时,交电费60元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费122.5元,求出b的值即可;(2)首先判断出用电是否超过300千瓦时,再根据收费方式可得等量关系:前150千瓦时的部分的费用+超过150千瓦时,但不超过300千瓦时的部分的费用+超过300千瓦时的部分的费用=交费277.5元,根据等量关系列出方程,再解即可;(3)根据当居民月用电量y≤150时,0.6≤0.62,当居民月用电量y满足150<y≤300时,0.65y﹣7.5≤0.62y,当居民月用电量y满足y>300时,0.9y﹣82.5≤0.62y,分别得出即可.【解答】解:(1)a=60÷100=0.6,150×0.6+50b=122.5,解得b=0.65.(2)若用电300千瓦时,0.6×150+0.65×150=187.5<277.5,所以用电超过300千瓦时.设该户居民月用电x千瓦时,则0.6×150+0.65×150+0.9(x﹣300)=277.5,解得x=400答:该户居民月用电400千瓦时.(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为0.6<0.62,故不合题意;②若y超过150,但不超过300,则0.62y=0.6×150+0.65(y﹣150),解得y=250;③若y大于300,则0.62y=0.6×150+0.65×150+0.9(y﹣300),解得.此时y<300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250千瓦时.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.27.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时75km;快车的速度为每小时150km;(2)当两车相距300km时,两车行驶了或小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.【考点】一元一次方程的应用.【分析】(1)由速度=路程÷时间计算即可;(2)需要分类讨论:相遇前距离300km和相遇后相距300km;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:慢车在前和慢车在后.【解答】解:(1)慢车速度为:900÷12=75(千米/时).快车的速度:75×2=150(千米/时).故答案是:75,150;(2)①当相遇前相距300km时,②当相遇后相距300km时,==(小时);(小时);综上所述,当两车相距300km时,两车行驶了或小时;故答案是:或;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:①慢车在前,则75×3+75x﹣150=150x,21解得x=1.此时900﹣150×(3+1)﹣150×1=150.②慢车在后,则75×3+75x+150=150x,解得x=5.此时第一列快车已经到站,150×5=750.综上,第二列快车和慢车相距150km时,两列快车相距150km或750km.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意:分类讨论数学思想的应用.22。

2024年最新人教版初一数学(上册)期末考卷及答案(各版本)

2024年最新人教版初一数学(上册)期末考卷及答案(各版本)

2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。

()2. 任何两个有理数的积仍然是有理数。

()3. 任何两个整数的商仍然是有理数。

()4. 任何两个整数的和仍然是有理数。

()5. 任何两个整数的差仍然是有理数。

()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。

2. 若x为正数,则x为______数。

3. 任何数与0相乘,结果都为______。

4. 任何数与1相乘,结果都为______。

5. 任何数与1相乘,结果都为______。

四、简答题5道(每题2分,共10分)1. 简述有理数的定义。

2. 简述整数的定义。

3. 简述分数的定义。

4. 简述正数和负数的定义。

5. 简述相反数的定义。

五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。

2. 已知a > b,且c > d,求证:a c < b d。

3. 已知a > b,且c < d,求证:a c > b d。

4. 已知a > b,且c > d,求证:a c > b d。

2023年人教版七年级数学上册期末试卷(及答案)

2023年人教版七年级数学上册期末试卷(及答案)

2023 年人教版七年级数学上册期末试卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共10题,计20分)1. 若a、b是实数,且a > b,则下列哪个不等式成立?A. a + b > 2aB. a b < 0C. a^2 > b^2D. a/b > 12. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是多少?A. 16cmB. 18cmC. 20cmD. 22cm3. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的体积是多少?A. 60cm^3B. 80cm^3C. 120cm^3D. 150cm^34. 若一个数列的前三项分别是2、4、6,则这个数列的通项公式是?A. an = 2nB. an = 2n + 1C. an = 2n 1D. an = 2n + 25. 若一个圆的半径为5cm,则它的面积是多少?A. 25πcm^2B. 50πcm^2C. 100πcm^2D. 200πcm^26. 若一个平行四边形的底边长为8cm,高为5cm,则它的面积是多少?A. 40cm^2B. 48cm^2C. 56cm^2D. 64cm^27. 若一个直角三角形的两条直角边长分别为3cm、4cm,则它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm8. 若一个正方形的边长为6cm,则它的面积是多少?A. 36cm^2B. 48cm^2C. 60cm^2D. 72cm^29. 若一个等差数列的首项为3,公差为2,则它的第5项是多少?A. 9B. 11C. 13D. 1510. 若一个圆的直径为10cm,则它的半径是多少?A. 5cmB. 7cmC. 9cmD. 11cm二、填空题(每题2分,共10题,计20分)1. 若一个数的绝对值为5,则这个数可能是______或______。

2. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______cm^3。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.单项式﹣2ab 2的系数是()A .﹣2B .2C .3D .43.下列各组单项式是同类项的是()A .4x 和4yB .xy 2和4xyC .4xy 2和﹣x 2yD .﹣4xy 2和y 2x4.下列图形通过折叠能围成一个三棱柱的是()A .B .C .D .5.若∠α与∠β互余,且∠α:∠β=3:2,那么∠α的度数是()A .54°B .36°C .72°D .60°6.下列等式变形正确的是()A .由7x =5得x =75B .由10.2x=得2x=10C .由2﹣x =1得x =1﹣2D .由3x﹣2=1得x ﹣6=37.下列比较大小,正确的是()A .﹣|﹣5|>0B .(﹣2)2<(﹣2)3C .﹣34>﹣45D .﹣1﹣(﹣2)<08.如图,几何体的左视图是()A .B .C .D .9.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为()A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+10.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+1二、填空题11.某县2018年元旦的最高气温为5℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高_____℃.12.将数12000000科学记数法表示为_____.13.把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列为_____.14.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____.15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测小岛A 在它北偏东63°49′8″的方向上,观测小岛B 在南偏东38°35′42″的方向上,则∠AOB 的度数是_____.16.与原点的距离为3个单位的点所表示的有理数是_____.三、解答题17.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+318.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2+a﹣1),其中a=4.(2)已知m、n互为倒数,求:﹣2(mn﹣3m2)﹣m2+5(mn﹣m2)的值.20.解方程:(1)2121136x x+--=;(2)1(35)2(5)2x x x--=+.21.如图,点A、O、B在一直线上,已知∠AOC=50°,OD是∠COB的平分的角平分线,求∠AOD的度数.22.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.23.某地宽带上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.06元/分;第二种是包月制,72元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.01元/分.(1)若小明家一个月上网的时间为x小时,用含x的代数式分别表示出两种收费方式下,小明家一个月应该支付的费用;(2)若小明估计自家一个月内上网的时间为25小时,你认为他家采用哪种方式较为合算?(3)小明的姑姑也准备给家里安装宽带,请为她选择一种合算的方式(直接写出方案即可)参考答案1.D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.A【分析】直接利用单项式的系数确定方法得出答案.【详解】单项式﹣2ab2的系数是:-2.故答案选:A.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.3.D【解析】【分析】利用同类项的定义判定即可.【详解】解:A.4x和4y所含字母不同,不是同类项;B.xy2和4xy所含相同字母的指数不同,不是同类项;C.4xy2和﹣x2y所含相同字母的指数不同,不是同类项;D.﹣4xy2和y2x符合同类项的定义,故本选项正确.故选:D.【点睛】本题主要考查了同类项,解题的关键是熟记同类项的定义.4.C【解析】【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【详解】A、通过折叠能围成一个三棱锥,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.【点睛】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.5.A【解析】【分析】由∠α与∠β互余可得两角之和为90°,再由角度比例关系即可求解角度.【详解】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,解得x=18.∴∠α=3x°=54°,故选A.【点睛】本题考查了余角的概念.6.D【分析】分别利用等式的基本性质判断得出即可.性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式【详解】解:A、等式的两边同时除以7,得到:x=57,故本选项错误;B、原方程可变形为1012x,故本选项错误;C、在等式的两边同时减去2,得到:-x=1-2,故本选项错误;D、在等式的两边同时乘以3,得到:x-6=3,故本选项正确;故选D.【点睛】此题主要考查了等式的基本性质,熟练掌握性质是解题关键.7.C【分析】先把各数化简,再根据有理数的大小比较方法比较即可.【详解】A.∵﹣|﹣5|=-5,∴﹣|﹣5|<0,故不正确;B.∵(﹣2)2=4,(﹣2)3=-8,∴(﹣2)2>(﹣2)3,故不正确;C.∵3445-<-,∴﹣34>﹣45,故正确;D.∵﹣1﹣(﹣2)=1,∴﹣1﹣(﹣2)>0,故不正确;故选C.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.本题也考查了绝对值的意义、有理数的乘方、有理数的减法等知识点. 8.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.9.C【分析】她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.【详解】她家到游乐场的路程为xkm,根据题意得:x8x5 1060860+=-,故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.10.D【解析】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .点睛:本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.11.7【分析】用最高气温减去最低气温列式计算即可.【详解】由题意得5-(-2)=7℃.故答案为7.【点睛】本题考查了有理数减法的实际应用,根据题意正确列出算式是解答本题的关键.12.1.2×107【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数12000000科学记数法表示为1.2×107,故答案是:1.2×107,【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.13.﹣x 3+5x 2+4x ﹣3【分析】一个多项式按照某个字母的降幂排列,即按照这个字母的指数从高到底排列即可.【详解】根据题意,得把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列是﹣x 3+5x 2+4x ﹣3故答案为﹣x 3+5x 2+4x ﹣3.【点睛】本题考查多项式.14.23【详解】∵x +5=7-2(x -2)∴x=2.把x=2代入6x +3k =14得,12+3k =14,∴k=23.15.77°35′10〃【分析】根据已知条件结合补角的定义可直接确定∠AOB 的度数.【详解】∵OA 是表示北偏东6349'8︒''方向的一条射线,OB 是表示南偏东383542'︒''方向的一条射线,∴∠AOB=180°-6349'8︒''-383542'︒''=77°35′10〃,故答案是:77°35′10〃.【点睛】本题考查了余角和补角、方向角及其计算,基础性较强16.±3【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是x ,则x =3,±.解得:x=3故本题答案为:3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.17.(1)10;(2)﹣1;(3)0;(4)2.【解析】【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.18.(1)①如图所示,射线AC即为所求,见解析;②如图所示,线段AB,BC,BD即为所求,见解析;③如图所示,线段CF即为所求,见解析;(2)根据两点之间,线段最短.【解析】【分析】(1)①连接AC并延长即可;②连接AB,BC,BD即可;③以点A为圆心,BD长为半径画弧交AC于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.19.(1)2a2﹣4a+1,17;(2)3mn,3.【分析】(1)先去括号合并同类项,再把a=4代入计算即可;(2)由m、n互为倒数,可知mn=1,然后把所给代数式去括号合并同类项后代入计算即可.【详解】解:(1)原式=4a2﹣3a﹣2a2﹣a+1=2a2﹣4a+1,当a=4时,原式=32﹣16+1=17;(2)根据题意得:mn=1,则原式=﹣2mn+6m2﹣m2+5mn﹣5m2=3mn=3.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变. 20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=3 2;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.∠AOD=115°.【分析】根据补角的定义可求出∠COB的度数,利用角平分线的定义求出∠COD=65°,进而利用角的加法可求出∠AOD的度数.【详解】解:∵∠AOC=50°,∴∠COB=180°﹣50°=130°,∵OD是∠COB的角平分线,∴∠COD=65°,∴∠AOD=50°+65°=115°.【点睛】本题考查了补角的定义,角平分线的定义及角的和差从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线..22.(1)6(2)12cm(3)16cm或20cm【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20cm.综上所述:BE的长为16cm或20cm.【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段. 23.(1)计时制:4.2x元;包月制:(72+0.6x)元;(2)小明家采用包月制合算;(3)见解析.【解析】【分析】(1)记时制费用=上网时间费用+上网通讯费,包月制费用=包月费用+上网通讯费,把相关数值代入即可求解;(2)把x=25代入(1)得到的式子,计算结果比较即可;(3)设小明的姑姑家一个月内上网m小时,让两种费用相等,列出方程求出费用相等的时间,然后根据题意回答即可.【详解】解:(1)采用计时制应付的费用为:0.06x×60+0.01x×60=4.2x元;采用包月制应付的费用为:72+0.01x×60=(72+0.6x)元.(2)当x=25时,4.2x=4.2×25=105,72+0.6x=72+0.6×25=87.∵105>87,∴小明家采用包月制合算.(3)设小明的姑姑家一个月内上网m小时,两种方式收费相同,根据题意得:4.2m=72+0.6m,解得:m=20.由(2)可知,上网时间为25小时,即多于20小时时,选择包月制较合算.综上所述:一个月内上网时间少于20小时时,选择计时制较合算;一个月内上网时间等于20小时时,两种方式一样合算;一个月内上网时间多于20小时时,选择包月制较合算.【点睛】本题考查列代数式及一元一次方程的应用,得到两种付费方式的代数式是解决本题的关键.。

