人教版九年级上册数学期中考试试卷附答案
人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.观察下列图案,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE 的是()A .∠D =∠B B .∠E =∠C C .AD AE AB AC =D .AD DE AB BC=3.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A .B .C .D .4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =100°,AD ∥OC ,则∠AOD =()A .20°B .60°C .50°D .40°5.如图,在Rt △ABC 中,∠ACB =Rt ∠,CD ⊥AB ,D 为垂足,且AD =3,AC =,则斜边AB 的长为()A .6B .15C .5D .56.如图,若将△ABC 绕点C 顺时针旋转90°后得到△A ′B ′C ′,则A 点的对应点A ′的坐标是()A .(﹣3,﹣2)B .(2,2)C .(3,0)D .(2,1)7.下列方程中,一元二次方程有()①3x 2+x =20;②2x 2﹣3xy +4=0;③214x x -=;④x 2=1;⑤2303x x -+=A .2个B .3个C .4个D .5个8.已知二次函数y =kx 2-7x-7的图象与x 轴没有交点,则k 的取值范围为()A .k >74-B .k≥74-且k≠0C .k <74-D .k >74-且k≠09.二次函数2y 2x 13=--+()的图象的顶点坐标是()A .(1,3)B .(,3)C .(1,)D .(,)10.将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为()A .y=3(x+2)2﹣1B .y=3(x ﹣2)2+1C .y=3(x ﹣2)2﹣1D .y=3(x+2)2+1二、填空题11.已知方程ax 2+7x ﹣2=0的一个根是﹣2,则a 的值是_____.12.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a +b 的值为_____.13.如图,D 是等腰直角三角形ABC 内一点,BC 是斜边,如果将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,则∠DAD ′的度数是_____.14.在相同时刻物高与影长成比例,如果高为1.5m 的测竿的影长为2.5m ,那么影长为30m 的旗杆的高度是_____m .15.如图,在半径为13的⊙O 中,OC 垂直弦AB 于点B ,交⊙O 于点C ,AB=24,则CD 的长是_____.16.如图,DF ∥EG ∥BC .AD =DE =EB ,则DF 、EG 把△ABC 分成三部分的面积比S 1:S 2:S 3为_____.三、解答题17.解下列方程:(1)2230x x --=;(2)()()2323x x +=+18.如图,在四边形ABCD 中,AD ∥BC ,∠A =∠BDC .(1)求证:△ABD ∽△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.19.如图,在平面直角坐标系中,网格中每个小正方形的边长为1,已知△ABC(1)将△ABC绕点O顺时针旋转90画出旋转后得到的△A1B1C1;(2)画出△ABC以坐标原点O为位似中心的位似图形△A2B2C2,使△A2B2C2在第二象限,与△ABC的位似比是1 2.20.如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.(1)求DE的长度;(2)指出BE与DF的关系如何?并说明由.21.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22.已知:m,n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积.23.如图,在▱ABCD中,AB⊥AC,AB=1,BC,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.24.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA 边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<103),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.25.如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)参考答案1.C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点睛】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D【分析】根据∠1=∠2,可知∠DAE =∠BAC ,因此只要再找一组角或一组对应边成比例即可.【详解】解:A 和B 符合有两组角对应相等的两个三角形相似;C 、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D 、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选D .【点睛】考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3.B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.4.D【解析】试题分析:此题考查平行线性质及三角形内角和定理的运用.根据三角形内角和定理可求得∠AOC 的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.解:∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°.∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°-2∠A=40°.故选D.考点:1.圆周角定理;2.平行线的性质;3.等腰三角形的性质.5.B【分析】先确定△ADC与△ACB相似,再根据相似三角形对应边成比例求出AB的长.【详解】解:∵∠ACB=∠ADC=90°,∠A=∠A∴△ADC∽△ACB∴AD:AC=AC:AB∵AD=3,∴AB=15故选B.【点睛】此题考查学生对相似三角形的性质的理解及运用,解题关键是由相似三角形的性质得出比例式.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.6.C【详解】试题分析:根据旋转的概念结合坐标系内点的坐标特征解答.解:由图知A点的坐标为(﹣1,2),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(3,0).故选C.考点:坐标与图形变化-旋转.7.B【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B .【点睛】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.8.C【分析】根据二次函数图像与x 轴没有交点说明240b ac -<,建立一个关于k 的不等式,解不等式即可.【详解】∵二次函数277y kx x =--的图象与x 轴无交点,∴2040k b ac ≠⎧⎨-<⎩即049280k k ≠⎧⎨+<⎩解得74k <-故选C .【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x 轴交点个数的关系,掌握根的判别式是解题的关键.9.A【解析】直接根据顶点式写出顶点坐标是(1,3).故选A.10.A【详解】函数图象的平移法则为:左加右减,上加下减;根据这个平移法则,抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为y=3(x+2)2﹣1.故选A.考点:二次函数图象的平移法则.11.4【解析】【分析】根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.【详解】解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则4a﹣14﹣2=0,即4a﹣16=0,解得,a=4.故答案是:4.【点睛】考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.7【解析】【分析】首先根据关于原点对称的点的坐标特点可得a、b的值,然后在计算a+b的值.【详解】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴b=20,a=﹣13,∴a+b=20﹣13=7,故答案是:7.【点睛】考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.13.90°【解析】∵D是等腰直角三角形ABC内一点,BC是斜边,∴∠BAC=90°,∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴∠DAD′=∠BAC=90°.故答案为90°.点睛:本题考查了旋转的性质,先由等腰直角三角形的性质得出∠BAC=90°,再根据对应点与旋转中心所连线段的夹角等于旋转角即可作答.14.18【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高即可.【详解】∵同一时刻物高与影长成正比例∴1.5:2.5=旗杆的高:30∴旗杆的高为18米.【点睛】本题考查了相似三角形的应用,解题的关键是掌握相似三角形的性质.15.8.【详解】垂径定理,勾股定理.连接OA,∵OC⊥AB,AB=24,∴AD=AB=12,在Rt△AOD中,∵OA=13,AD=12,∴.∴CD=OC﹣OD=13﹣5=8.16.1:3:5.【解析】【分析】由题可知△ADF∽△AEG∽△ABC,因而得到相似比,从而推出面积比.【详解】解:∵DF∥EG∥BC,∴△ADF∽△AEG∽△ABC,∵AD=DE=EB,∴得到三角形的相似比是1:2:3,因而面积的比是1:4:9,=3x,S四边形EBCG 设△ADF的面积是x,则△AEG,△ABC的面积分别是4x,9x,则S四边形DEGF=5x,∴S1:S2:S3=1:3:5.故答案是:1:3:5.【点睛】考查了相似三角形的判定和性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.17.(1)x1=-1,x2=3(2)x1=-1,x2=-3【解析】【分析】(1)用因式分解的十字相乘法求解比较简便;(2)用因式分解的提公因式法求解比较简便.【详解】解:(1)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,解得x=3或x=﹣1;(2)移项,得(x+3)2﹣2(x+3)=0,∴(x+3)(x+3﹣2)=0∴(x+3)(x+1)=0∴x1=﹣3,x2=﹣1.【点睛】考查了一元二次方程的解法,选择适当的方法解一元二次方程可事半功倍.解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.18.(1)证明见解析;(2)10.【详解】试题分析:(1)由AD//BC可得∠ADB=∠DBC,又因为∠A=∠BDC,所以可以证明△ABD∽△DCB;(2)由(1)得:AB ADDC DB=,将已知线段长度代入即可求出BD.试题解析:解:(1)∵AD//BC,∴∠ADB=∠DBC,又∵∠A=∠BDC,∴△ABD∽△DCB;(2)由(1)得△ABD∽△DCB,∴AB AD DC DB=,即12815DB=,∴BD=10.点睛:(1)判定两个三角形相似,优先找两组角相等条件.19.(1)详见解析;(2)详见解析;【分析】(1)根据旋转变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得;(2)根据位似变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.【点睛】考查作图﹣位似变换与旋转变换,解题的关键是熟练掌握位似变换与旋转变换的定义与性质.20.(1)3;(2)BE=DF,BE⊥DF.【分析】(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;(2)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.【详解】解:(1)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(2)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【点睛】考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【分析】(1)设每千克水果涨了x元,那么就少卖了20x千克,根据市场每天销售这种水果盈利了6000元,同时顾客又得到了实惠,可列方程求解;(2)利用总利润y=销量×每千克利润,进而求出最值即可.