人教版九年级数学期中考试试卷及答案
人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试卷及答案考试试卷第一部分选择题1. 下面哪组数互质的有:A. 4, 6B. 8, 12C. 9, 15D. 10, 252. 若 a 是一个整数,且a^2 − 7a + 10 = 0,则 a 的值为:A. 2或5B. 2或-5C. 1或5D. 1或-53. 如图,在菱形 ABCD 中,∠ACB = 90°,BD = 12cm,AB = 16cm,连接 BE 垂直于 AC 于点 E,则 BE =A. 6cmB. 8cmC. 10cmD. 12cm4. 一个长度为 15cm 的正方形纸片如图,沿着虚线矩形剪去 ABCD部分,并将纸片折起粘在 EFCD 上,得到三棱柱 ADEFBC。
已知 EF =5cm,则三棱柱 ADEFBC 的体积为:A. 75 cm³B. 60 cm³C. 55 cm³D. 50 cm³5. 下列各数以 14 为公差的等差数列:A. 4,1,-2,-5,...B. 10,17,24,31,...C. 12,6,0,-6,...D. -3,-7,-11,-15,...第二部分解答题1. 若 a:b = 3:2,b:c = 4:5,c:d = 6:7,则 a:b:c:d 等于多少?2. 已知正方形的边长为 a,求正方形的对角线长。
3. 某体育场的篮球场长 28 米,宽 15 米,每个完整的篮球场地的斜线长度为多少?4. 描述一个刀最多能切割出几块蛋糕,如图所示(图略),要求每块蛋糕的形状相同且面积相等。
5. 某种果酱的水分含量为 75%,如果有 3L 的果酱,经过蒸发后水分含量下降到 55%,请计算剩余果酱的体积。
参考答案第一部分选择题1. A2. A3. D4. A5. B第二部分解答题1. a:b = 3:2,b:c = 4:5,c:d = 6:7,所以 a:b:c:d = 3:2 * 4:5 * 6:7 = 12:10:24:302. 根据勾股定理,正方形的对角线长为a√2。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册《数学》期中考试卷及答案【可打印】

人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。
()2. 两条平行线的斜率相等。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180°。
()5. 两个负数相乘的结果是正数。
()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。
2. 若 a = 3,b = 2,则 a b = ______。
3. 2的平方根是______。
4. 已知sinθ = 1/2,则θ的度数是______。
5. 下列数列的通项公式是 an = ______。
四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。
2. 解释正弦函数和余弦函数的定义。
3. 解释勾股定理,并给出一个应用勾股定理的例子。
4. 简述平行线的性质。
5. 解释二次函数的图像特征。
五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。
人教版初三期中考试数学试卷及答案

人教版初三期中考试数学试卷及答案一、选择题(每题3分,共30分)1.下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=;④(a2+a+1)x2-a=0;⑤=x-1.一元二次方程的个数是()【解析】选B.方程①与a的取值有关,当a=0时,不是一元二次方程;方程②经过整理后,二次项系数为2,是一元二次方程;方程③是分式方程;方程④的二次项系数经过配方后可化为+,不管a取何值,都不为0,所以方程④是一元二次方程;方程⑤不是整式方程,故一元二次方程有2个.【知识归纳】判断一元二次方程的几点注意(1)一般形式:ax2+bx+c=0,特别注意a≠0.(2)整理后看是否符合一元二次方程的形式.(3)一元二次方程是整式方程,分式方程不属于一元二次方程.2.假设(x+y)(1-x-y)+6=0,那么x+y的值是()【解析】选C.设x+y=a,原式可化为a(1-a)+6=0,解得a1=3,a2=-2.关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-B.k>-且k≠0C.k0,解得k>-且k≠0.应选B.4.某种商品零售价经过两次降价后的价格为降价前的81%,那么平均每次降价 ()A.10%B.19%C.9.5%D.20%【解析】选A.设平均每次降价x,由题意得,(1-x)2=0.81,所以1-x=±0.9,所以x1=1.9(舍去),x2=0.1,所以平均每次降价10%.5.在平面直角坐标系中,抛物线y=x2-1与x轴的交点的个数是()【解析】选B.把a=1,b=0,c=-1代入b2-4ac得0+4>0,故与x轴有两个交点.6.二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,那么当x取x1+x2时,函数值为()【解析】选D.由题意可知=,又x1≠x2,所以x1=-x2,即x1+x2=0,所以当x取x1+x2时,函数值为c.7.(2022 宜宾中考)假设关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,那么k的取值范围是()wA.k1C.k=1D.k≥0【解析】选A.∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴Δ=b2-4ac=22-4×1×k>0,∴kx2),那么x1+x2=-1,x1-x2=1,解得x1=0,x2=-1.(2)当x=0时,(a+c)×02+2b×0-(c-a)=0,所以c=a.当x=-1时,(a+c)×(-1)2+2b×(-1)-(c-a)=0,即a+c-2b-c+a=0,所以a=b,所以a=b=c,所以△ABC为等边三角形.21.(8分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)假设用10分钟提出概念,学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来答复.