2024—2025学年人教版七年级上册期末模拟考试数学试卷[含答案]

2024—2025学年人教版七年级上册期末模拟考试数学试卷[含答案]

七年级上学期数学期末模拟考试试卷人教版2024—2025学年七年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.2022年2月13日,我国自营勘探开发的首个1500米超深水大气田“深海一号”在海南岛东南陵水海域正式投产,每年将向粤港琼等地稳定供气30亿立方米,可满足粤港澳大湾区四分之一的民生用气需求.将数据30亿用科学记数法表示应为310n ´,则n 的值为( )A .7B .8C .9D .102.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.圆周率 3.1415926p »按照四舍五入法对p 精确到百分位是( )A .3.15B .3.141C .3.14D .3.1423.下列计算正确的是( )A .330y y --=B .54mn nm mn -=C .243a a a -=D .22223a b ab a b+=4.如果式子53x +与2x 的值互为相反数,则x 的值为( )A .73B .73-C .37D .37-5.小刚做了一道数学题:“已知两个多项式为A ,B ,求A B +的值,”他误将“A B +”看成了“A B -”,结果求出的答案是x y -,若已知B 3x 2y =-,那么原来A B +的值应该是( )A .4x+3y B .2x-y C .-2x+y D .7x-5y 6.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为( )A .13584x x ++=B .-13584x x +=C .13-584x x +=D .-13-584x x =7.若122m x y +-与13n xy -是同类项,则m n -的值为( )A .4-B .3-C .3D .48.根据等式的性质,下列变形正确的是( )A .如果23x =,那么23x a a =B .如果x y =,那么55x y-=-C .如果x y =,那么22x y -=-D .如果162x =,那么3x =9.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12AB D .AD =12(CD +AB )10.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4x =,则方程正确的解是( )A .0x =B .1x =C .4x =-D .=1x -二、填空题(每小题3分,满分18分)11.比较大小(用“<”“=”或“>”填空):59- 35-.12.若数轴上A 点表示数3-,则与A 点相距5个单位长度的点表示的数为 .13.若73x y ==,,且x y >,则y x -等于 .14.如果3x =-,式子31px qx --的值为2023,则当3x =时,式子31px qx --的值是 .15.有理数a ,b ,c 在数轴上的位置如图所示,化简|a+b ﹣c|﹣|c ﹣b|+2|a+c|= .16.观察图形和所给表中的数据后回答问题.梯形个数12345……图形周长58111417……当图形的周长为167时,梯形的个数为 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:()()241110.5232éù---´´--ëû.18.先化简,再求值:已知210a -=,求()()225212a a a a +--+的值.19.一个角的补角加上20°后等于这个角的余角的3倍,求这个角.20.已知代数式2342A x x =-+.(1)若221B x x =--,求2A B -;(2)若21B ax x =--(a 为常数),且A 与B 的和不含2x 页,求整式2452a a +-的值.21.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米).14+,9-,8+,7-,13+,6-,12+,5-,2+.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地有多少千米?(2)救灾过程中,冲锋舟离出发点A 最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?22.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?23.如图,已知点C 为线段AB 上一点,12cm AC =,8cm CB =,D 、E 分别是AC AB 、的中点.求:(1)求AD 的长度;(2)求DE 的长度;(3)若M 在直线AB 上,且6cm MB =,求AM 的长度.24.已知 AOB Ð与COD Ð互补,将COD Ð绕点O 逆时针旋转.(1)若110,70AOB COD °°Ð=Ð=①如图1,当30COB Ð=°时,AOD Ð= °;②将COD Ð绕点O 逆时针旋转至3AOC BOD Ð=Ð,求COB Ð与AOD Ð的度数;(2)将COD Ð绕点O 逆时针旋转(0180)a a °<<,在旋转过程中,AOD COB Ð+Ð的度数是否随之的改变而改变?若不改变,请求出这个度数;若改变,请说明理由.25.已知b 是最小的正整数,且,,a b c 满足()250c a b -++=.(1)填空:a =_________,b =_________,c =_________;(2)数,,a b c 在数轴上对应的点分别是,,A B C ,点P 为数轴上一动点,其对应的数为x ,点P 在1到2之间运动时(即12x ££),请化简式子:1125x x x +--+-;(3)在(2)的条件下,点,,A B C 在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒(5)m m <个单位长度和5个单位长度的速度向右运动.点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .若在运动过程中BC AB -的值保持不变,求m 的值.【分析】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ´,其中£<110a ,确定a 与n 的值是解题的关键.用科学记数法表示较大的数时,一般形式为10n a ´,其中£<110a ,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:30亿93000000000310==´.即9n =.故选:C .2.C【分析】本题考查取近似数,涉及四舍五入法,找准小数的百分位,根据千分位的数四舍五入是解决问题的关键.【详解】解: 3.1415926p »,将π按照四舍五入法精确到百分位是3.14,故选:C .3.B【分析】根据同类项的定义以及合并同类项得方法逐项分析即可.【详解】A.336y y y --=-,故不正确;B.54mn nm mn -= ,正确;C.24a 与3a 不是同类项,不能合并,故不正确;D.2a b 与22ab 不是同类项,不能合并,故不正确;故选B .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.4.D【分析】本题考查了相反数的性质,解一元一次方程,根据题意列出方程,解方程即可求解.【详解】解:∵53x +与2x 的值互为相反数,∴5320x x ++=解得:37x =-故选:D .【分析】先根据A -B =x y -,32B x y =-,求出A 的值,然后再计算A +B 即可.