【详解】(1)设每千克应涨价x 元,则(10+x )(500﹣20x )=6000解得x =5或x =10,为了使顾客得到实惠,所以x =5.(2)设涨价z 元时总利润为y ,则y =(10+z )(500﹣20z )=﹣20z 2+300z +5000=﹣20(z 2﹣15z )+5000=22252252015500044z z ⎛⎫--+-+ ⎪⎝⎭=﹣20(z ﹣7.5)2+6125当z =7.5时,y 取得最大值,最大值为6125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点睛】考核知识点:二次函数的的应用.根据题意列出等量关系是解题的关键.22.(1)y =﹣x 2﹣4x +5;(2)15.【解析】【分析】(1)首先解方程求得m 和n 的值,得到A 和B 的坐标,然后利用待定系数法即可求得解析式;(2)首先求得C 和D 的坐标,作DE ⊥y 轴于点E ,根据S △BCD =S 梯形OCDE ﹣S △DEB ﹣S △OBC 求解.【详解】解:(1)解方程x 2﹣6x +5=0,解得:x 1=1,x 2=5,则m =1,n =5.A 的坐标是(1,0),B 的坐标是(0,5).代入二次函数解析式得:105b C c -++=⎧⎨=⎩,解得:45b c =-⎧⎨=⎩,则函数的解析式是y =﹣x 2﹣4x +5;(2)解方程﹣x 2﹣4x +5=0,解得:x 1=﹣5,x 2=1.则C 的坐标是(﹣5,0).y =﹣x 2﹣4x +5=﹣(x 2+4x +4)+9=﹣(x +2)2+9则D 的坐标是(﹣2,9).作DE ⊥y 轴于点E ,则E 坐标是(0,9).则S 梯形OCDE =12(OC +DE )•OE =12×(2+5)×9=632,S △DEB =12BE •DE =12×4×2=4,S △OBC =12OC •OB =12×5×5=252,则S △BCD =S 梯形OCDE ﹣S △DEB ﹣S △OBC =632﹣4﹣252=15.【点睛】考查了待定系数法求函数的解析式以及图形的面积的计算,正确作出辅助线转化为易求面积的图形的和、差是关键.23.(1)证明见解析;(2)证明见解析;(3)四边形BEDF 可以是菱形.理由见解析;AC 绕点O 顺时针旋转45°时,四边形BEDF 为菱形.【详解】试题分析:(1)当旋转角为90°时,∠AOF=90°,由AB ⊥AC ,可得AB ∥EF ,即可证明四边形ABEF 为平行四边形;(2)根据平行四边形的性质证得△AOF ≌△COE 即可;(3)EF ⊥BD 时,四边形BEDF 为菱形,可根据勾股定理求得AC=2,则OA=1=AB ,又AB ⊥AC ,即可求得结果.(1)当∠AOF=90°时,AB ∥EF ,又∵AF∥BE,∴四边形ABEF为平行四边形.(2)∵四边形ABCD为平行四边形,在△AOF和△COE中∵∠FAO=∠ECO,AO=CO,∠AOF=∠ECO∴△AOF≌△COE(ASA)∴AF=EC;(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC中,∴OA=1=AB,又∵AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.考点:旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定,勾股定理点评:本题知识点较多,综合性强,是中考常见题,难度不大,学生需熟练掌握平面图形的基本概念.24.(1)MG=95t;(2)t=2秒时,S四边形ACNM最小=845cm2;(3)△BMN与△ABC相似,t的值为2011秒或43秒.【解析】【分析】(1)先利用勾股定理求出AB =10,再判断出△BGM ∽△BCA ,得出比例式即可得出结论;(2)先表示出MN ,最后利用三角形的面积差即可建立函数关系式,即可得出结论;(3)先表示出BM ,BN ,再分两种情况,利用相似三角形得出比例式建立方程求解即可得出结论.【详解】解:(1)由运动知,BM =3t ,在Rt △ABC 中,AC =6,BC =8,∴AB =10,∵MG ⊥BC ,∴∠MGB =90°=∠ACB ,∵∠B =∠B ,∴△BGM ∽△BCA ,∴MG BM CA AB =,∴3610MG t =,∴MG =95t ;(2)由运动知,CN =2t ,∴BN =BC ﹣CN =8﹣2t ,由(1)知,MG =95t ,∴S 四边形ACNM =S △ABC ﹣S △BNM =12BC ×AC ﹣12BN ×MG =×8×6﹣12(8﹣2t )×95t =95(t ﹣2)2+845,∵0<t <103,∴t =2秒时,S 四边形ACNM 最小=845cm 2;(3)由(1)(2)知,BM =3t ,BN =8﹣2t ,∵△BMN 与△ABC 相似,∴①当△BMN ∽BAC 时,BM BN AB BC=,∴382 108t t-=,∴t=2011秒,②当△BMN∽△BCA时,BM BN BC AB=,∴382 810t t-=,∴t=43秒,即:△BMN与△ABC相似,t的值为2011秒或43秒.【点睛】相似形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的判定和性质,用方程是思想解决问题是解本题的关键.25.(1)y=﹣x2+2x+3;(2)P点坐标为(1,0)或(2,0);(3)33y x44=+或44y x33=+.【分析】(1)利用待定系数法求出抛物线的解析式.(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标.(3)利用中心对称的性质求解:平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与 ODEF 对称中心的直线平分 ODEF的面积.【详解】解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,∴309330a ba b-+=⎧⎨++=⎩,解得a1{b2=-=.∴抛物线的解析式为:y=﹣x2+2x+3.(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:3k b0{b3+==,解得k1{b3=-=.∴直线BC的解析式为y=﹣x+3.设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3).∴EF=y E﹣y F=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.∵四边形ODEF是平行四边形,∴EF=OD=2.∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2.∴P点坐标为(1,0)或(2,0).(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与 ODEF对称中心的直线平分ODEF的面积.①当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(12,2).设直线AG的解析式为y=k1x+b1,将A(﹣1,0),G(12,2)坐标代入得:2222k b0{3k b2-+=+=,解得223k4{3b4==.∴所求直线的解析式为:33 y x44 =+.②当P(2,0)时,点F坐标为(2,1),又D(0,2).设对角线DF的中点为G,则G(1,3 2).设直线AG的解析式为y=k2x+b2,将A(﹣1,0),G(1,32)坐标代入得:2222k b03k b2-+=⎧⎪⎨+=⎪⎩,解得223k43b4⎧=⎪⎪⎨⎪=⎪⎩.∴所求直线的解析式为44 y x33 =+.综上所述,所求直线的解析式为33y x44=+或44y x33=+.21。
人教版九年级上学期期中考试数学试卷及答案解析(共6套)

人教版九年级上学期期中考试数学试卷(一)一.选择题1、下列关于 X 的方程:①ax2+bx+c=0:②x'+ •!二6;③x—0;④x=3x2(5)(x+l )(x・1) =XMX中,一元二次方程的个数是()A、1个B、2个C、3个D、4个2、下列标志既是轴对称图形乂是中心对称图形的是()©c©D⅛⅛3、已知关于X的一元二次方程(a - 1) X2 - 2x÷l=0有两个不相等的实数根,则a的取值范围是()A、a>2B、a<2C、a<2 且D、&V ・ 24、若(2, 5)、(4, 5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()B、x=lC、x=2DX x=33、一个等腰三角形的两条边长分别是方程X2 - 7x÷10=0的两根,则该等腰三角形的周长是()A、12B、9C、13D、12 或 96、如图,某小区规划在一个长30m、宽20m的长方形土地ABCD ±修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm',那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()B、(30 - 2x) (20 - 2x) =78C、(30∙2x) (20 ・ x) =6X78D、(30∙2x) (20 ・ 2x)二6X787、如图,∆ABC为OO的内接三角形,ZAOB=IOO o ,则ZACB的度数为(C、150°D、160°8、如图,在OO中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A、 AB丄CDB、ZAOB=4 ZACDC、AD= BDD、 Po二PD9、已知抛物线y二∙x'+2x∙3,下列判断正确的是()A、开口方向向上,y有最小值是・2B、抛物线与X轴有两个交点C、顶点坐标是(■ 1, -2)D、当x<l时,y随X增大而增大10、有下列四个命题中,其中正确的有()①圆的对称轴是直径;②等弦所对的弧相等;③圆心角相等所对的弦相等;④半径相等的两个半圆是等弧.A、4个B、3个C、2个D、1个11、将抛物线y二3x:向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A、y=3 (x+2)2+3B、y二3 (X ・ 2)2+3C、y二3 (x+2)2- 3D、y二3 (x・2)2- 312、下列说法正确的是()A、弦是直径B、平分弦的直径垂直弦C、长度相等的两条弧是等弧D、圆的对称轴有无数条,而对称中心只有一个13、已知抛物线y=a X=+bx+c的开口向下,顶点坐标为(2,・3),那么该抛物线有()A、最小值・3B、最大值・3C、最小值2D、最大值2二、填空题14、钟表的时针匀速旋转一周需要12小时,经过2小时,时针旋转了 _______ 度.15、___________________________________________ 一元二次方程x'・4x+6二O实数根的悄况是_____________________________ .16、如图,在RtΔABC 中,ZBAC二90° , ZB二60° , ΔAB, C,可以由 AABC 绕点A顺时针旋转90°得到(点B'与点B是对应点,点C'与点C是对应点), 连接CC',则ZCC' B'的度数是____________ .17、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、18、已知二次函数y=aX=+bx+c的图象如图所示,有下列5个结论,Φabc<0;②2a+b=0:③b'∙4dc<0;④d+b+c>O;⑤a - b+c<O.其中正确的结论有20、某商店四月份的利润为6. 3万元,此后两个月进入淡季,利润均以相同的白分比下降,至六月份利润为5. 4万元.设下降的白分比为X,由题意列出方程21、__________________________________________________________ 已知In 是关于X的方程X2 - 2X- 3=0的一个根,则2m: - 4m= _______________ •22、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有_______ (填序号)23、如图所示:点M、G、D在半圆O上,四边形OEDF. HMNo均为矩形,EF二b,NH=c,则b与C之间的大小关系是b ________ C (填<、二、>)三.解下列方程24、解下列方程(1)X2÷6X - 1=0(2)(2x+3) 2 - 25=0.四、解答题25、在方格纸上建立如图所示的平面直角坐标系,将AABO绕点0按顺时针方向旋转90° ,得ZU' B Z 0.(1)画岀旋转后的图形;(2)写出点A' , B,的坐标.26、如图,是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面宽8cm, 水的最大深度为2c∏b求该输水管的半径是多少?27、如图,在RtΔABC中,ZACB二90, AD平分ZBAC,过A, C, D三点的圆与斜边AB交于点E,连接DE.(2)若AC=6, CB=8,求Z∖ACD的外接圆的直径.28、如图,已知抛物线与X交于A ( - 1, 0)、E (3, 0)两点,与y轴交于点B(1)求抛物线的解析式:(2)设抛物线顶点为D,求四边形AEDB的面积.29、某体育用品丿占购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为X(X$60)元,销售量为y套.