【解析】(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×100+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5,∴用15分钟与用10分钟相比,学生的接受能力增强了.22.(8分)(2022 来宾中考)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价多少元?【解析】(1)由题意,得60(360-280)=4800元.答:降价前商场每月销售该商品的利润是4800元.(2)设要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价x元,由题意,得(360-x-280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价60元.23.(8分)(2022 温州中考)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y 轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,点A的坐标为(-1,0).(1)求抛物线的解析式.(2)求梯形COBD的面积.【解析】(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1,∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x-1)2+4的对称轴是直线x=1,∴CD=1.∵A(-1,0),∴B(3,0),∴OB=3,∴S梯形COBD==6.24.(9分)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依次类推,即每多买一台,那么所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购置一批图形计算器:(1)假设此单位需购置6台图形计算器,应去哪家公司购置花费较少?(2)假设此单位恰好花费7500元,在同一家公司购置了一定数量的图形计算器,请问是在哪家公司购置的,数量是多少?【解析】(1)在甲公司购置6台图形计算器需要用6×(800-20×6)=4080(元);在乙公司购置需要用75%×800×6=3600(元)440,符合题意.当x=25时,每台单价为800-20×25=300人教版初三期中考试数学试卷及答案.。
人教版九年级数学期中测试题(含答案)

九年级数学期中测试题一、选择题(每题3分,共30分)1、把方程10)5(2=+x x 化成一般形式后,二次项系数、一次项系数、常数项分别是( )A.2,5,10B.2,5,10-C.2,1,5D.2,10,10-2、下列关于x 的一元二次方程有实数根的是( )A.012=+xB.012=++x xC.012=+-x xD.012=--x x3、方程x x 62=的解是( )A.6=xB.61-=x ,02=xC.0=xD.61=x ,02=x4、抛物线2x y -=不具有的性质是( )A.开口向下B.对称轴是y 轴C. 经过点(1,2-)D.最高点是原点5、关于二次函数2)3(2--=x y 的图象和性质,下列说法正确的是( )A.开口方向向下,顶点坐标为(0,3)B.当3=x 时,函数有最大值0B.C.当3<x 时,y 随x 的增大而减小 D.开口方向向下,对称轴为y 轴6、如图所示,将四边形ABOC 按顺时针旋转得到四边形DFOE ,则下列角中不是旋转角的是( )A.BOF ∠B.AOD ∠C.COE ∠ D AOF ∠7、下列图形中,不是中心对称图形的是( )8、如图,点C 在以AB 为直径的半圆上,O 为圆心,A ∠=20 ,则BOC ∠的度数为( )A .20 B.30 C.40 D.509、如图,已知半径OD 与弦AB 互相垂直,垂足为C ,若AB=8cm ,CD=3cm ,则圆O 的半径为( )A.cm 625B.cm 5C.cm 4D.cm 619 10、竖直向上发射的小球的高度)(m h 关于运动时间)(s t 的函数表达式为.2bt at h +=若小球在发射后第2秒与第6秒的高度相同,则下列哪个时刻使小球的高度最高( )A.第3秒B.第3.5秒C.第4秒D.第6.5秒二、填空题(每题4分,共24分)11、把2412-+x x 化成n m x a ++2)(的形式是 . 12、如图,直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0)和B (3,2),不等式m x c bx x +>++2的解集为 .13、若一元二次方程020232=--bx ax 有一根为1-=x ,则=+b a . 14、一元二次方程022=++m mx x 的两个实数根分别为1x ,2x ,若121=+x x ,则21x x = .15、如果点P (x ,y )的坐标满足06)5(=-+-y x ,那么点P 关于原点的对称点的坐标是 .16、在直径为cm 200的圆柱形油槽内装入一些油以后,截面如图所示,若油面AB=cm 160,则油的最大深度为 .三、解答题一(每题6分,共18分)17、解方程16)4(2=-x 18、用求根公式法解方程1542=+x x19、已知点A (a ,2023)与点A '(2024-,b )是关于原点O 的对称点,求b a +的值.四、解答题二(每题7分,共21分)20、已知关于x 的方程012)2(2=-+++m x m x .求证:方程有两个不相等的实数根.21、二次函数2ax y =与直线32-=x y 交于点P (1,b ).(1)求a ,b 的值.(2)写出二次函数的关系式,并指出x 取何值时,y 随x 的增大而减小.22、如图,已知ABC ∆和点O.(1)把ABC ∆绕点O 顺时针旋转90 得到111C B A ∆,在网格中画出111C B A ∆;(2)用直尺和圆规作出ABC ∆的边AB 、AC 的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法)五、解答题三(每题9分,共27分)23、小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?24、已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D ,如图.