【详解】由题意得,A =()x y -+(32x y -)=x -y +3x -2y=4x -3y .∴A +B =(4x -3y )+(32x y -)=4x -3y +32x y-= 7x -5y .故选D.【点睛】本题考查了整式的加减,仔细审题,根据题目中的数量关系求出A 的值是解题的关键.6.B【分析】题目默认总工程为1,设甲一共做x 天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x 天,乙做了(x-1)天∴列出方程:x x 13584-+=故选B【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.7.B【分析】根据同类项的定义解答即可.【详解】解:由题意得:1112m n +=-=,,解得:03m n ==,.∴033m n -=-=-.故选:B .【点睛】本题主要考查同类项,熟练掌握同类项的定义是解决本题的关键.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0¹,那么23x a a=,故该选项不符合题意;B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意;故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.D【详解】A 、由点C 是线段AB 的中点,则AB =2AC ,正确,不符合题意;B 、AC +CD +DB =AB ,正确,不符合题意;C 、由点C 是线段AB 的中点,则AC =12AB ,CD =AD -AC =AD -12AB ,正确,不符合题意;D 、AD =AC +CD =12AB +CD ,不正确,符合题意.故选:D .10.D【分析】根据题意按照小刚的解方程步骤解方程,再根据解为4x =求出a 的值,再按照正确的步骤解方程即可.【详解】解:由题意得,小刚的解题过程如下:21132x x a -+=-去分母得:()()22131x x a -=+-,去括号得:42331x x a -=+-,移项得:43312x x a -=-+,合并同类项得:31x a =+,∵小刚的求解结果为4x =,∴314a +=,∴1a =,正确过程如下:21132x x a -+=-去分母得:()()221316x x -=+-,去括号得:42336x x -=+-,移项得:43362x x -=-+,合并同类项得:1x =-,故选D .【点睛】本题主要考查了解一元一次方程,正确理解题意还原小刚的解题过程从而求出a 的值是解题的关键.11.>【分析】两个负数比较大小,绝对值大的反而小,据此即可求解.【详解】解:∵5599-=,3355-=,又∵5395<,∴5395->-,故答案为:>.【点睛】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.2或8-【分析】本题主要考查了数轴上两点距离计算,有理数的加减计算,分该点在点A 右边和左边两种情况,根据数轴上两点距离计算公式求解即可.【详解】解:当该点在点A 右边时,则该点表示的数为352-+=,当该点在点A 左边时,则该点表示的数为358--=-,∴该点表示的数为2或8-,故答案为:2或8-.13.10-或4-【分析】本题主要考查了有理数的减法计算,求一个数的绝对值,有理数比较大小,先由绝对值的意义得到73x y =±=±,,再由x y >得到73x y ==±,,据此根据有理数减法计算法则求解即可.【详解】解:∵73x y ==,,∴73x y =±=±,,∵x y >,∴73x y ==±,,∴374-=-=-y x 或3710-=--=-y x ,故答案为:10-或4-.14.2025-【分析】本题考查了代数式的求值,解题的关键是运用整体思想代入求值.把3x =-代入求出2732024p q -=-,再把3x =代入,变形后即可求出答案.【详解】解:∵3x =-时,式子31px qx --的值为2023,∴27312023p q -+-=,即2732024p q -=-,当3x =时,313127202412025px qx p q ----==--=-,故答案为:2025-.15.﹣3a ﹣2c【分析】根据数轴,可得a <b <0<c ,且|a|>|c|,据此关系可得|a+b ﹣c|及|a+c|的化简结果,进而可得答案.【详解】根据题意得,a <b <0<c ,且|a|>|c|,∴a+b-c <0,a+c <0,∴|a+b ﹣c|﹣|c ﹣b|+2|a+c|=-(a+b-c )-(c-b)-2(a+c),=-a-b+c-c+b-2a-2c ,=﹣3a ﹣2c.故答案为﹣3a ﹣2c.【点睛】本题考查数轴的运用,要求学生掌握用数轴表示实数及实数间的大小关系.16.55【分析】根据表格得:当梯形的个数为n 时,图形的周长为32n +,根据题意列出方程,解方程即可求解.【详解】根据表格得:当梯形的个数为n 时,图形的周长为32n +,∴32167n +=,解得:55n =,故答案为:55.【点睛】本题考查了图形类规律题,找到规律列出一元一次方程是解题的关键.17.34【分析】本题主要考查了含乘方的有理数混合计算,按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:()()241110.5232éù---´´--ëû()1112922=--´´-()1174=--´-714=-+34=.18.231a -;2【分析】先根据去括号法则去括号,再合并同类项,最后将21a =整体代入即可求解.【详解】解:()()225212a a a a +--+2252122a a a a =+---231a =-210a -=Q 21a \=\原式3112=´-=【点睛】本题考查了整式加减中的化简求值,掌握去括号法则是解题的关键.19.35°【分析】利用一个角的补角加上20°,等于这个角的余角的3倍作为相等关系列方程求解即可.【详解】解:设这个角为x °,则(180-x )+20=3(90-x ),解得x =35.所以,这个角为35°.【点睛】本题主要考查了一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.20.(1)24x +(2)19【分析】此题主要考查了整式的加减,正确合并同类项是解题关键.(1)直接利用整式的加减运算法则计算得出答案;(2)根据整式的加减运算法则化简,进而得出答案.【详解】(1)解:()()222342221-=-+---A B x x x x 22342242x x x x =-+-++24x =+;(2)解:2342A x x =-+Q ,21B ax x =--,()()223421\+=-++--A B x x ax x 223421x x ax x =-++--()2351a x x =+-+,A Q 与B 的和不含2x 项,30a \+=即3a =-,2452\+-a a ()24(3)532=´-+´--49152=´--36152=--19=.21.(1)B 地位于A 地东方,距离A 地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.