(1)求出y与X的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?答案解析部分—、<b >选择题〈/b>1、【答案】B【考点】一元二次方程的定义【解析】【解答】解:①当沪O时,ax2+bx+c=0不是一元二次方程;②X2+ ≥=6 是分式方程;③x'=()是一元二次方程;④x=3x'是一元二次方程⑤(x÷l) (x・1) =X Mx,整理后不含X的二次项,不是一元二次方程.故选:B.【分析】依据一元二次方程的定义求解即可.2、【答案】A【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【分析】根据中心对称图形与轴对称图形的概念判断即可.3、【答案】C【考点】根的判别式【解析】【解答】解:△二4 - 4 (a - 1)二8 ・ 4a>0得:a<2.又a・l≠0Λa<2 且 &H1.故选C.【分析】利用一元二次方程根的判别式列不等式,解不等式求出&的取值范围. 4、【答案】D【考点】二次函数的性质【解析】【解答】解:因为点(2, 5)、(4, 5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴X=故选D.【分析】由已知,点(2, 5)、(4, 5)是该抛物线上关于对称轴对称的两点, 所以只需求两对称点横坐标的平均数.5、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质【解析】【解答】解:X2- 7x÷10=0,(X ・ 2) (x ・ 5) =0,X ・ 2=0, X ・ 5=0,Xι~2, x:=o >①等腰三角形的三边是2, 2, 5V2+2<5,・・・不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2, 5, 5,此时符合三角形三边关系定理,三角形的周长是 2+5+5二12;即等腰三角形的周长是12.故选:A.【分析】求出方程的解,即可得出三角形的边长,再求出即可.6、【答案】C【考点】一元二次方程的应用【解析】【解答】解:设道路的宽为xm,由题意得:(30 ・ 2x) (20 ・ x)二6X78,故选C.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30∙2x) m, 宽为(20・x) m.根据长方形面积公式即可列方程(30・2x) (20・x)二6X78. 7、【答案】B【考点】圆周角定理【解析】【解答】解:在优弧AB上取点D,连接AD, BD,V ZAOB=IOO O ,Λ ZD= 4 ZAOB=50° ,・•・ZACB=I80° ・ ZD二130° .【分析】首先在优弧AB上取点D,连接AD, BD,然后由圆周角定理,求得ZD 的度数,乂山圆的内接四边形的性质,求得ZACB的度数.8、【答案】D【考点】垂径定理,圆心角、弧、弦的关系【解析】【解答】解:TP是弦AB的中点,CD是过点P的直径,・・・AB丄CD,兄沪云方,ZiAOB是等腰三角形,・•・ ZAoB二 2 ZAOP,Y ZAOP二 2 ZACD,・•・ ZAoB二 2 ZAOP二2 × 2 ZACD二4 ZACD.故选D.【分析】根据垂径定理及圆周角定理可直接解答.9、【答案】D【考点】二次函数的性质【解析】【解答】解:y- ■ x'+2x - 3= - (X-I) ^ - 2,a二・1,抛物线开口向下,对称轴为直线X二1,顶点坐标为(1, -2) , △二4・12二・8<0,抛物线与X轴没有交点,当x<l时,y随X的增大而增大. 故选:D. 【分析】根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.10、【答案】D【考点】命题与定理【解析】【解答】解:①圆的对称轴是圆的直径所在的直线,故本选项错误;②在同圆或等圆中,相等的弦所对的弧相等,故本选项错误;③在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;④半径相等的两个半圆是等弧,故本选项正确;其中正确的有1个;故选D.【分析】根据轴对称图形的概念和弧、弦和圆心角之间的关系,分别对每一项进行分析即可得出答案.11、【答案】A【考点】二次函数图象与儿何变换【解析】【解答】解:由“上加下减”的原则可知,将抛物线y二3x'向上平移3 个单位所得抛物线的解析式为:y=3x2+3:IJI “左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3 (x+2) 2+3.故选A.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.12、【答案】D【考点】垂径定理【解析】【解答】解:A、直径是弦,但弦不一定是直径,选项错误;B、平分弦的直径垂直弦,被平分的弦不是直径,故选项错误;C、能重合的两个弧是等弧,选项错误;D、圆的对称轴有无数条,而对称中心只有一个,正确.故选D.【分析】根据弦的定义以及垂径定理、等弧的定义即可作出判断.13、【答案】B【考点】二次函数的最值【解析】【解答】解:因为抛物线开口向下和其顶点坐标为(2,・3),所以该抛物线有最大值・3.故选B.【分析】根据抛物线开口向下和其顶点坐标为(2,・3),可直接做出判断.二、<b >填空题<∕b>14、【答案】60【考点】生活中的旋转现象【解析】【解答】解:Y钟表上的时针匀速旋转一周的度数为360。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。
人教版九年级上册数学期中考试试卷含答案详解

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.方程3x 2-4x -1=0的二次项系数和一次项系数分别为()A .3和4B .3和-4C .3和-1D .3和12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为()A .-2B .2C .-3D .33.下列图形中既是中心对称又是轴对称图形的是()A .等边三角形B .平行四边形C .正五边形D .正方形4.将二次函数y=(x ﹣1)2﹣2的图象先向右平移1个单位,再向上平移1个单位后顶点为()A .(1,3)B .(2,﹣1)C .(0,﹣1)D .(0,1)5.如图,将ABC ∆绕点A 逆时针旋转60︒得到ADE ∆,使点D 落在BC 上,且60B ∠=︒,则EDC ∠的度数等于()A .45︒B .30°C .60︒D .75︒6.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A,y 1),B (2,y 2),C y 3),则y 1、y 2、y 3的大小关系为()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 17.如图,四边形ABCD 的两条对角线互相垂直,AC +BD =12,则四边形ABCD 的面积最大值是()A .12B .18C .24D .368.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的面积是()A .34B .212C 21D .129.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是()A .1m =B .1m >C .1m ≥D .1m ≤10.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是()A .512B .512C .1D .0二、填空题11.若点(2,)A a 与点(,1)B b 关于原点O 对称,则a b +=_________.12.“武汉樱花节”观赏人数逐年增加,据有关部门统计,2014年约为30万人次,2016年约为40万人次,设观赏人数年平均增长率为x ,则根据题意可列方程________.13.已知二次函数246y x x =--,若16x -<<,则y 的取值范围为______.14.二次函数221y x mx =++的图象的顶点在坐标轴上,则m 的值为__________.15.若150BAC ∠=︒,D 、E 为线段BC 上的两点,60DAE ∠=︒,且AD AE =,若3DE =,5CE =,则BD 的长为__________.16.二次函数221y ax x =-+,若对满足34x <<的任意x 都有0y >成立,求实数a 的范围_______.17.如图,已知正方形ABCD 的边长为3,E 是AB 边上的点,将ADE ∆绕点D 逆时针旋转90︒得到CDF ∆.(1)画出旋转后的图形,DEF ∠=.(2)若1AE =,求DF 和EF .三、解答题18.解一元二次方程:(1)2220x x --=(2)(4)5(4)0x x x -+-=19.来自武汉高校的若干个社团参加了“敢为人先,追求卓越”的城市精神的研讨会,参加研讨会的每两个社团之间都签订了一份合作协议,所有社团共签订了45份协议,共有多少个社团参加研讨会?20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上,三个顶点的坐标分别为(2,2),(1,0),(3,1)A B C .(1)将ABC ∆关于x 轴作轴对称变换得111A B C ∆,则点1C 的坐标为______.(2)将ABC ∆绕原点O 按逆时针方向旋转90︒得222A B C ∆,则点2C 的坐标为______.(3)在(1)(2)的基础上,图中的111A B C ∆,222A B C ∆是中心对称图形,对称中心的坐标为______.(4)若以点D 、A 、C 、B 为顶点的四边形为菱形,直接写出点D 的坐标为______.21.一个矩形菜园(如图),其中一边靠墙,另外三边用长为30m 的篱笆围成,墙长12m ,设平行于墙的边长为xm .(1)设垂直于墙的一边长为ym ,直接写出y 与x 之间的函数关系式,并写出x 的取值范围.(2)求菜园的最大面积.22.关于x 的方程22220x x a a -+-=的两根时等腰三角形的底和腰,且这样的等腰三角形有且只有一个,求a 的范围.23.已知,点(8,0)A 、(6,0)B ,将线段OB 绕着原点O 逆时针方向旋转角度α到OC ,连接AC ,将AC 绕着点A 顺时针方向旋转角度β至AD ,连接OD .(1)当30α=︒,60β=︒时,求OD 的长.(2)当60α=︒,120β=︒时,求OD 的长.(3)已知(10,0)E ,当90β=︒时,改变α的大小,求ED 的最大值.24.如图,已知点D 是等腰直角三角形ABC 斜边BC 上一点(不与点B 重合),连AD ,线段AD 绕点A 逆时针方向旋转90°得到线段AE ,连CE ,求证:BD ⊥CE .25.已知抛物线顶点A 在x 轴负半轴上,与y 轴交于点B ,1OB =,OAB ∆为等腰直角三角形.(1)求抛物线的解析式(2)若点C 在抛物线上,若ABC ∆为直角三角形,求点C 的坐标(3)已知直线DE 过点(1,4)--,交抛物线于点D 、E ,过D 作//DF x 轴,交抛物线于点F ,求证:直线EF 经过一个定点,并求定点的坐标.参考答案1.B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.2.B【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-b a,x1•x2=ca.要求熟练运用此公式解题.3.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A.等边三角形是轴对称图形,不是中心对称图形,故不符合题意;B.平行四边形不是轴对称图形,是中心对称图形,故不符合题意;C.正五边形是轴对称图形,不是中心对称图形,故不符合题意;D.正方形既是中心对称图形,又是轴对称图形,故不符合题意;故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.B【详解】二次函数y=(x﹣1)2﹣2的图象先向右平移1个单位,再向上平移1个单位后得y=(x﹣1﹣1)2﹣2+1,即y=(x﹣2)2﹣1,所以顶点坐标为(2,﹣1),故选B.5.C【分析】由题意根据旋转的性质得到△ABC≌△ADE,然后利用全三角形的性质进行求解即可.【详解】解:∵将△ABC绕点A逆时针旋转60°得到△ADE,∴△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=180°-∠ADE-∠ADB=60°.故选C.【点睛】本题主要考查的是旋转的性质,全等三角形的判定及性质,邻补角的定义的有关知识,熟练掌握旋转的性质是解答本题的关键.6.D【解析】试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.7.B【解析】设AC=x,则BD=12−x,则四边形ABCD的面积=12AC×BD=12×x×(12−x)=−12x²+6x=−12(x−6)²+18,∴当x=6时,四边形ABCD的面积最大,最大值是18,故选B.8.C【分析】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.