(1)求证:AC=BD ;(2)若大圆的半径R=10,小圆的半径r=8,且点O 到直线AB 的距离为6,求AC 的长.25、如图,抛物线322+--=x x y 的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求点A ,B ,C 的坐标.(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ //AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM ∆的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=D 22Q ,求点F 的坐标.参考答案一、DDDCB DDCAC二、11、3)2(412-+x 12、31><x x 或 13、2023 14、2- 15、(5-,6-) 16、40cm 三、17、解:由题意得,44±=-x ………………………………2分4444-=-=-x x 或………………………………4分.0,821==x x ……………………………………6分18、解:方程化为01542=-+x x …………………………1分,1,5,4-===c b a ……………………………………2分 411625)1(445422=+=-⨯⨯-=-ac b ………………3分8415±-=∴x ………………………………………………5分 .8415,841521+-=+-=∴x x …………………………6分 19、解:由题意得2024=a ,2023-=b ………………3分所以b a +=2024-2023……………………4分=1………………………………6分四、20、证明:由题意得12),2(,1-=+==m c m b a ………………1分)12(4)2(2--+=∆m m …………………………………………3分=842+-m m ……………………………………………………4分=44)2(2>+-m ………………………………………………6分 ∴方程有两个不相等的实数根.………………………………7分21、解:(1)由二次函数2ax y =与直线32-=x y 交于点P (1,b ),得 ⎩⎨⎧-⨯=⨯=31212b a b ………………………………………………………2分解得⎩⎨⎧-=-=11b a ,所以a 、b 的值分别是1-,.1-…………………………4分(2)二次函数的关系式为2x y -=,……………………………………5分当0>x 时,y 随x 的增大而减小.…………………………………………7分22、解:(1)111C B A ∆如图所示.……………………………………4分(2)如图所示.…………………………………………………………7分五、23、解:设购买了x 件这种服装,根据题意得………………1分=--x x )]10(280[1200…………………………………………4分解得201=x ,2x =30………………………………………………7分当30=x 时,.50)(40)1030(280舍去不合题意元元,,<=-⨯-当.50)(60)1020(28020元元时>=-⨯-=,x ……………………8分 答:她购买了20件这种服装.…………………………………………9分24、(1)证明:过点O 作AB OE ⊥于点E ,……………………1分则CE=DE ,AE=BE ,……………………2分DE BE CE AE -=-∴………………………3分即AC=BD ………………………………………4分(2)连接OC 、OA …………………………………………………5分OE=6,∴72682222=-=-=OE OC CE ,………………6分AE=,86102222=-=-OE OA ……………………7分AC=CE AE -………………………………………………8分=728-………………………………………………9分25、解:(1)对322+--=x x y ,令C y x 则得,3,0==(0,3)…………1分 令,13,0320212=-==+--=,x x x x y 解得得).0,1(),0,3(B A -∴……………………………………………………2分(2)由1)1(22-=-⨯--=x 得抛物线的对称轴为直线.1-=x ………………3分 设点M (x ,0)、P (x ,322+--x x ),其中.13-<<-xP ,Q 关于直线1-=x 对称,设Q 的横坐标为a ,则,2,1)1(x a x a --=∴--=-- ∴Q (x --2,322+--x x )……………………………………4分322+--=∴x x MP ,PQ=,222x x x --=---,282)3222(222+--=+----=∴x x x x x d 周长 当2)2(28-=-⨯--=x 时,d 取最大值,………………………………5分 此时,M )0,2(-,,1)3(2=---=∴AM设直线AC 解析式为⎩⎨⎧⎩⎨⎧==+-==≠+=,13,303),0(k b b k b k b kx y 解得则 ,132,3=+=-=+=∴y x y x x y AC 得代入将解析式为直线,1),1,2(=-∴EM E.21112121=⨯⨯=⋅=∴∆ME AM S AEM …………………………6分 (3)由(2)知,当矩形PMNQ 的周长最大时,,2-=x此时点Q (0,3)与点C 重合,O ∴Q=3,将1-=x 代入322+--=x x y ,得 )4,1(,4-∴=D y ,如图,过D 作DK y ⊥轴于K ,则DK=1,OK=4,∴QK=OK-OQ=4-3=1,∆∴DKQ 是等腰直角三角形,DQ=2………………………………7分∴FG=22DQ=4222=⨯,设F (32,2+--m m m ),G (3,+m m ),则FG=,3)32()3(22m m m m m +=+---+ ,1,4,43212=-==+∴m m m m 解得…………………………8分 当53)4(2)4(32422-=+----=+---=m m ,m 时, 当,0312132122=+⨯--=+--=m m ,m 时 )0,1()5,4(或--∴F …………………………………………9分。
人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。