++-+++-+++-+++-++=+,【详解】(1)解:∵(14)(9)(8)(7)(13)(6)(12)(5)(2)22∴B地位于A地东方,距离A地有22千米;(2)路程记录中各点离出发点的距离分别为:(14)14+=千米,++-=+=千米,(14)(9)55++-++=+=千米,(14)(9)(8)1313(14)(9)(8)(7)66++-+++-=+=千米,++-+++-++=+=千米,(14)(9)(8)(7)(13)1919++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)1313(14)(9)(8)(7)(13)(6)(12)2525++-+++-+++-++=+=千米,++-+++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)2020++-+++-+++-+++-++=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)(2)2222>>>>>>>,∵25222019141365∴救灾过程中,冲锋舟离出发点A最远处有25千米.故答案为:25;++-+++-+++-+++-++(3)149871361252=++++++++149871361252=千米,76´-=升,760.5308∴冲锋舟当天救灾过程中至少还需补充8升油.【点睛】本题主要考查了正负数的意义、化简绝对值、有理数比较大小、有理数混合运算的应用等知识,熟练掌握相关运算法则是解题关键.22.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a 、b 的一元一次方程,解之即可求出a 、b 的值,再代入1000﹣a ﹣b 中即可找出结论.【详解】(1)解:设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据题意得:0.6x +0.8(1400﹣x )=1000,解得:x =600,∴1400﹣x =800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据题意得:(1﹣25%)a =60%×600,(1+25%)b =80%×800,解得:a =480,b =512,∴1000﹣a ﹣b =1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)6cm(2)4cm(3)26cm 或14cm【分析】本题考查了关于线段的中点的计算,线段的和与差的计算.(1)直接根据D 是AC 的中点可得答案;(2)先求出AB 的长,然后根据E 是AB 的中点求出AE ,AE ﹣AD 即为DE 的长;(3)分M 在点B 的右侧、M 在点B 的左侧两种情况进行计算即可.【详解】(1)解:由线段中点的性质,()11126cm 22AD AC ==´=;(2)解:由线段的和差,得()12820cm AB AC BC =+=+=,由线段中点的性质,得()112010cm 22AE AB ==´=,由线段的和差,得()1064cm DE AE AD =-=-=;(3)解:当M 在点B 的右侧时,()20626cm AM AB MB =+=+=,当M 在点B 的左侧时,()20614cm AM AB MB =-=-=,∴AM 的长度为26cm 或14cm .24.(1)①150;②20COB Ð=°,130AOD Ð=°或80COB Ð=°,100AOD Ð=°(2)不改变,其度数为180°【分析】(1)①先根据110,70AOB COD °°Ð=Ð=求出180AOB COD Ð+Ð=°,再根据O AOB C BO OD A D C ÐÐ+Ð+Ð=计算即可;②设AOC x Ð=°,分两种情况:(Ⅰ) OB 在COD Ð内部,(Ⅱ) COD Ð在AOB Ð内部,分别讨论即可;(2)设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,求出所有情况后判断即可.【详解】(1)①∵110,70AOB COD °°Ð=Ð=,∴11108070AOB COD °+°=°Ð+Ð=,∵O AOB C BO OD A D C ÐÐ+Ð+Ð=,30COB Ð=°,∴18030150AOD Ð=°-°=°,故答案为150;②(Ⅰ)当OB 在COD Ð内部时(如图1),设AOC x Ð=°,则110COB x °°Ð=-,70(110)40BOD COD COB x x °°°°°Ð=Ð-Ð=--=-,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得60x =,∴1101106050,40604020COB x BOD x °°°°°°°°°°Ð=-=-=Ð=-=-=,∴11020130AOD AOB BOD а=Ð+Ð=+°°=;(Ⅱ) 当COD Ð在AOB Ð内部时(如图2),设AOC x Ð=°,则1107040BOD AOB AOC COD x x Ð=Ð-Ð-Ð=-°-°=°-°°,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得x =30,40403010BOD x Ð=-=°-°=°°°,701080COB COD BOD °°°Ð=Ð+Ð=+=,∴3070100AOD AOC COD °°°Ð=Ð+Ð=+=;(2)不改变,其度数为180°.设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,由条件知180b q +=,分四种情况:ⅰ)当OB 在COD Ð内部时(如图3),COB AOB AOC b g аÐ-=°=Ð-,()BOD COD BOC q b g Ð=Ð-Ð=°-°-°,()AOD AOB BOD b q b g q g Ð=Ð+Ð=°+°-°-°=°+°,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅱ) 当COD Ð在AOB Ð内部时(如图4),COB AOB AOC b g аÐ-=°=Ð-,AOD AOC COD g q аÐ+=°=Ð+,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅲ)当OA 在COD Ð内部时(如图5),COB AOB AOC b g аÐ+=°=Ð+,AOD DOC COA q g Ð=Ð-Ð=°-°,∴180AOD COB b g q g q b °°°°°°°Ð+Ð=++-=+=;ⅳ)当COD Ð在AOB Ð外部时(如图6),360()AOD COB AOB COD Ð+Ð=°-Ð+Ð360180180=°-°=°;综上所述,在旋转过程中,AOD COB Ð+Ð的度数不改变,其度数为180°.【点睛】本题考查了角的和差,关键是运用角的和差正确表示所需要的角.25.(1)1-,1,5(2)212x -+(3)2【分析】本题考查了非负数的性质,数轴上的动点,化简绝对值,(1)根据最小的正整数、绝对值和平方的非负性质即可得到结论;(2)根据x 的取值范围,去绝对值进行计算即可得;(3)首先求出A ,B ,C 所在位置,然后计算出BC 和AB ,即可得到结论.【详解】(1)解:∵b 是最小的正整数,∴1b =,∵()250c a b -++=,∴0a b +=,50c -=,解得1,5a c =-=.(2)∵12x ££,∴10,10,50x x x +>->-<,∴原式()()()1125x x x =+--+--éùëû,()()()1125x x x =+----,11210x x x =+-+-+,21110x x x =--+++,212x =-+.(3)由题意知:t 秒后,,A B C 对应的数分别为1,1,55t mt t --++.所以,()()1112AB mt t m t =+---=++.()()55154BC t mt m t =+-+=-+,()()5412BC AB m t m t -=-+-++éùëû,()422m t =-+.∵BC AB -的值不变,∴420m -=.解得2m =.。