【详解】连接AC1,∵四边形AB 1C 1D 1是正方形,∴∠C 1AB 1=12×90°=45°=∠AC 1B 1,∵边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,∴∠B 1AB=45°,∴∠DAB 1=90°-45°=45°,∴AC 1过D 点,即A 、D 、C 1三点共线,∵正方形ABCD 的边长是1,∴四边形AB 1C 1D 1的边长是1,在Rt △C 1D 1A 中,由勾股定理得:AC 122121+,则DC 12-1,∵∠AC 1B 1=45°,∠C 1DO=90°,∴∠C 1OD=45°=∠DC 1O ,∴DC 12-1,∴S △ADO =12×OD•AD=212,∴四边形AB 1OD 的面积是=2×2122-1,故选C .9.C【详解】分析:根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.解答:解:∵二次函数的解析式y=(x-m )2-1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m ,-1),∴该二次函数图象在x <m 上是减函数,即y 随x 的增大而减小,且对称轴为直线x=m ,而已知中当x≤1时,y 随x 的增大而减小,∴x≤1,∴m≥1.故选C .10.A【分析】理解min{a ,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【详解】在同一坐标系xOy 中,画出函数二次函数y =−x 2+1与正比例函数y =−x 的图象,如图所示,设它们交于点A.B.令21x x -+=-,即210,x x --=解得:152x +=或152,∴15511515,,,.2222A B ⎛⎫⎛⎫-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭观察图象可知:①当152x -≤时,{}2min 1,x x -+-=21x -+,函数值随x 的增大而增大,其最大值为51,2-②当151522x -+<<时,{}2min 1,x x -+-=−x ,函数值随x 的增大而减小,其最大值为1,2-③当152x +≥时,{}2min 1,x x -+-=21x -+,函数值随x 的增大而减小,最大值为152-,综上所示,{}2min 1,x x -+-的最大值是51,2-故选A.【点睛】考查二次函数,正比例函数的图象与性质,理解运算定义的内涵,结合图象求解,注意数形结合思想在解题中的应用.11.3-【分析】根据关于原点对称的点的坐标,可得答案.【详解】解:由题意,得a=-1,b=-2,a+b=-1-2=-3,故答案为-3.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a ,b 是解题关键.12.230(1)40x +=【分析】设观赏人数年均增长率为x ,根据2014及2016年的观赏人次,即可得出关于x 的一元二次方程.【详解】解:设观赏人数年平均增长率为x ,由题意得230(1)40x +=.故答案为230(1)40x +=.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.106y -≤<【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:222464410(2)10y x x x x x =--=-+-=--.∴当2x =时,y 有最小值,最小值为10-.16x -<<,∴当6x =时,y 有最大值,最大值为2(62)10.6y =--=.y ∴的取值范围为106y -≤<.故答案为106y -≤<.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.14.1或1-或0【分析】由二次函数y=x 2+2mx+1的图象的顶点在坐标轴上,分两种情况讨论即可.【详解】解:当图象的顶点在x 轴上时,∵二次函数y=x 2+2mx+1的图象的顶点在x 轴上,∴二次函数的解析式为:y=(x±1)2,∴m=±1.当图象的顶点在y 轴上时,m=0,故答案为1或−1或0.【点睛】本题主要考查了二次函数的性质,以及分类讨论的数学思想,解题的关键是熟记二次函数的性质.15.16.5【分析】作AH BC ⊥,求出CH 和AC 的长,作EF ⊥AD 于点F ,作AG ∥EF 交BC 于点G ,,通过证明△ABC ∽GAC,可求出BC 的值,从而可求出BD 的值.【详解】解:作AH BC ⊥,∵60DAE ∠=︒,且AD AE =,∴△ADE 是等边三角形,∴DH=HE=12DE=32,∠ADE=∠AED=∠DAE=60°,∴CH=32+5=132,AH==sin60°×AD=2,∴7=.作EF ⊥AD 于点F ,作AG ∥EF 交BC 于点G ,则∠AEF=∠DEF=30°,AF=DF ,∴∠AGC=150°,GE=DE=3,∴CG=2,∵150BAC ∠=︒,∴∠BAC=∠AGC,∵∠C=∠C,∴△ABC ∽GAC,∴BC AC AC CG =,∴772BC =,∴BC=492,∴BD=492-3-5=16.5.故答案为16.5.【点睛】本题考查了等边三角形的判定与性质,平行线的性质,锐角三角函数的知识,平行线分线段成比例定理,以及相似三角形的判定与性质,正确作出辅助线是解答本题的关键.16.59a ≥【分析】由对满足34x <<的任意x 都有0y >成立,用含x 的代数式表示出a 的取值范围,然后讨论含x 的代数式的取值即可求出实数a 的范围.【详解】∵对满足34x <<的任意x 都有0y >成立,∴2210ax x -+>,即2221111x a x x -⎛⎫>=-- ⎪⎝⎭+对34x <<成立,∵当34x <<时,2111x ⎛⎫-- ⎪⎭+⎝的值随x 的增大而减小,∴当x=3时,2111x ⎛⎫-- ⎪⎭+⎝取得最大值2119451=⎛⎫⎪⎭+-- ⎝,∵对满足34x <<的任意实数x 都有0y >成立,∴59a ≥.故答案为59a ≥.【点睛】本题考查了不等式恒成立问题的解法,二次函数的图像与性质,注意运用讨论二次项的系数和参数分离,熟练掌握二次函数的图像与性质是解答本题的关键.17.解:(1)45︒;(2)DF =,E F =.【分析】(1)根据题意作出图形,然后再利用旋转的性质进行解答即可;(2)根据勾股定理求出DE 的长,从而得到DF 的长,最后再利用勾股定理求出EF 的长即可.【详解】(1)解:如图,由旋转角的定义可得∠EDF=90°,∴∠DEF=45°;(2)解:∵AE=1,AD=3,∴=由旋转的性质可得:DE=DF ,∴DF =,∵∠EDF=90°,DE=DF ,∴EF ==.【点睛】本题主要考查的是旋转的性质、正方形的性质、勾股定理的应用,熟练掌握相关知识是解题的关键.18.(1)1x =±;(2)14x =,25x =-.【分析】(1)用配方法求解即可;(2)用因式分解法求解即可;【详解】(1)∵2220x x --=,∴222x x -=,∴22121x x -+=+,∴(x-1)2=3,∴x-1=±∴1x =±;(2)∵(4)5(4)0x x x -+-=,∴(4)(5)0x x -+=,∴x-4=0,或x+5=0,∴14x =,25x =-.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.19.10个.【分析】因为参加研讨会的每两个社团之间都签订了一份合作协议,设有x 个社团参加,则每个社团要签(x-1)份合同,签订合同共有1(1)452x x -=份,由题意列方程即可.【详解】解:设有x 个社团参加,依题意,得1(1)452x x -=解得:110x =,29x =-(舍去).答:共有10个社团参加研讨会【点睛】本题考查了一元二次方程的应用,解题的一般思路是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.20.(1)(3,1)-;(2)(1,3)-;(3)11(,22;(4)(4,3).【分析】(1)根据轴对称图形的性质可知点C 的坐标为(3,-1);(2)根据旋转变换图形的性质也可求出点C 2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标;(4)根据菱形的判定进行求解即可.【详解】(1)如图,点C 1的坐标为(3,-1);故答案为(3,-1);(2)点C 2的坐标为(-1,3),故答案为(-1,3);(3)△A 1B 1C 1与△A 2B 2C 2成中心对称,对称中心的坐标为11,22⎛⎫⎪⎝⎭;故答案为11,22⎛⎫⎪⎝⎭;(4)∵点D 、A 、C 、B 为顶点的四边形为菱形,∴点D 的坐标为(4,3).故答案为(4,3).【点睛】本题主要考查的是菱形的判定,轴对称变换,旋转作图,中心对称图形,点的坐标的确定,对称中的坐标变换,旋转中的对称变换等有关知识.21.(1)115(012)2y x x =-+<≤;(2)108m 2.【分析】(1)由(总长度-平行于墙的两边的长度)÷垂直于墙这边的长度即可写出函数解析式,根据墙的长度就可以求出x 的取值范围;(2)由长方形的面积公式建立二次函数,利用二次函数性质求出其解即可.【详解】(1)3011522x y x -==-+(0<x≤12);(2)设菜园的面积是S ,则S=xy =21225(15)22x --+=21225(15)22x --+,∴对称轴为x=15,当012x <≤时,S 随x 的增大而增大,∴当x=12时,S 有最大值,此时21225(1215)10822S =-⨯-+=.答:菜园的最大面积为2108m .【点睛】本题主要考查二次函数的应用,解题的关键是将实际问题转化为二次函数的问题,找出题目中的等量关系,列出函数解析式是解答本题的关键.22.203a <≤或423a ≤<或1a =.【分析】根据题意先求出方程的根,然后分情况讨论求解即可.【详解】解:()[(2)]0x a x a ---=两个根为1x a =,22x a =-,(1)当a 为腰,2a -为底时,22a a a a a a +>-⎧⎨+->⎩,解得:223a <<;(2)当2a -为腰,a 为底时,(2)2(2)(2)a a a a a a +->-⎧⎨-+->⎩,解得:403a <<,这样的等腰三角形有且只有一个,所以203a <≤或423a ≤<,当底和腰相等,即等边时,2a a =-,此时1a =,综上所述,203a <≤或423a ≤<或1a =.【点睛】本题主要考查的是因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,分类讨论是解答本题的关键.23.(1)10;(2);(3)6+.【分析】(1)将AO 绕点A 顺时针方向旋转60°至AN ,连接AN ,DN.通过SAS 证明△AOC ≌△AND ,再证明∠OND=90°后利用勾股定理即可求解;(2)将AO 绕点A 顺时针方向旋转120°至AN ,连接AN ,DN.通过SAS 证明△AOC ≌△AND ,再证明∠OND=90°后利用勾股定理即可求解;(3)将AO 绕点A 顺时针方向旋转90°至AN ,可得点N 为(8,8),利用两点距离公式求出NE 的长,然后根据D 在线段NE 上时,DE 最小为6NE ND -=;D 在线段NE的延长线上时DE 最大为6NE ND +=,从而求出DE 的最大值.【详解】解:(1)如图1,将AO 绕点A 顺时针方向旋转60°至AN ,连接AN ,DN.则△OAN 是等边三角形.∴ON=OA=AN=8.∴∠OAN =∠ONA=∠CAD=60°.∴∠OAN-∠NAC =∠CAD-∠NAC ,即∠OAC =∠NAD.在△AOC 和△AND 中AO ANOAC NAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△AND (SAS )∴OC=ND ,∠AND =∠AOC=30°.又∵OB=6,∴OC=ND=6.∴∠OND =∠ONA+∠AND=90°.∴10OD ==;(2)如图2,将AO 绕点A 顺时针方向旋转120°至AN ,连接AN ,DN ,∴△OAN 是等腰三角形,∵∠OAN=120°,∴ON ==,∠AON =∠ANO=30°.∵∠OAN =∠CAD=120°.∴∠OAN-∠NAC =∠CAD-∠NAC ,即∠OAC =∠NAD.在△AOC 和△AND 中AO ANOAC NAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△AND (SAS ),∴OC=ND ,∠AND=∠AOC=60°.∴∠OND=∠AND+∠ANO=90°,又∵OB=6,∴OC=OB=ND=6.∴OD ====(3)如图3,将AO 绕O 顺时针旋转90°到AN ,连接AN 、DN 、EN.则N 为(8,8),则NE ===.则(1)可得:△AOC ≌△AND.∴ND=OC=OB=6.当D 在线段NE 上时,DE 最小为6NE ND -=;当D 在线段NE 的延长线上时,DE 最大为6NE ND +=.即DE 的最大值为6.【点睛】本题主要考查了旋转变换,三角形全等的判定与性质,勾股定理.解题的关键是将线段AO 按AC 的旋转方式旋转,进而构造全等三角形和直角三角形求解.24.见解析【详解】试题分析:根据等腰直角三角形的性质可得∠ABC =∠ACB =45°,再根据旋转性质可得AD=AE ,∠DAE =90°,然后利用同角的余角相等求出∠BAD =∠CAE ,然后利用”边角边”证明△BAD 和△CEF 全等,从而得证.试题解析:∵∠BAC =90°,AB=AC ,∴∠ABC =∠ACB =45°,∵∠DAE =90°,∴∠DAE =∠CAE +∠DAC =90°,∵∠BAC =∠BAD +∠DAC =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD AD AE =⎧⎪∠=∠⎨⎪=⎩CAE,∴△BAD ≌△CAE (SAS ),∴BD=CE ,∠ACE =∠ABC =45°,∴∠BCE =∠ACB +∠ACE =90°,∴BD ⊥CE .25.