人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程2250x x ++=的根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根3.抛物线2(3)y x =+的顶点是()A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-4.一元二次方程2810x x -+=配方后可变形为()A .()2415x -=B .()2415x +=C .()2417x -=D .()2417x +=5.已知二次函数21(2)54y x =--+,y 随x 的增大而减小,则x 的取值范围是()A .2x >B .2x <C .2x >-D .2x <-6.如图,AOB ∆绕点O 逆时针旋转65︒得到COD ∆,若30AOB ∠=︒,则BOC ∠的度数是()A .30°B .35︒C .40︒D .65︒7.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛21场,设共有x 个队参赛,根据题意,可列方程为()A .(1)21x x +=B .(1)21x x -=C .(1)212x x +=D .(1)212x x -=8.已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是()A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x 9.已知2x =关于x 的方程23520x mx m -+-=的一个根,且这个方程的两个根恰好是等腰ABC ∆的两条边长,则ABC ∆的周长为()A .8B .10C .8或10D .6或1010.二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,下列结论正确的是()A .0abc >B .20a b +<C .320b c -<D .30a c +<二、填空题11.方程2250x -=的解是_____.12.将抛物线24y x =向下平移1个单位长度,则平移后的抛物线的解析式是_______.13.如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.14.小王想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.则S 与x 之间的函数关系式是_____.(不用写自变量的取值范围)15.若抛物线2(2)21y m x x =-+-与x 轴有两个公共点,则m 的取值范围是______.16.如图,ABC 中,90ACB ∠=︒,AC BC a ==,点D 为AB 边上一点(不与点A ,B 重合),连接CD ,将线段CD 绕点C 逆时针旋转90︒得到CE ,连接AE .下列结论:①BDC ∆≌AEC ∆;②四边形AECD 的面积是2a ;③若105BDC ∠=︒,则AD =;④2222AD BD CD +=.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题17.解方程:22150x x --=.18.如图,平面直角坐标系xOy 中,画出ABC 关于原点O 对称的111A B C ∆,并.写出1A 、1B 、1C 的坐标.19.已知二次函数243y x x =++.(1)求二次函数的最小值;(2)若点11(,)x y 、22(,)x y 在二次函数243y x x =++的图象上,且122x x -<<,试比较12,y y 的大小.20.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,广东省2019年公共充电桩的数量约为4万个,2021年公共充电桩的数量多达11.56万个,位居全国首位.(1)求广东省2019年至2021年公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计广东省2022年公共充电桩数量能否超过20万个?为什么?21.如图,平面直角坐标系xOy 中,直线2y x =+与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)根据图象,写出不等式22x bx c x -++>+的解集.22.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.23.如图,边长为6的正方形ABCD 中,E 是CD 的中点,将ADE ∆绕点A 顺时针旋转90︒得到ABF ∆,G 是BC 上一点,且45EAG ∠=︒,连接EG .(1)求证:AEG ∆≌AFG ∆;(2)求点C 到EG 的距离.24.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.25.在△ABC 中AB=AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;【发现问题】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究猜想】如图2,如果点P为平面内任意一点,前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);【拓展应用】如图3,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是线段BC上的任意一点连接AP,将线段AP绕点A顺时针方向旋转60°,得到线段AQ,连接CQ,请直接写出线段CQ长度的最小值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.2.A 【解析】【分析】根据一元二次方程根的判别式24b ac ∆=-,∆<0时,方程没有实数根;0∆>时,方程有两个不相等的实数根;0∆=时,方程有两个相等的实数根,将相应的系数代入判别式便可判断.【详解】∵224245420160b ac =-=-⨯1⨯=-=-<Δ根据一元二次方程根的判别式24b ac ∆=-,当∆<0时,原方程没有实数根.故选A 【点睛】本题旨在考查一元二次方程根的判别式,熟练掌握该知识点是解此类题目的关键.3.D 【解析】【分析】根据二次函数2()y a x h k =-+的顶点坐标是(h ,k )即可解答.【详解】解:抛物线2(3)y x =+的顶点是(﹣3,0),故选:D .