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .12y y+=3.将3922亿用科学记数法表示为()A .8392210⨯B .93.92210⨯C .113.92210⨯D .123.92210⨯4.单项式xmy 3与4x 2yn 的和是单项式,则nm 的值是()A .3B .6C .8D .95.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间线段的长度叫做两点间的距离6.下列运算中,正确的是()A .-2-1=-1B .-2(x-3y )=-2x+3yC .3÷6×12=3÷3=1D .5x 2-2x 2=3x 27.某商品的标价为200元,8折销售仍赚60%,则商品进价为()元.A .140B .120C .160D .1008.一个角的补角是它的余角的三倍,则这个角为()A .45︒B .30°C .15︒D .60︒9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15二、填空题11.多项式3x 2y-7x 4y 2-xy 4的次数是______.12.计算77°53′26″+43°22′16″=_____.13.已知关于x 的方程(m+1)x |m |+2=0是一元一次方程,则m=______14.已知3a -4与-5互为相反数,则a 的值为______.15.|x-y|=y-x ,则x ___y .16.若2214x x -+=,则2247x x -+的值是______.17.如图,已知点C 为AB 上一点,AC =12cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点;则DE 的长为_____cm .三、解答题18.计算:(1)(+15)+(-30)-(+14)-(-25)(2)-42+3×(-2)2×(13-1)÷(-113)19.解方程:2(x+8)=3(x-1)20.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .21.先化简,再求值:(3a2b﹣ab2)﹣2(ab2﹣3a2b),其中a=13,b=﹣3.22.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?x x<的正方形拼成的图形.23.如图是由边长分别为4和3的长方形与边长为()3(1)用含有x的代数式表示图中阴影部分的面积并化简;(2)当2x=时,求这个阴影部分的面积.24.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?25.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.26.如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.参考答案1.D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.A 【分析】根据一元一次方程的定义,形如0ax b +=(0a ≠),含有一个未知数,且未知数的最高次数是一次的方程即为一元一次方程,逐项判断作答即可.【详解】A.y +3=0含有一个未知数,且未知数的最高次数是一次,是一元一次方程,故选项A 符合题意;B.x +2y =3含有两个未知数,不是一元一次方程,故选项B 与题意不符;C.x 2=2x 最高次数是二次,不是一元一次方程,故选项C 与题意不符;D.12y y+=不是整式方程,不是一元一次方程,故选项D 与题意不符.故选A .【点睛】本题主要考查了一元一次方程的定义,0ax b +=(0a ≠)的方程即为一元一次方程;含有一个未知数,且未知数的最高次数是一次,是判断是否是一元一次方程的依据.3.C 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:3922亿=392200000000=3.922×1011.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.D 【分析】同类项的定义:字母相同,并且相同字母的指数也相同的两个单项式叫同类项,据此求出m 、n ,代入求解即可.【详解】解:由两个单项式的和还是单项式可得xmy³与4x²yn 同类项∴m=2,n=3,∴nm=3²=9,故选:D .【点睛】本题考查代数式求值、同类项的定义、合并同类项,能得出两个单项式是同类项是解答的关键.5.B 【分析】依据直线基本事实两点确定一条直线来解答即可.【详解】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据直线基本事实是两点确定一条直线.故选择:B .【点睛】本题考查了直线的性质,掌握直线的性质是解题的关键.6.D 【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【详解】A 、213--=-,故选项错误;B 、()2326x y x y --=-+,故选项错误;C 、11113632624÷⨯=⨯⨯=,故选项错误;D 、222523x x x -=,故选项正确.故选D .【点睛】本题考查有理数混合运算、合并同类项、去括号与添括号,解题的关键是明确它们各自的计算方法.7.D 【分析】设进价为x 元,根据售价=标价×打折数=进价×(1+利润率)列方程求解即可.【详解】解:设进价为x 元,则依题可得:200×0.8=(1+0.6)x ,解得:x=100,故选:D .【点睛】本题考查一元一次方程的应用,理解题意,熟知打折销售中的等量关系是解答的关键.8.A 【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列方程求出这个角的度数即可.【详解】设这个角是α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α),解得α=45°.故选:A .【点睛】本题考查了余角与补角,是基础题,熟记概念并列出方程是解题的关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.A 【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.11.6次【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式3x2y-7x4y2-xy4次数最高的项为-7x4y2,次数是:6次.故答案为:6次.【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.12.121°15′42″【分析】把秒和秒相加,分和分相加,度和度相加,满60向上一位近1.【详解】解:77°53′26″+43°22′16″=(77°+43°)+(53′+22′)+(26″+16″)=120°+75′+42″=121°15′42″.故答案为121°15′42″.【点睛】本题考查了度分秒的加法,将度与度相加,分与分相加,秒与秒相加,满60向上一位近1.13.1【分析】直接利用一元一次方程的定义分析得出答案.【详解】∵关于x的方程(m+1)x|m|+2=0是一元一次方程,∴|m|=1,m+1≠0,解得:m=1.故答案为1.【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.14.3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a–4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.15.≤【分析】利用绝对值的性质:|a|≥0,可以先去掉绝对值再进行判断大小.