(1)221y xx =++;(2)(2,1)C -或(3,4)C -;(3)(-1,4)【分析】(1)先求出顶点坐标与y 轴交点坐标,根据顶点式求二次函数解析式;(2)根据直角三角形的判定定理找出△ABC 为直角三角形,分三种情况:当A 为直角顶点时,AC ⊥AB ;当B 为直角顶点时,BC ⊥AB ;当C 为直角顶点,分别确定点C 的坐标;(3)根据二次函数与方程的关系求解.【详解】(1)∵OB=1,点B 在y 轴的正半轴上,∴B (0,1),∵△OAB 为等腰直角三角形,∴OA=OB=1,∵顶点A 在x 轴负半轴上,∴顶点A (-1,0),∴设y=a(x+1)2,把B (0,1)代入得1=a×(0+1)2,∴a=1,∴22(1)21y x x x =+=++,(2)当A 为直角顶点时,AC ⊥AB ,设直线AB 解析式为y=mx+n ,∵B (0,1),A (-1,0),∴10n m n =⎧⎨-+=⎩,∴11m n =⎧⎨=⎩,∴直线AB 解析式为y=x+1,∵AC ⊥AB ,∴直线AC 解析式为y=-x-1,联立得2(1)1y x y x ⎧=+⎨=--⎩,解得:1121x y =-⎧⎨=⎩,2210x y =-⎧⎨=⎩,∴C (-2,1).当B 为直角顶点时,BC ⊥AB ,∵直线AB 解析式为y=x+1,∴直线BC 解析式为y=-x+1,同理可得C (-3,4),当C 为直角顶点不存在.综上所述点C 坐标为(-2,1)或(-3,4),(3)设DE 的解析式为4y kx k =+-,联立2421y kx k y x x =+-⎧⎨=++⎩,∴2(2)50x k x k +-+-=,得:25D E DE x x k x x k +=-⎧⎨-=-⎩①②,∵D ,E 关于对称轴对称,所以2F D x x =--,设EF 的解析式为y mx n =+联立,221y mx n y x x =+⎧⎨=++⎩,得2(2)10x m x n +-+-=,()2221D E E D D ED E x x x x m x x x x n +=--=-⎧⎪⎨⋅=--⋅=-⎪⎩③④,联立①②③④得n=m+4,所以4(1)4y mx m m x =++=++,过定点(-1,4),即直线EF 经过一个定点,定点的坐标为(-1,4).【点睛】本题考查二次函数的应用,一次函数的应用,直角三角形的性质.熟练掌握一次函数与二次函数的图象与性质,用待定系数法求函数解析式,分类讨论及方程思想是解题的关键.。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。
人教版九年级上册数学期中考试试卷带答案解析

人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.菱形C.直角梯形D.等边三角形2.抛物线y=﹣x2+3x﹣52的对称轴是直线()A.x=3B.x=32C.x=﹣32D.x=﹣523.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)24.如图,将△ABC绕顶点C旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.40°B.35°C.30°D.45°5.在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合6.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣3 7.如图,在⊙O中,圆心角∠AOB=120°,P为弧AB上一点,则∠APB度数是()A.100°B.110°C.120°D.130°8.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为()A .12秒B .16秒C .20秒D .24秒9.在平面直角坐标系xOy 中,抛物线y=﹣x 2+4x ﹣3与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C .垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N (x 3,y 3),若x 1<x 2<x 3,记s=x 1+x 2+x 3,则s 的取值范围为()A .5<s <6B .6<s <7C .7<s <8D .8<s <910.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为()A .3B .C .D .二、填空题11.抛物线y=2(x+1)2的顶点坐标为_____.12.已知点A (a ,1)与点A′(5,b )是关于原点对称,则a+b =________.13.有两个人患了流感,经过两轮传染后总共有162人患了流感,每轮传染中平均一个人传染了_____个人.14.若函数y=(k ﹣3)x 2+2x+1与坐标轴至少有两个不同的交点,则k 的取值范围为_____.15.⊙O 的直径为2,AB ,AC 为⊙O 的两条弦,,,则∠BAC=_____.16.已知函数y=|x 2+x ﹣t|,其中x 为自变量,当﹣1≤x≤2时,函数有最大值为4,则t 的值为_____.三、解答题17.解方程:x2+4x-3=0.18.如图,在⊙O中,AD=BC,求证:DC=AB.19.已知二次函数y=ax2+bx+c,如表给出了y与x的部分对应值:x…﹣10123…y=ax2+bx+c…n30﹣5﹣12…(1)根据表格中的数据,试确定二次函数的解析式和n的值;(2)抛物线y=ax2+bx+c与直线y=2x+m没有交点,求m的取值范围.20.在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).(1)画出△ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标;(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标;(3)直接写出过B、B1、C2三点的圆的圆心坐标为.21.我市东湖高新技术开发区某科技公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价不低于100元,但不超过200元.设销售单价为x(元),年销售量为y(万件),年获利为w(万元)该产品年销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式,并写出x的取值范围;(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?并求当盈利最大或亏损最小时的产品售价;(3)在(2)的条件下.即在盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利不低于1370万元?若能,求出第二年的售价在什么范围内;若不能,请说明理由.22.如图AB为⊙O的直径,C为⊙O上半圆的一个动点,CE⊥AB于点E,∠OCE的角平分线交⊙O于D点.(1)当C点在⊙O上半圆移动时,D点位置会变吗?请说明理由;(2)若⊙O的半径为5,弦AC的长为6,连接AD,求线段AD、CD的长.23.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°.(1)连接DB,求证:∠DBF=∠ABE;(2)求图中阴影部分的面积.24.在△ABC和△ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F为BC中点,连接BE、DF,G、H分别为BE,DF的中点,连接GH.(1)如图1,若D在△ABC的边AB上时,请直接写出线段GH与HF的位置关系,GHHF=.(2)如图2,将图1中的△ADE绕A点逆时针旋转至图2所示位置,其它条件不变,(1)中结论是否改变?请说明理由;(3)如图3,将图1中的△ADE绕A点顺时针旋转至图3所示位置,若C、D、E三点共线,且AE=2,,请直接写出线段BE的长.25.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.参考答案1.D【分析】根据轴对称图形和中心对称图形定义和性质即可进行判断.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;B、菱形是轴对称图形,也是中心对称图形.故本选项错误;C、直角梯形不是轴对称图形,也不是中心对称图形.故本选项错误;D、等边三角形是轴对称图形,不是中心对称图形.故本选项正确.故选D.【点睛】本题考查对称图形和中心对称图形定义和性质,解题关键是掌握定义、性质,能找出对称轴和对称中心.2.B【分析】根据配方法,或者顶点坐标公式,可直接求对称轴.【详解】解:抛物线y=-x2+3x-5 2对称轴是直线x=-321⨯-()=32,故选B.解:抛物线y=﹣x2+3x﹣52的对称轴是直线x=-321⨯-()=32,故选B.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标(h,k),对称轴是x=h.3.C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.4.A【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA'+∠A'=∠B'BC=45°+25°=70°,以及∠BB'C=∠B'BC=70°,再利用三角形内角和定理得出∠ACA'=∠A'BA=40°.【详解】∵∠A=25°,∠BCA'=45°,∴∠BCA'+∠A'=∠B'BC=45°+25°=70°,∵CB=CB',∴∠BB'C=∠B'BC=70°,∴∠B'CB=40°,∴∠ACA'=40°,∵∠A=∠A',∠A'DB=∠ADC,∴∠ACA'=∠A'BA=40°.故选A.【点睛】此题考查旋转的性质,解题关键在于得出∠BCA'+∠A'=∠B'BC=45°+25°=70°5.A【分析】连结OA,如图,先根据垂径定理得到AC=1 2AB=4,然后在Rt△OAC中,根据勾股定理计算出OA即可判断.【详解】解:连结OA,如图,∵OC⊥AB,∴AC=BC=12AB=4,在Rt△OAC中,∵OC=3,AC=4,∴OA==5,∴⊙O 的半径为5cm ,∵OP=4<OA ,∴点P 在⊙O 内.故选A .【点睛】此题考查点与圆的位置关系,垂径定理、勾股定理;解题关键熟练掌握垂径定理,由勾股定理求出OA .6.A 【详解】【分析】根据平移的规律即可得到平移后函数解析式.【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x 2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x 2-1+2,即y=2x 2+1;故选A【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.7.C 【解析】试题解析:在优弧AB 上取点C ,连接AC 、BC ,由圆周角定理得,160,2ACB AOB ∠=∠= 由圆内接四边形的性质得到,180120APB ACB ∠=-∠= ,故选C.点睛:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.B 【分析】首先过点A作AD⊥MN,求出最短距离AD的长度,然后在MN上去点E、F,是AE=AF=200,求出DE的长度,根据DF=DE得出EF的长度,然后计算出时间.【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选B.9.C【分析】(1)利用抛物线解析式求得点B、C的坐标,利用待定系数法求得直线BC的表达式即可;(2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【详解】解:当y=0时,﹣x2+4x﹣3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=﹣x2+4x﹣3=﹣3,则C(0,﹣3),∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线的顶点坐标为(2,1),易得直线BC的解析式为y=x﹣3,∵x1<x2<x3,∴0<y1=y2=y3≤1,当y3=1时,x﹣3=1,解得x=4,∴3<x3<4,∵点P和点Q为抛物线上的对称点,∴x2﹣2=2﹣x1,∴x1+x2=4,∴s=4+x3,∴7<s<8.故选C.【点睛】本题考查抛物线与x轴的交点,解答关键是根据图像,找出符合要求部分,从而判定结果. 10.D【分析】如图,连接OQ,作CH⊥AB于H.首先证明点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,利用勾股定理求出CK即可解决问题.【详解】解:如图,连接OQ,作CH⊥AB于H.∵AQ=QP,∴OQ⊥PA,∴∠AQO=90°,∴点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,在Rt△OCH中,∵∠COH=60°,OC=2,∴OH=12OC=1,CH=,在Rt△CKH中,,∴CQ的最大值为,故选D.