【点睛】本题考查二次函数2()y a x h k =-+的性质,熟知二次函数2()y a x h k =-+的顶点坐标是(h ,k )解答的关键.4.A 【解析】【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:∵x 2-8x+1=0,∴x 2-8x=-1,∴x 2-8x+16=15,∴(x-4)2=15.故选A .【点睛】本题考查了解一元二次方程-配方法,当二次项系数为1时,配一次项系数一半的平方是关键.5.A 【解析】【分析】根据y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a <0时,在对称轴右侧y 随x 的增大而减小,可得答案.【详解】解:∵21(2)54y x =--+,∴a 14=-<0,∴当x >2时y 随x 的增大而减小.故选:A .【点睛】本题考查了二次函数的性质,二次函数y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小.6.B 【解析】【分析】根据旋转的性质得出旋转角∠AOC=65°即可.【详解】解:∵AOB ∆绕点O 逆时针旋转65︒得到COD ∆,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC ﹣∠AOB=65°﹣30°=35°,故选:B .【点睛】本题考查旋转的性质,熟练掌握旋转的性质,准确找到旋转角是解答的关键.7.D 【解析】【分析】类似的场次比赛相互问题可看做“握手问题”,由于赛制是单循环(每两队都赛一场),设有x 队参赛,因此比赛总的场次为()112x x -场,剧题意总场次为21场,依此等量关系列出方程.【详解】设共有x 队参赛,此次比赛总场次为()112x x -已知共比赛21场.根据题意列方程为()11212x x -=故答案选D.【点睛】本题考查一元二次方程的实际应用,找到等量关系为解题的关键.8.C 【解析】【分析】利用待定系数法确定函数解析式即可;【详解】解:设该抛物线解析式是:y =a (x-1)2﹣2(a≠0).把点(0,-5)代入,得a (0-1)2﹣2=-5,解得a=-3.故该抛物线解析式是23(1)2y x =---.故答案选:C 【点睛】本题主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式.9.B 【解析】【分析】先求得方程的两个根,再根据等腰三角形的条件判断即可.【详解】∵2x =关于x 的方程23520x mx m -+-=的一个根,∴46520m m -+-=,∴2m =,∴方程23520x mx m -+-=变形为2680x x -+=,解得122,4x x ==,∵方程的两个根恰好是等腰ABC ∆的两条边长,∴其三边可能是2,2,4或4,4,2,∵2+2=4,故三角形不存在,故三角形的周长为10,故选B .【点睛】本题考查了一元二次方程的根,一元二次方程的解法,等腰三角形的分类,熟练解一元二次方程是解题的关键.10.D 【解析】【分析】根据抛物线的性质,对称轴,图形的信息,逐一计算判断即可.【详解】∵102ba-=>,∴0ab <,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故A 不符合题意;∵12ba-=,∴20a b +=,故B 不符合题意;∵1x =-时,y=a-b+c 0<,∴2a-2b+2c 0<,∵12ba-=,∴2a b =-,∴-b-2b+2c 0<,∴3b-2c 0>,故C 不符合题意;∵1x =-时,y=a-b+c 0<,∵12ba-=,∴2a b =-,∴3a+c 0<,故D 符合题意;故选D .【点睛】本题考查了二次函数图像,抛物线的性质,灵活运用图像及其性质是解题的关键.11.x=±5【解析】【分析】移项得x 2=25,然后采用直接开平方法即可得到方程的解.【详解】解:∵x 2-25=0,移项,得x 2=25,∴x=±5.故答案为:x=±5.【点睛】本题考查了利用直接开平方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.241y x =-##214y x =-+【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:24y x =向下平移1个单位长度所得抛物线解析式为:241y x =-.故答案为:241y x =-.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称,因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ;B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1,,则点D 的坐标是(.故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.14.230S x x=-+【解析】【分析】根据矩形的周长及其一边长表示出另一边为(30-x )米,再根据矩形的面积公式求函数关系式即可.【详解】∵矩形周长为60米,一边长x 米,∴另一边长为(30-x )米,∴矩形的面积()23030S x x x x =-=-+.故答案为:230S x x =-+.【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意,正确找出等量关系是解题的关键.15.1m >且2m ≠【解析】【分析】根据抛物线的定义,得2m ≠;结合题意,根据抛物线和一元二次方程判别式的性质分析,即可得到答案.【详解】∵抛物线2(2)21y m x x =-+-∴20m -≠∴2m ≠∵抛物线2(2)21y m x x =-+-与x 轴有两个公共点,即2(2)210m x x -+-=有两个不同的实数根∴()()22421440m m ---=->∴1m >故答案为:1m >且2m ≠.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数、一元二次方程判别式的性质,从而完成求解.16.