【详解】解:∵|x-y|=y-x ,∴y-x≥0,∴y≥x ,故答案为:≤.16.13【分析】根据已知等式得到223x x -=,再利用整体思想代入求值即可.【详解】∵2214x x -+=,∴223x x -=,∴2246x x -=,∴22476713x x -+=+=.故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题的关键.17.4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE−AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC ,∴CB =12×23=8(cm ),∴AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∴AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∴DE =AE−AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.18.(1)-4;(2)-10.【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】(1)解:原式=-15-14+25=-4(2)解:原式=-16+3×4×(-23)×(-34)=-16+12×12=-10.【点睛】此题主要考查有理数的混合运算,解题的关键是熟知其运算法则.19.(1)x=19;(2)x=38【分析】(1)根据去括号、移项、合并同类项、化系数为1的计算过程解答即可;(2)根据去分母、去括号、合并同类项、化系数为1的计算过程解答即可.【详解】(1)解:去括号,得:2x+16=3x-3,移项、合并同类项,得:-x=-19,化系数为1,得:x=19;(2)解:去分母,得:2(5x+1)-(2x-1)=6,去括号,得:10x+2-2x+1=6,移项、合并同类项,得:8x=3,化系数为1:x=3 8.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.20.(1)见解析;(2)见解析【分析】(1)根据直线,射线,线段的定义画出图形.(2)在DC的延长线上截取CE=CD即可.【详解】解:(1)如图,直线AB,射线AD,线段BC即为所求作.(2)如图,线段DE即为所求作.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.9a2b-3ab2,-12【分析】先去括号,再合并同类项,最后将a=13,b=﹣3代入化简后的结果,即可求解.【详解】解:()()2222323a b ab ab a b ---2222326a b ab ab a b =--+2293a b ab =-当a =13,b =﹣3时,原式()()22119333391233⎛⎫=⨯⨯--⨯⨯-=--=- ⎪⎝⎭.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.22.应该分配8人生产螺钉.【详解】分析:根据每人每天平均生产600个螺钉或800个螺母,以及一个螺钉与两个螺母配套,进而得出等式求出即可.本题解析:设生产螺钉x 人,螺母(20-x )人,()800206002x x -=,x=8,答:应该分配8人生产螺钉.点睛:本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.23.(1)21122x x +;(2)3【分析】(1)根据阴影部分的面积等于长方形和正方形的面积和减去三个三角形的面积可列代数式;(2)将2x =代入计算可求解阴影部分的面积.【详解】解:阴影部分的面积为:()()22111123443222x x x x +--⨯+-⨯-2221311126622222x x x x x x =+----+=+;(2)当2x =时,阴影部分的面积为1142322⨯+⨯=,答:阴影部分的面积为3.【点睛】本题主要考查列代数式,代数式求值,列代数式求解阴影部分的面积是解题的关键.24.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元);选择方案②乙队单独完成所需费用=1200040016000300⨯=(元);选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);∴选择方案①完成施工费用最少.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.25.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.26.(1)c﹣a;(2)a=﹣10,c=5,b=﹣5;(3)点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)由题意得运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,然后根据P,Q两点间的距离为6,列出方程计算即可求解.【详解】解:(1)由数轴及题意得:∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有()-+--=,t t1050.56解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题主要考查数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用,熟练掌握数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级上册期末考试试题一、选择题(每小题 3 分,共 30 分)1. a 、b ,在数轴上表示如图 1,下列判断正确的是()A. a + b > 0B .b + 1 > 0 C .- b - 1 < 0 D .a + 1 > 0 2. 如图 2,在下列说法中错误的是( )A. 射线OA 的方向是正西方向B. 射线OB 的方向是东北方向C. 射线OC 的方向是南偏东 60°D. 射线OD 的方向是南偏西 55°3. 下列运算正确的是( )A. 5x - 3x = 2B. 2a + 3b = 5abC. 2ab - ba = abD. - (a - b ) = b + a4. 如果有理数a , b 满足ab > 0 , a + b < 0 ,则下列说法正确的是()A. a > 0, b > 0B. a < 0, b > 0C. a < 0, b < 0D. a > 0, b < 05.若(1 - m ) 2+ | n + 2 |= 0 ,如m + n 的值为()A. -1B. - 3C.3D.不确定6.7. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2 条B.3 条C.4 条D.1 条或 3 条8.将长方形的纸ABCD 沿 AE 折叠,得到如图 3 所示的图形,已知∠CED ′=60.则∠AED 的是( ) A.60º B.50º C.75ºD.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图 4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是()若| a |> 0 ,那么() A. a > 0 B. a < 0 C. a ≠ 0D. a 为任意有理数10. 一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优4惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价 5收费。