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题.11.(﹣1,0).【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=2(x+1)2,根据顶点式的坐标特点可知,顶点坐标为(﹣1,0),故答案为(﹣1,0).【点睛】本题考查将解析式化为顶点式y=a(x-h)2+k,解题关键是:顶点式y=a(x-h)2+k的顶点坐标是(h,k),对称轴是x=h.12.-6【详解】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.13.8.【分析】设每轮传染中平均每人传染x个人,根据经过两轮传染后总共有162人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每轮传染中平均每人传染x个人,根据题意得:2+2x+x(2+2x)=162,整理得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).故答案为8.【点睛】本题考查一元二次方程的应用,解题关键找准等量关系,正确列出一元二次方程.14.k≤4.【分析】由解析式知函数图象与y轴有一交点(0,1),依据题意知函数图象与x轴还至少有一个交点,再分函数是一次函数和二次函数两种情况分别求解可得.【详解】解:当x=0时,y=1,∴此函数图象与y轴必有一个交点(0,1);①若此函数是一次函数,即k=3,其解析式为y=2x+1,其函数图象与坐标轴有两个交点;②若此函数是二次函数,即k≠3,由题意知4﹣4(k﹣3)≥0,解得k≤4;综上,k的取值范围是k≤4,故答案为k≤4.【点睛】本题考查了抛物线与函数的关系,利用一元二次方程的判别式来判断抛物线与坐标轴的交点个数,做题时要认真分析,找到它们的关系.15.15°或75°.【分析】根据题意点C的位置有两种情况,如图1,∠BAC=∠CAO+∠OAB;如图2,∠BAC=∠OAB-∠OAC,进而得出答案.【详解】解:如图1,连接OC,OA,OB,过点O作OE⊥AC于点E,∵OA=OB=1,AB=,12+12=()2,∴∠AOB=90°,∴△OAB是等腰直角三角形,∠OAB=45°,∵AC=,OE⊥AC,∴AE=3 2,∴cos∠EAO=3 2,∴∠EAO=30°,∴如图1时,∠BAC=∠CAO+∠OAB=30°+45°=75°;如图2时,∠BAC=∠BAC=∠OAB﹣∠OAC.=45°﹣30°=15°.故答案为15°或75°.【点睛】此题主要考查了垂径定理以及勾股定理逆定理,利用分类讨论得出是解题关键.16.t=154或2.【分析】画出二次函数图象,确定函数取得最大值时x的值,即可求解.【详解】解:函数的图象如下图所示:从图象看,当﹣1≤x≤2时,函数可能在对称轴位置或x=2时,取得最大值解:函数y=|x2+x﹣t|=4,∴当x=﹣12时或x=2时,|x 2+x ﹣t|=4,解得:t=154或2.【点睛】本题考查了二次函数的图象与性质,通过图象找出函数取得最值的位置是解题的关键.17.,【分析】公式法或配方法求解可得.【详解】解:原式可化为x 2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x 1=﹣2+;x2=﹣2﹣.【点睛】本题考查一元二次方程的解法,解题关键是掌握解一元二次方程的方法.18.详见解析.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC 得到 AD BC=,把两弧都加上弧AC 得到 DC AB =,于是得到DC=AB .【详解】证明:∵AD=BC ,∴ AD BC=,∴ AD AC BC AC+=+,即 DC AB =,∴DC=AB.【点睛】本题考查圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.19.(1)y=﹣x2﹣2x+3,4;(2)m>7.【分析】(1)利用待定系数法求抛物线解析式,然后计算自变量为-1时对应的函数值得到n的值;(2)根据题意方程-x2-2x+3=2x+m没有实数解,然后利用判别式的意义得到42-4(m-3)<0,从而解不等式即可得到m的取值范围.【详解】解:(1)把(0,3)、(1,0)、(2,﹣5)代入y=ax2+bx+c得3425ca b ca b c⎧⎪++⎨⎪++-⎩===,解得123abc=-⎧⎪=-⎨⎪=⎩∴二次函数的解析式为:y=﹣x2﹣2x+3,把(﹣1,n)代入得n=﹣1+2+3=4;(2)∵﹣x2﹣2x+3=2x+m∴x2+4x+m﹣3=0∵抛物线y=ax2+bx+c与直线y=2x+m没有交点∴△=42﹣4(m﹣3)<0,∴m>7.【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(1)(1,1);(2)(﹣3,﹣1);(3)(2,﹣6).【分析】(1)根据平移变换的定义和性质作图可得;(2)根据旋转变换的定义和性质作图可得;(3)作B1C2和BB1的中垂线,交点即为所求点.【详解】解:(1)如图所示,△A1B1C1即为所求,其中B1的坐标为(1,1),故答案为(1,1);(2)如图所示,△A1B2C2即为所求,其中C2的坐标为(﹣3,﹣1),故答案为(﹣3,﹣1).(3)如图所示,过B、B1、C2三点的圆的圆心P的坐标为(2,﹣6),故答案为(2,﹣6).【点睛】本题考查了旋转变换与平移变换作图,找出对应点的位置是作图的关键,对应点的连线的垂直平分线过旋转中心是找旋转中心常用的方法,需要熟练掌握.21.(1)y=﹣110x+30(100≤x≤200);(2)x=170,w最大值=1690<1520+480=2000,第一年公司亏损,最少亏损是310万元,此时售价为170元;(3)当两年共盈利不低于1370万元时,160≤x≤180.【分析】(1)利用待定系数法求解可得;(2)根据“年获利=(售价-成本价)×销售量”列出函数解析式,配方成顶点式得出其获利最大值,与前期总投入480+1520比较可得;(3)根据“年获利=1370+前期最少亏损钱数”求得x的值,从而得出答案.【详解】解:(1)设y=kx+b,将(100,20)和(200,10)代入,得:10020 20010k bk b+⎧⎨+⎩==,解得:11030kb⎧=-⎪⎨⎪=⎩,∴y=﹣110x+30(100≤x≤200);(2)w=(﹣110x+30)(x﹣40)=﹣110x2+34x﹣1200=﹣110(x﹣170)2+1690,∵﹣110<0,∴x=170,w最大值=1690<1520+480=2000,第一年公司亏损,最少亏损是310万元,此时售价为170元;(3)当﹣110x2+34x﹣1200=1370+310=1680时,解得:x1=160,x2=180,结合图象当两年共盈利不低于1370万元时,160≤x≤180.【点睛】本题考查二次函数的应用与一元二次方程的应用,解题关键是理解题意,找到题目蕴含的相等关系,并依据相等关系得到一元二次方程和二次函数解析式.22.(1)当C点在⊙O上半圆移动时,D点位置不会变;理由见解析;(2)线段AD的长度为,线段CD的长度为.【分析】(1)连接OD.根据角平分线的性质得到∠1=∠3,根据原点半径相等得到OC=OD,根据等边对等角得到∠1=∠2,等量代换得到∠2=∠3,即可判定CE∥OD,又CE⊥AB,则OD⊥AB,根据垂径定理可知点D为半圆AB的中点.(2)在直角△AOD中,OA=OD=5,根据勾股定理即可求出AD=过点A作CD的垂线,垂足为G,根据圆周角定理得到1452ACD AOD∠=∠=︒,即可求出AG CG==在直角△AGD中,DG==即可求出CD的长.【详解】(1)当C点在⊙O上半圆移动时,D点位置不会变;理由如下:连接OD.∵CD平分∠OCE,∴∠1=∠3,而OC=OD,∴∠1=∠2,∴∠2=∠3,∴CE∥OD,∵CE⊥AB,∴OD⊥AB,∴ AD= BD,即点D为半圆AB的中点.(2)∵在直角△AOD中,OA=OD=5,∴AD=过点A作CD的垂线,垂足为G,∵1452ACD AOD∠=∠=︒,∴△AGC是等腰直角三角形,∵AC=6,∴AG CG==在直角△AGD中,DG==∴CD CG DG=+=+=∴线段AD 的长度为CD 的长度为.【点睛】考查角平分线的性质,平行线的判定与性质,勾股定理,圆周角定理等,对学生综合解决问题能力要求较高.23.(1)见解析;(2)阴影部分的面积为60π﹣.【分析】(1)要证明∠DBF =∠ABE ,需证∠EBF =ABD =60°,则∠ABE =∠DBF =60°﹣∠DBE ,可得∠DBF =∠ABE ;(2)过B 作BQ ⊥DC 于Q ,则∠BQC =90°,可证明△ABM ≌△DBN ,阴影部分的面积S=S 扇形DBC ﹣S △DBC =2606163602π⨯-⨯⨯=60π﹣.【详解】(1)证明:∵四边形ABCD 是菱形,∴AD =AB ,AD ∥BC ,∵∠A =60°,∴∠ADB =∠DBC =180°﹣60°﹣60°=60°,即∠EBF =ABD =60°,∴∠ABE =∠DBF =60°﹣∠DBE ,即∠DBF =∠ABE ;(2)解:过B 作BQ ⊥DC 于Q ,则∠BQC =90°,∵四边形ABCD 是菱形,∠A =60°,AB =6,∴DC ∥AB ,∠C =∠A =60°,BC =AB =6,∴∠ADC =120°,∴∠QBC =30°,∴CQ =12BC =3,BQ=,∵∠A =60°,∠CDB =120°﹣60°=60°,∴∠A =∠CDB ,∵AB =BD ,∴在△ABM 和△DBN 中A BDN AB BD ABM DBN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABM ≌△DBN (ASA ),∴S △ABM =S △DBN ,∴阴影部分的面积S =S 扇形DBC ﹣S △DBC=2606163602π⨯-⨯⨯=60π﹣.【点睛】本题考查全等三角形的证明定理,通过构建全等三角形,可求出阴影部分的面积.24.(1)GH ⊥HF,GH HF=;(2)结论不变;(3).【分析】(1)如图1中,连接DG ,FG .根据直角三角形斜边中线的性质,可得GD=GF ,再证明△DGF 是等边三角形即可解决问题;(2)结论不变.如图2中,延长ED 至S ,使DS=DE ,连接AS ,BS ,CE ,FG ,DG .理由三角形的中位线定理,证明GD=GF ,△GDF 是等边三角形即可解决问题;(3)如图3中,延长ED 到H ,使得DH=DE ,连接AH ,BH ,作BM ⊥EC 于M ,设BC 交AH 于点O .想办法证明∠BHE=60°,解直角三角形求出BM ,ME 即可解决问题;【详解】解:(1)如图1中,连接DG ,FG.∵AB=AC ,BF=CF ,∴AF ⊥BC ,∴∠BAF=∠CAF=60°,∵ED ⊥AB ,∴∠BFE=∠BDE=90°,∵BG=GE ,∴DG=12BE ,GF=12BE ,∴DG=FG ,∵DH=HF ,∴GH ⊥DF ,∵∠BAE=60°,∴∠ABE+∠AEB=120°,∵DG=BG=GF=GE ,∴∠GBD=∠GDB ,∠GEF=∠GFE ,∴∠BGD+∠EGF=120°,∴∠DGF=60°,∴△DGF 是等边三角形,∴GH HF .故答案为GH ⊥HF ,GH HF (2)结论不变.理由:如图2中,延长ED 至S ,使DS =DE ,连接AS ,BS ,CE ,FG ,DG .∵∠ADE=90°∴AS=AE ,∠DAE=∠DAS=60°∴∠BAC=∠SAE=120°∴∠SAB=∠EAC∵AB=AC∴△ABS ≌△ACE ∴BS=CE ,∠ABS=∠ACE∵F ,G 分别为BC ,BE 中点∴FG ∥CE ,FG=12CE ,同理:DG ∥BS ,DG=12BS ,∴DG=FG ,∵H 为DF 中点,∴GH ⊥HF ,延长SB 交CE 延长线于T ,∵∠ABS+∠ABT=∠ACE+∠ABT=180°,∴∠BAC+∠T=120°,∴∠T=60°,延长FG 交BT 于P ,∴∠T=∠BPF=∠DGF=60°,∴∠HGF=30°,∴GH HF .(3)如图3中,延长ED 到H ,使得DH=DE ,连接AH ,BH ,作BM ⊥EC 于M ,设BC 交AH 于点O .∵AD ⊥EH ,ED=DH ,∴AE=AH ,∴∠AEH=∠AHE=30°,∴∠EAH=∠BAC=120°,∴∠BAH=∠CAE ,∵AB=AC ,AH=AE ,∴△BAH ≌△CAE (SAS ),∴∠BHA=∠AEC=30°,BH=CE ,∴∠OBA=∠OHC=30°,∵∠AOB=∠COH ,∴△AOB ∽△COH ,∴AO OC =OB OH ,∴AO OB =OC OH,∵∠AOC=∠BOH ,∴△AOC ∽△BOH ,∴∠BHO=∠AOC=30°,∴∠BHE=30°+30°=60°,在Rt △ADE 中,∵AE=2,∠AED=30°,∴AD=1,,在Rt △ADC 中,=,∴,在Rt △BMH 中,HM=12(),BM=HM=12(+3),∴EM=EH ﹣12()=321,在Rt △EBM 中,..【点睛】本题属于几何变换综合题、考查了直角三角形斜边中线定理、三角形中位线定理、等腰三角形的性质和判定、解直角三角形、勾股定理、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.25.(1)6.(2)(53,﹣329).(3)t=13.