①③④【解析】【分析】根据旋转性质可得CD=CE ,∠ECD=90°由90ACB ∠=︒,可得∠ACE=∠DCB ,可证△ACE ≌△BCD (SAS ),可判断①正确;由四边形AECD 面积=三角形ABC 面积,可判断②不正确;由全等三角形性质可得∠AEC=∠BDC=105°,AE=BD ,由90ACB ∠=︒,AC BC =,可得∠CAB=∠EAC=∠B=45°,∠EAB=90°,∠ADE==30°,利用30度直角三角形性质可得ED=2AE=2BD ,再由勾股定理可判断③正确;利用勾股定理可得2222AD BD CD +=,可判断④正确.【详解】解:∵线段CD 绕点C 逆时针旋转90︒得到CE ,∴CD=CE ,∠ECD=90°,∵90ACB ∠=︒∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB ,在△ACE 和△BCD 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;S 四边形AECD=S △ACE+S △ACD=S △BCD+S △ACD=S △ABC=2111222AC BC a a a ⋅=⋅=,故②不正确;连结ED ,∵△ACE ≌△BCD ,∴∠AEC=∠BDC=105°,AE=BD ,∵90ACB ∠=︒,AC BC =,∴∠CAB=∠B=45°,∴∠EAC=∠B=45°,∴∠EAB=∠EAC+∠CAB=45°+45°=90°,∵CE=CD ,∠ECD=90°,∴∠CED=∠CDE=180452ECD︒-∠=︒,∴∠AED=∠AEC-∠CED=105°-45°=60°,∴∠ADE=90°-∠AED=90°-60°=30°,∴ED=2AE=2BD ,在Rt △AED 中,==,故③正确;在Rt △CED 中,DE 2=2222CF CD CD +=,在Rt △AED 中,∴AE 2+AD 2=BD2+AD 2=ED 2=2CD 2,∴2222AD BD CD +=,故④正确,正确的结论是①③④.故答案为①③④.17.13x =-,25x =.【分析】利用因式分解法解方程.【详解】解:22150x x --= ,(3)(5)0x x ∴+-=,则30x +=或50x -=,解得13x =-,25x =.18.图见解析,1(3,4)A -,1(5,1)B -、1(1,2)C -【分析】根据关于原点对称的点的坐标都是互为相反数计算即可.【详解】解:∵A (-3,4),B (-5,1),C (-1,2)∴它们关于原点O 对称的点分别为1(3,4)A -,1(5,1)B -、1(1,2)C -,画图如下:111A B C ∆为所求作的图形.19.(1)﹣1;(2)12y y <【分析】(1)将二次函数的解析式化为顶点式,进而求得最值即可;(2)求出该二次函数的对称轴,进而根据开口方向和增减性求解即可.【详解】解:(1)二次函数243y x x =++=()221x +-,∵a=1>0,∴该二次函数有最小值,最小值是1-;(2)∵该二次函数图象的对称轴为直线x=﹣2,且开口向上,∴当122x x -<<时,y 随x 的增大而增大,∴12y y <.【点睛】本题考查二次函数的图象与性质、求二次函数的最值,熟练掌握二次函数的图象与性质是解答的关键.20.(1)70%;(2)预计广东省2022年公共充电桩数量不能超过20万个,理由见解析.【解析】【分析】(1)设2019年至2021年广东省公共充电桩数量的年平均增长率为x ,根据广东省2019年及2021年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据广东省2022年公共充电桩数量=广东省2021年公共充电桩数量×(1+增长率),即可求出结论.【详解】解:(1)设广东省2019年至2021年公共充电桩数量的年平均增长率为x24(1)11.56x +=解得:10.7x =,2 2.7x =-(不合题意,舍去)答:年平均增长率为70%.(2)该省2022年公共充电桩数量11.56(10.7)19.65220=⨯+=<答:预计广东省2022年公共充电桩数量不能超过20万个.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)22y x x =--+;(2)20x -<<【解析】【分析】(1)求出A ,B 点代入进而求出函数解析式;(2)直接利用A ,B 点坐标进而利用函数图象得出答案;【详解】解:(1)∵直线2y x =+与坐标轴交于A ,B 两点∴点A 的坐标是(2-,0),点B 的坐标是(0,2).把(2-,0),(0,2)代入2y x bx c =-++得:2420c b c =⎧⎨--+=⎩解得12b c =-⎧⎨=⎩∴抛物线的解析式是22y x x =--+.(2)∵点A 的坐标是(2-,0),点B 的坐标是(0,2).∴根据图像可得:不等式22x bx c x -++>+的解集是:20x -<<;【点睛】此题主要考查了利用待定系数法求函数解析式以及二次函数与不等式的关系,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.22.(1)54m ≥-;(2)3x =-或1x =【解析】【分析】(1)根据有两个实数根,得到不等式△≥0,计算即可;(2)确定m 的值,得到符合题意的一元二次方程,解得即可.【详解】解:(1)∵关于x 的方程22(21)10x m x m +++-=有两个实数根,∴△22(21)41(1)450m m m =+-⨯⨯-=+≥,解得:54m ≥-.(2) 0x =是方程的一个根,∴210m -=,∴1m =±,此时原方程为230x x +=或20x x -=.解得:10x =,23x =-或10x =,21x =.∴方程的另一个根为3x =-或1x =.23.(1)见解析;(2)125【解析】(1)根据正方形和旋转的性质得到AF AE =,EAG FAG ∠=∠,即可求解;(2)设CG x =,则6BG x =-,9EG FG BG BF x ==+=-,由勾股定理求得CG ,等面积法求解即可.【详解】(1)证明:正方形ABCD 中,90BAD ∠=︒由旋转的性质得,AE AF =,90D ABF ∠=∠=︒∴180ABC ABF ∠+∠=︒,∴点F ,点B ,点C 三点共线.