若这两家旅行社每人原价相同,那么优惠条件是()A .甲比乙更优惠B .乙比甲更优惠C .甲与乙相同D .与原价有关二、填空题(每空 3 分,共 30 分)11. 手枪上瞄准系统设计的数学道理是 。

12. 写出一个一元一次方程,使它的解是-1:。

213.若代数式- 3x + 1 与4x - 5 互为相反数,则 x = 。

14.x = 2 是方程 m (x + 2) = 3x 的解,那么m =。

15.太阳的直径约为1.392 ⨯106 千米,这个近似数精确到位。

16.106°14′24″=°。

17.当 10Kg 的菜放在称上时,指标盘上的指针转了 180°,当 1.5Kg 的菜放在称上时,指针转过 。

18.已知 ,按此规律 = 。

19.一列依次排列的数:-1,2,3,-4,5,6,-7,8,9…中第 100 个数是。

20. 已知线段AB=10cm ,直线AB 上有点C ,且BC=4cm ,M 是线段AC 的中点,则AM=cm 。

三、解答题(共 60 分)21. 计算(每题 4 分,共 16 分)2y - 1 y + 2 (1)- 14 - (0.5 - ) ⨯[-2 - (-3)3 ] ; (2)解方程: y - 3= 2 - 2 5(3)合并同类项: 2a +b +3(2a +3b) -2(4a -6b)(4)先化简,再求值: 2x -[2(x +4) -3(x +2 y)] -2 y .其中x =-1, y =-2 .22.(6分)①如图(1)直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段②如图(2)直线l 上有3 个点,则图中有条可用图中字母表示的射线,有条线段。

③如图(3)直线上有n 个点,则图中有条可用图中字母表示的射线,有条线段。

④应用③中发现的规律解决问题:某校七年级共有6 个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需场比赛。

23.(6分)根据条件画出图形,并回答问题(1)三条直线a、b、c,直线a、c 相交于点B,直线b、c 相交于点A,直线a、b 相交于点C,点D 在线段AC 上,点E 在线段DC 上。

则DE= --(2)画任意∠AOB,使∠AOB <180°,在∠AOB 内部再任意作两条射线OC、OD,则图中共有角。

(1)题图:(2)题图:24.(6分)有一种“二十四点”的游戏,其游戏规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24。

例如:1、2、3、4,可做运算(1+2+3)×4=24,(注意,上述运算与4×(1+2+3)应视为相同方法)现有四个有理数:3、4、-6、10,运用上述规则写出三种不同方式的运算,使其结果等于24。

解:(1)(2)(3)25.(6分)O是直线上一点,OC是任一条射线,OD、OE分别是∠AOC和∠BOC的平分线。

(1)请你直接写出图中∠BOD 的补角,∠BOE 的余角。

(2)当∠BOE=25°时,试求∠DOE 和∠AOD 的度数分别是多少。

26.(6分)某超市的水果价格如下表所示:品种价格(元/千克)苹果4.0西瓜3.2橘子1.8梨2.0香蕉3.6(1)根据超市的水果价格,请你叙述方程15-(3.2x+2.0×2)=1.4 所表示的实际意义;(2)请你再根据表中提供的信息,提出一个新的问题,并用方程的有关知识解决.27.(8分)某陶瓷商,为了促销决定卖一只茶壶,赠一只茶杯。

某人共付款162元,买得茶壶茶杯共36只,已知每只茶壶15 元,每只茶杯 3 元,问其中茶壶、茶杯各多少只?28.(8分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出了300 元以后,超出部分按原价8 折优惠;在乙超市累计购买商品超出200 元之后,超出部分按原价8.5折优惠,设顾客预计累计购物x元(x>300)(8分)(1)当x =400 元时,到哪家超市购物优惠。

(2)当x 为何值时,两家超市购物所花实际钱数相同。

参考答案一、1.D 2.C 3.C 4.C 5.A 6.C 7.D 8.A 9.A 10.B二、11.两点确定一条直线12.2x +1=0(答案不唯一)13.x =4314.±215.千16.106.24°17.27 18.-18 19.-100 20.3cm 或7cm1 2三、21.(1)解:原式=-1-(2-3)×[-2-(-27)]1=-1-(-6 )×(25)25=-1+619=6(2)解:10 y -5(y -1)=20-2(y +2)10 y -5 y +5=20-2 y -410 y -5 y +2 y =20-4-57 y =1111y =7(3)解:原式=2a +b +6a +9b -8a +12b=22b(4)解:原式=2x -[2x +8 -3x -6 y] -2 y=2x -2x -8 +3x +6 y -2 y=3x +4 y -8当x =-1, y =-2 时,原式=3 ⨯(-1) +4(-2) -8=-3 -8 -8=-1922.②4 3③2 n -2④15 n(n-1)223.ACDbOBDE =AC -AD -EC624.(1)3×(4+10-6)=24(2)10-3×(-6)-4=24 (3)4-(-6)÷3×10=2425.(1)∠DOB 的补角:∠AOD 、∠COD∠BOE 的余角:∠AOD 、∠COD (2)∵OE 平分∠BOC∴∠BOC =2∠BOE =50° ∴∠AOC =180°-∠BOC =130° ∵OD 平分∠AOC1∴∠AOD =∠COD = 2∠AOC =65°∴∠DOE =∠COD +∠COE =65°+25°=90°26.(1)某人共带了 15 元,买了若干千克西瓜和 2 千克梨,还余 1.4 元,问他买了多少千克西瓜;(2)提法也很多。

如某人共买了20 斤苹果和梨,共化了 60 元,问苹果和梨各有几斤?等. 27.解:设买茶壶 x 只15 x +3(36-2 x )=162 解得: x =6 36- x =30答:买 6 只茶壶,30 只茶杯。

28.(1)甲:300+(400-300)×0.8=380(元)乙:200+(400-200)×0.85=370(元) ∴当 x =400 元时,选择乙超市购物优惠。

(2)300+(x -300)×0.8=200+( x -200)×0.85 解得: x =600答:当 x =600 时,两家超市所花实际钱数相同。

caBCADE。

相关文档
最新文档