【分析】(1)代入t=0可得出抛物线的解析式,利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,再利用三角形的面积公式即可求出△ABC的面积;(2)由点B,C的坐标可得出∠ABC=45°,利用三角形内角和定理可得出∠ACB+∠CAB=135°,结合∠PCB+∠CAB=135°可得出∠ACB=∠PCB,过B作BM∥y轴,交CP延长线于M,由平行线的性质可得出∠ABC=∠MBC,结合BC=BC即可证出△ABC≌△MBC(ASA),利用全等三角形的性质可得出AB=MB=4,进而可得出点M的坐标,根据点C,M的坐标,利用待定系数法可求出直线CM的解析式,再联立直线CM及抛物线的解析式成方程组,通过解方程组可求出点P的坐标;(3)利用二次函数图象上点的坐标特征及因式分解法解一元二次方程,可求出点A,B,C 的坐标,设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2,则CD=(t2-2t-3)-b1,CE=b2-(t2-2t-3),将直线解析式代入抛物线解析式中可得出关于x的一元二次方程,利用根与系数的关系可得出x A•x Q=t2-2t-3-b1①,x B•x Q=t2-2t-3-b2②,利用②÷①结合CE=2CD,即可得出关于t的方程,解之即可得出结论.【详解】解:(1)将t=0代入抛物线解析式得:y=x2﹣2x﹣3.当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3);当y=0时,有x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),点A的坐标为(﹣1,0).∴S△ABC =12AB•OC=12×[3﹣(﹣1)]×3=6.(2)由(1)知:B(3,0),C(0,﹣3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°.又∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB.在图2中,过B作BM∥y轴,交CP延长线于M.∴∠ABC=∠MBC.在△ABC和△MBC中,,∴△ABC≌△MBC(ASA),∴AB=MB=4,∴点M的坐标为(3,﹣4),∴直线CM解析式为:y=﹣13x﹣3(利用待定系数法可求出该解析式).联立直线CM及抛物线的解析式成方程组,得:,解得:(舍去),,∴点P的坐标为(53,﹣).(3)当y=0时,有x2+(2t﹣2)x+t2﹣2t﹣3=0,即[x+(t﹣3)]•[x+(t+1)]=0,解得:x1=﹣t+3,x2=﹣t﹣1,∴点A的坐标为(﹣t﹣1,0),点B的坐标为(﹣t+3,0).当x=0时,y=x2+(2t﹣2)x+t2﹣2t﹣3=t2﹣2t﹣3,∴点C的坐标为(0,t2﹣2t﹣3).设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2.∴点D的坐标为(0,b1),点E的坐标为(0,b2),∴CD=(t2﹣2t﹣3)﹣b1,CE=b2﹣(t2﹣2t﹣3).∵y=k1x+b1,y=x2+(2t﹣2)x+t2﹣2t﹣3,∴x2+(2t﹣2﹣k1)x+t2﹣2t﹣3﹣b1=0,∴x A•x Q=t2﹣2t﹣3﹣b1①.同理:x B•x Q=t2﹣2t﹣3﹣b2②.由②÷①,得:==﹣,∴=﹣=2,∴=﹣2,∴t=1 3.【点睛】本题考查了二次函数图象上点的坐标特征、三角形的面积、三角形内角和定理、全等三角形的判定与性质、待定系数法求一次函数解析式、解方程组、因式分解法解一元二次方程以及根与系数的关系,解题的关键是:(1)利用二次函数图象上点的坐标特征求出抛物线与坐标轴的交点坐标;(2)通过构造全等三角形找出直线PC的解析式;(3)利用根与系数的关系结合CE=2CD,找出关于t的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学期中考试试题2022年7月一、单选题1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.方程22x x =的解是( )A .2x =B .122,0x x ==C .0x =D .122,1x x == 3.二次函数y =(x+1)2+2的图象的顶点坐标是( )A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3) 4.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转180°得到点A′的坐标是( )A .(﹣1,3)B .(1,﹣3)C .(3,1)D .(-1,﹣3) 5.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为( )A .2(1)3y x =-++B .2(1)3y x =-+-C .2(1)3y x =---D .2(1)3y x =--+ 6.如图,DE BC ,在下列比例式中,不能成立的是( )A .AD AE DB EC = B .DE AE BC EC = C .AB AC AD AE = D .DB AB EC AC = 7.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为( )A .10mB .12mC .15mD .40m8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知二次函数y =x 2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是( )A .有最大值8,最小值﹣8B .有最大值8,最小值﹣7C .有最大值﹣7,最小值﹣8D .有最大值1,最小值﹣710.如图,在Rt ABC 中,90ACB ∠=︒,30ABC ∠=︒,将ABC 绕点C 顺时针旋转α角0180()α︒<<︒至A B C ''△,使得点A '恰好落在AB 边上,则α等于( )A .150︒B .90︒C .30D .60︒二、填空题11.若两个相似三角形的相似比是1:2,则它们的面积比是______.12.已知方程x 2﹣3x ﹣k =0有一根是2,则k 的值是_____.13.如图,已知30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,则BAE ∠=_____°.14.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为_____. 15.若二次函数21y ax =+,当x 取1x ,2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为_____.16.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.三、解答题17.解方程:2420x x ++=.18.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式.19.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结BE .求证:AD BE =.20.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △; (3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标.21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽;(2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.定义:若两条抛物线的对称轴相同,则称这两条抛物线为同轴抛物线.若抛物线211:12C y x mx m =--+与抛物线2C :2222y x nx n =-++-为同轴抛物线,将抛物线1C 上1≥x 的部分与抛物线2C 上1x <的部分合起来记作图象G .(1)①n =_____(用含m 的式子表示);①若点(),1m -在图象G 上,求m 的值;(2)若1m =,当12x -≤≤时,求图象G 所对应的函数值y 的取值范围;(3)正方形ABCD 的中心为原点O ,点A 的坐标为()1,1,当图象G 与正方形ABCD 有3个交点时,求m 的取值范围(直接写出结果).26.在①ABC 中,点D 在BC 边上,AD CD =,点E 、F 分别在线段AC 、AD 上,连结EF ,且EFD ABC ∠=∠.(1)当点E 与点C 重合时,如图1,找出图中与EF 相等的线段,并证明;(2)当点E 不与点C 重合时,如图2,若AC kEC =,求EF AB 的值(用含k 的式表示); (3)若90BAC ∠=︒,35AB BC =,23EF AB =,如图3,求EC AC 的值.参考答案1.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.2.B【解析】利用因式分解法解一元二次方程,提取公因式x.【详解】解:22x x=()20x x-=,10x=,22x=.故选:B.3.B【解析】根据顶点式的意义直接解答即可.【详解】解:二次函数y=(x+1)2+2的图象的顶点坐标是(﹣1,2).故选:B.4.D【解析】根据中心对称的定义得到点A与点A′关于原点对称,然后根据关于原点对称的点的坐标特征求解.【详解】①线段OA 绕原点O 顺时针旋转180°,得到OA′,①点A 与点A′关于原点对称,而点A 的坐标为(1,3),①点A′的坐标为(﹣1,﹣3).故选D .5.A【解析】根据二次函数图象的平移规律解答即可.【详解】解:由题意知,平移后抛物线的解析式是()213y x =-++,故A 正确.故选:A .【点睛】本题考查了二次函数图象的平移,解题的关键在于掌握二次函数图象平移的规律:左加右减,上加下减.6.B【解析】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.【详解】DE BC ∥,AD AE DB AB DB EC EC AC ∴== .ADE ABC ∴∽DE AE AE BC AC EC∴=≠ B.错误故选B .【点睛】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.7.C【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得,1.8325x,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.8.D【解析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可.【详解】第一次降价后的价格为:25×(1-x);第二次降价后的价格为:25×(1-x)2;①两次降价后的价格为16元,①25(1-x)2=16.故选:D.9.A【解析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【详解】①y=x2﹣6x+1=(x﹣3)2﹣8,①在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选A.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.D【解析】【分析】由旋转的性质可得CA=CA',①ACA'=α,由等腰三角形的性质可得①A=①CA'A=60°,由三角形内角和定理可求α的值.【详解】解:90ACB ∠=︒,30ABC ∠=︒,60A ∴∠=︒,将ABC ∆绕点C 顺时针旋转α角0180()α︒<<︒至①A B C '',CA CA '∴=,ACA α'∠=,60A CA A '∴∠=∠=︒,60ACA ∴'∠=︒,60α∴=︒,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.11.1:4【解析】【分析】根据相似三角形的面积比等于相似比即可求得.【详解】①两相似三角形的相似比为1:2,①它们的面积比是1:4,故答案为:1:4.【点睛】本题考查了相似三角形的面积的比等于相似比的平方的性质,熟记性质是解题的关键.12.-2【解析】【分析】直接把x =2代入方程x 2﹣3x ﹣k =0,得到关于k 的方程,然后解一次方程即可.【详解】解:把x =2代入方程x 2﹣3x ﹣k =0得4﹣6﹣k =0,解得k =﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.20【解析】【分析】利用旋转的性质得出50DAB ∠=,进而得出BAE ∠的度数.【详解】①30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,①50DAB ∠=,则BAE ∠=503020DAB DAE ∠-∠=-=故答案为:20°【点睛】此题主要考查了旋转的性质,得出旋转角DAB ∠的度数是解题关键.14.()22238x x -+=【解析】【分析】根据题意可直接进行列式求解.【详解】由题意易得:()22238x x -+=;故答案为()22238x x -+=.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理的应用是解题的关键.15.1【解析】【分析】y=ax 2+1的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,所以x 1,x 2互为相反数,即x 1+x 2=0,由此可以确定此时函数值.