∵90DAB ∠=︒,45EAG ∠=︒∴45DAE GAB ∠+∠=︒,∴45BAF GAB ∠+∠=︒,即45FAG ∠=︒∴EAG FAG∠=∠在AEG △和AFG 中AE AFEAG FAG AG AG=⎧⎪∠=∠⎨⎪=⎩∴()AF AEG G SAS △≌△(2)解:由(1)得:EG FG=∵正方形ABCD 的边长为6,E 是CD 的中点∴3DE CE BF ===设CG x =,则6BG x =-,9EG FG BG BF x==+=-在Rt ECG 中,2223(9)x x +=-解得4x =,即CG 4=由勾股定理得:5EG ==设点C 到EG 的距离为h 则1122ECG S CE CG GE h =⨯=⨯△,即125CE CG h GE ⨯==∴点C 到EG 的距离是125.24.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -< 或2a .【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2b x a=-求解抛物线的对称轴即可;(2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案.【详解】解:(1)令0x =,则1y =.(0,1)A .抛物线的对称轴为3322a x a -=-=.(2)2234931(24a y ax ax a x -=-+=-+,抛物线的对称轴为32x =.①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值.∴()213(1)13a a --⨯-+=∴12a =.②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=∴此时32x =,y 取最大值.∴233()31322a a -⨯+=∴89a =-.综上所述,12a =或89a =-.(3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a + ,∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+ 或13a +.1a ∴- (不合题意,舍去)或2a ∴2a.②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+< .12a ∴-< .又0a < ,10a ∴-<综上所述,a 的取值范围为10a -<或2a .【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.25.[发现问题]:BQ=PC ;[探究猜想]:BQ=PC 仍然成立,理由见解析;[拓展应用]:线段CQ 长度最小值是1【解析】【分析】[发现问题]:由旋转知,AQ=AP ,∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),BQ=CP 即可;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,由∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),可得BQ=CP ;[拓展应用]:在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,可求∠CAQ=∠EAP ,可证△CAQ ≌△EAP (SAS ),CQ=EP ,当EF ⊥BC (点P 和点F 重合)时,EP 最小,在Rt △ACB 中,∠ACB=30°,AC=2可求AB=4,由AE=AC=2,可求BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,可得EF=12BE=1即可【详解】[发现问题]:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ,故答案为:BQ=PC ;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ APBAQ CAP AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ;[拓展应用]:如图,在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,∵∠ABC=30°,∴∠EAC=60°,∴∠PAQ=∠EAC ,∴∠CAQ=∠EAP ,在△CAQ 和△EAP 中,AQ APCAQ EAP AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAQ ≌△EAP (SAS ),∴CQ=EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∴当EF ⊥BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt △ACB 中,∠ACB=30°,AC=2,∴AB=4,∵AE=AC=2,∴BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,∴EF=12BE=1.故线段CQ 长度最小值是1.。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学期中考试试卷及答案
学习数学就学习做题,所以想要提高数学成绩,就要多加强试题的训练。
下面店铺为大家带来人教版九年级数学期中的试卷,文末有答案,有需要的考生可以测试一下,需要更多内容可以关注应届毕业生网!
注意事项:
1.本试卷共二大题24小题,卷面满分120分,考试时间120分钟;
2.本试卷分试题卷和答题卡两部分,请将各题答案答在答题卡上每题对应的答题区域内,答在试题卷上无效;考试结束,只上交答题卡.
一、选择题.(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分)
1.一元二次方程3x2-2x-1=0的二次项系数、一次项系数、常数项分别为( )
A.3,2,1
B. -3,2,1
C. 3,-2,-1
D.-3,-2,-1
2.二次函数y=2(x+3)2-1的图象的顶点所在象限是( )
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3.下列一元二次方程中,没有实数根的是( )
A. 4x2-5x+2=0
B. x2-6x+9=0
C. 5x2-4x-1=0
D. 3x2-4x+1=0
4. 如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.
若∠A=40°.∠B′=110°,则∠BCA′的度数是( )
A.110°
B.80°
C.40°
D.30°
5.若x1,x2是一元二次方程x2-3x-4=0的两个根,则x1+x2等于( )
A. -3
B. 3
C. 1
D.4
6.将二次函数y=x2+1的图象向上平移2个单位,再向右平移1个单位后的函数解析式为( )
A.y=(x-1)2-1
B. y=(x+1)2-1
C. y=(x+1)2+3
D. y=(x-1)2+3
7.一元二次方程x2-8x-1=0配方后可变形为( )
A.(x+4)2=17
B. (x+4)2=15
C. (x-4)2=17
D. (x-4)2=15
8.抛物线y=3x2,y= -3x2,y=x2+3共有的性质是( )
A.开口向上
B. 对称轴是y轴
C. 都有最高点
D.y随x的增大而增大
9.已知x2+y2-4x+6y+13=0,则代数式x+y的值为( )
A.-1
B. 1
C. 5
D.36
10.对二次函数y= -(x+2)2-3,描述错误的是( )
A.图象开口向下
B. 关于直线x=2对称
C. 函数有最大值为-3
D.图象与x轴无交点
11.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,下面所列方程正确的是( )
A. B. C. D.
12. 股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )
13. 下列四个函数图象中,当x>0时,y随x的增大而减小的是( )
14. 在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是( )
15.如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( )
A. 30,2
B. 60,2
C. 60,
D. 60,
二、解答题(本大题共9小题,共75分)
16.(6分)解方程:
17.(6分)如图,不用量角器,在方格纸中画出△ABC绕点B顺时针方向旋转90°后得到的△A1BC1.
18.(7分)已知一个二次函数y=ax2+bx+c的图象如图所示,请求出这个二次函数的解析式。
19.(7分)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1< x2).若y是关于x 的函数,且y=x2-2x1,求这个函数的解析式。
20.(8分) 如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程。
(1)甲队单独完成这项工程,需要多少天?
(2)求乙队单独完成这项工程需要的天数;
(3)实际完成的时间比甲独做所需的时间提前多少天?
21.(8分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过
B、C两点,点D为抛物线的顶点,连接A
C、B
D、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABDC的面积.
22.(10分)每年的3月15日是“国际消费者权益日”,许多商家都会利用这个契机进行打折促销活动.甲卖家的A商品成本为500元,在标价800元的基础上打9折销售.
(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于10%?
(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,成本、标价与甲卖家一致,以前每周可售出50件,为扩大销量,尽快减少库存,他决定打折促销.但他先将标价提高3m%(m为整数),再大幅降价26m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了%,这样一天的利润达到了20000元,求m.
23.(11分)等腰直角△ABC的直角边AB=BC=10cm,点P、Q分别从A,C两点同时出发,均以1cm/s的速度作直线运动,已知P沿
射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式;
(2)当P点运动几秒时,S△PCQ=S△ABC?
(3)若P在B的左边时,作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论。
24.(12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC. 以直线AB为对称轴的抛物线过C,E两点.
(1)求E点坐标;
(2)设抛物线的解析式为y=a(x-h)2+k,求a,h,k;
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点M,N的坐标;若不存在,请说明理由.
参考答案
1——15 CCABB DCBAB BBCCC
16. 解:
x(x-3)+(x-3)=0 2分
(x-3)(x+1)=0 4分
x-3=0或x+1=0
x1=3,x2=-1 6分
17.略
18.设二次函数解析式为, 4分
由函数过(0,1)得a= 6分
所以二次函数解析式为,即 7分
19(1)△=(m+2)2 1分
∵m>0
∴(m+2)2>0 2分
∴方程有两个不相等的实数根。
3分
(2)方程可变为﹝mx-2(m+1)﹞(x-1)=0
∴ 5分
∵m>0,且x1
∴ 6分
∴y= x2-2x1= 7分
20.(1)40天 2分
(2)60天 5分
(3)12天 8分
21.(1)依题意C(0,4) B(4,4) 2分
代入y=﹣ x2+bx+c得b=2,c=4 3分
所以二次函数解析式为 4分
(2)D(2,6) 5分
S四边形ABDC=12 8分
22(1)解:设降价x元,由题意得, 2分
3分
(2)设m%=y, 4分
于是 7分
所以
所以 m=25 10分
23.(1)当P在线段AB上时,S= (t<10)
当P在线段AB的延长线上时, (t>10) 2分
(2) 当P在线段AB上时S△PCQ= =50,方程无解 3分当P在线段AB的延长线上时S△PCQ= =50,
解得 (舍去负值)
所以当时,S△PCQ=S△ABC 5分
(3)DE的长度不变,理由如下:
(11分)
24.(1)过点E作EG⊥X轴于点G,
证△OCD≌△GED
EG=OD=1,DG=OC=2
所以E的坐标为(3,1) 3分
(2) h=2 6分
(3)存在
M1(2,1),N1(4,2);
M2(2,3),N2(0,2);
M3(2, ),N3(2, ) 12分。