【详解】解:①在y=ax 2+c 的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,①x 1,x 2互为相反数, ①x 1+x 2=0, ①y=0+1=1. 故答案为:1. 【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.16.(164y x x=<< 【解析】 【分析】根据正方形的性质以及DE①AP 即可判定①ADE①①PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围. 【详解】解:①四边形ABCD 为正方形, ①①BAD =①ABC =90°, ①①EAD+①BAP =90°, ①BAP+①APB =90°, ①①EAD =①APB ,又①DE①AP ,①AED =①B =90°, ①①ADE①①PAB . ①=AD DEAP AB,即4=4y x①(164y x x=<<.故答案为:(164y x x=<< 【点睛】本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.17.12x =-22x =- 【解析】 【分析】方程利用配方法求出解即可.①2420x x ++=, ①242x x +=-, ①24424x x ++=-+, ①()222x +=, ①2x =-①12x =-22x =- 18.223y x x =--+. 【解析】 将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩,则二次函数的解析式为223y x x =--+. 19.见解析. 【解析】由旋转的性质可得CD =CE ,①DCE =90°,由“SAS”可证①ACD①①BCE ,从而得出结论. 【详解】①将线段CD 绕点C 按逆时针方向旋转90°得到线段CE , ①CD CE =,90DCE ∠=︒,①90DCE ACB ∠=∠=︒,①ACD DCB DCB BCE ∠+∠=∠+∠, ①ACD BCE ∠=∠, 且AC BC =,CD CE =, ①()ACD BCE SAS ≌, ①AD BE =.20.(1)图见解析,()12,2A ,()10,1B -;(2)图见解析;(3)(0,2)-.(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得. 【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示: 设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C , 202222ab -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩,1(2,2)A ∴,同理可得:1(0,1)B -; (2)()()2,62,2,2A A ---,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示: (3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B --,0013(,)22P +--∴,即(0,2)P -,故旋转中心的坐标为(0,2)-.21.这个苗圃园垂直于墙的一边长为12米. 【解析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可. 【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =, ①30218x -≤, ①6x ≥, ①12x =.答:这个苗圃园垂直于墙的一边长为12米.22.(1)见解析;(2)BD 【解析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AEAB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求. 【详解】(1)证明:①EAC DAB ∠=∠, ①CAB EAD ∠=∠. ①90ACB AED ∠=∠=︒, ①A ABC DE ∽△△. ①AC AEAB AD=. ①EAC BAD ∠=∠, ①BAD CAE ∽.(2)①90ACB ∠=︒,4BC =,3AC =,①5AB ==. ①A ABC DE ∽△△, ①AC ABAE AD=. ①52AB AE AD AC ⋅==. 将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒, ①BAD CAE ∽, ①90AEC ADB ∠=∠=︒.①BD ==23.(1)y =﹣2x+200 (40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80,理由见解析 【解析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【详解】(1)设y =kx+b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩,①y =﹣2x+200 (40≤x≤80); (2)W =(x ﹣40)(﹣2x+200) =﹣2x 2+280x ﹣8000 =﹣2(x ﹣70)2+1800,①当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元. (3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350, 解得:x =55或x =85, ①该抛物线的开口向下, 所以当55≤x≤85时,W≥1350,又①每千克售价不低于成本,且不高于80元,即40≤x≤80, ①该商品每千克售价的取值范围是55≤x≤80.24.(1;(2)222202616515t t S t t t t ⎧⎛<≤⎪ ⎪⎝⎭⎪⎪=-+-≤≤⎨⎝⎭⎪⎪⎪-<≤⎪⎝⎩. 【解析】(1)根据勾股定理求得AB =BED BAC ∽△△,根据相似三角形的性质求得BE ,根据平行四边形的性质可得DF BE ∥即DF =,继而易得∽ADF ABC ,继而根据相似三角形的性质求解;(2)分①当0t <≤①当0t <≤①t <≤ 【详解】(1)当点F 落在AC 边上时,如图1①在Rt ABC 中,8AC =,4BC =,90ACB ∠=︒,①AB =①ED AB ⊥于D ,①90EDB ACB ∠=∠=︒,B B ∠=∠,①BED BAC ∽△△,①BD BEBC AB=,①4t =①BE =,①四边形BDFE 为平行四边形,①DF BE ∥,①DF =,∽ADF ABC ,①DF AD BC AB ==,解得:t =①当点F 落在AC 边上时,t(2)当0t <≤2,①BDE BCA ∽, ①BD DE BC CA=,①48t DE=,①2DE t =.①222BDFES SBD DE t t t ==⋅=⋅=;当点E 与点C 4=,t =,①t <≤3,①DM BC ,①ADM ABC △∽△,①DM AD BC AB =,①4DM =①4DM =.①DF BE ==,①44MF ⎛⎫=-=- ⎪ ⎪⎝⎭ 又①MNF CAB △∽△,①MN MF CA CB =,①84MN MF=,①2MN MF =.①22213641625MNFS MN MF MF t ⎫=⋅==-=+⎪⎪⎝⎭△①22362165BDFE MNF S SS t t ⎛⎫=-=-+ ⎪ ⎪⎝⎭△①226165S t =--;t <≤ 4. ①ADM ABC △∽△,①AD DM AMAB BC AC==,48DM AM ==,①4DM =,8AM =.①88MC ⎛⎫=-= ⎪ ⎪⎝⎭. ①BDMC S S =梯形.①2114425S t ⎛⎫=⋅+=- ⎪ ⎪⎝⎭.综上所述,222202616515t t S t t t t ⎧⎛<≤⎪ ⎪⎝⎭⎪⎪=--≤⎨⎝⎭⎪⎪⎪-<≤⎪⎝⎩.25.(1)①m ;①m的取值为1-1-1-(2)当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)112m -<或514m <≤. 【解析】(1)①根据同轴抛物线的定义可得n=m ;①分两种情况:①当m 1≥时,将(),1m -代入2112y x mx m =-=+中,当1m <时,把(),1m -代入2222y x mx m =-++-中,计算可解答;(2)先将m=1代入函数y 中,画出函数图象,分别代入x=-1,x=2,x=1计算对应的函数y 的值,根据图象可得结论;(3)画出相关函数的图象,根据图象即可求得. 【详解】(1)①抛物线1C 的对称轴为:1x m =, 抛物线2C 的对称轴为:2x n =, ①1C 与2C 为同轴抛物线, ①12x x = ①n m = 故答案为:m①当m 1≥时,将(),1m -代入2112y x mx m =-=+中得221112m m m --+=-,2240m m +-=,解得11m =-21m =-, ①m 1≥,①1m =-当1m <时,把(),1m -代入2222y x mx m =-++-中得:222221m m m -++-=-,2210m m +-=解得11m =-21m =- ①1m <,①1m =-1m =-综上所述,m的取值为1-1-1-(2)当1m =时,图象G 的函数解析式为()()2211221x x x y x x x ⎧-≥⎪=⎨⎪-+<⎩,图象G 如图1所示, 在抛物1C 上,当12x ≤≤时,y 随x 的增大而增大,102y -≤≤,在抛物线2C 上,当11x -≤<时, y 随x 的增大而增大,31y -≤<①当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)当112m -<或514m <≤时,图象G 与正方形ABCD 有3个交点, 抛物线()2222:22222C y x mx m x m m m =-++-=--++-. 抛物线211:12C y x mx m =--+,当1x =时,322y m =- 当31212m -≤-≤时,1544m ≤≤. 当抛物线2C 的顶点在BC 上时,如图2,2221m m +-=-,11m =-(舍),21m =- 当抛物线2C 过点()1,1B -时,如图3,12221m m -++-=-,12m =,①112m -<;当抛物线2C 过点()1,1A 时,如图4,12221m m -++-=,44m =,1m =.当抛物线1C 过点()1,1B -时,如图5,1112m m --+=-,54m =, ①514m <≤.综上所述,当112m -<<或514m <≤时,图象G 与正方形ABCD 有3个交点. 26.(1)EF AB =.证明见解析;(2)1EF k AB k-=;(3)13EC AC =. 【解析】 (1)在BD 上取点M ,使AM AD =,根据等边对等角的性质、等量代换及全等三角形的判定和性质可得AB EF =;(2)在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N ,根据等边对等角、平行线的性质、等量代换可证得:ENF AMB △∽△,继而可得EF EN AB AM=,继而易证 ANE ADC △∽△,CN DC E AE A =,继而即可求解; (3)过E 作EG AD ⊥于G ,易证EGF CAB △∽△,可得EG EF AC BC=,可设3AB a =,5BC a =,则4AC a =,求得2EF a =,85EG a =,易证AGE CAB △∽△,进而可得AE GE CB AB=,继而可知83AE a =,84433EC a a a =-=,继而即可求解. 【详解】(1)EF AB =.证明:在BD 上取点M ,使AM AD =,如图1,①AM AD =,①AMD ADM ∠=∠,①AMB ADC ∠=∠,又①AD CD =,①AM CD =,又①ABC EFD ∠=∠.①()ABM CFD AAS △≌△,①AB EF =;(2)解:在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N.①AM AD =,①AMD ADM ∠=∠,①AMB ADC ∠=∠.①NE DC ∥,①FNE ADC AMB ∠=∠=∠.又①EFD ABC ∠=∠,①ENF AMB △∽△, ①EF ENAB AM =,①EN DC ,①ANE ADC △∽△,①C NDC E AEA =①AC kEC =,①()1AE AC EC k EC =-=-. ①()11k ECENk DC kEC k --==,①AM AD DC ==,①1ENENk DC AM k -==,①1EFk AB k -=;(3)解:过E 作EG AD ⊥于G ,如图3①90BAC ∠=︒,①EGF BAC ∠=∠.又①EFD ABC ∠=∠,①EGF CAB △∽△,①EG EFAC BC = ①35ABBC =,①设3AB a =,5BC a =,则4AC a =,又①23EFAB =,①2EF a =, ①245EGaa a =,①85EG a =.又①AD DC =,①DAC C ∠=∠,①AGE CAB △∽△,①AEGECB AB =,①8553aAEa a=,①83AE a=①4AC a=,①84433EC a a a=-=,①41343aECAC a==.【点睛】本题主要考查相似三角形的的判定及其性质,涉及到等边对等角的性质、等量代换及全等三角形的判定及其性质,解题的关键是熟练掌握所学知识.。