第六章 抽样调查
统计学第六章抽样调查

Part
05
系统抽样技术
系统抽样原理及步骤
• 系统抽样原理:系统抽样是一种等距抽样方法,它首先确定一个抽样间隔,然后在总体中按照这个间隔进行抽 样。这种方法适用于总体单位排列有序且周期性变化的情况。
系统抽样原理及步骤
01
系统抽样步骤
02
确定总体范围和抽样框;
03
计算抽样间隔,确定样本量;
系统抽样原理及步骤
01
03 02
分层标准选择与确定方法
• 以调查对象的某些自然特征或社会特征作 为分层标准。
分层标准选择与确定方法
专家判断法
依靠专家经验判断选择合 适的分层标准。
数据分析法
通过对历史数据或相关数据的 分析,找出影响调查指标的主 要因素,作为分层标准。
试验法
通过试验确定不同分层标准 对调查结果的影响程度,选 择最优的分层标准。
缺点
由于样本可能被重复抽取,导致样本的代表性降 低。
缺点
操作相对复杂,需要记录已经抽取过的样本。
简单随机抽样优缺点分析
操作简单
简单随机抽样的操作过程相对简单,易于理解和实施。
等概率原则
保证了每个单位被抽中的机会相等,避免 具有代表性:当样本量足够大时,简单随机抽样可以获得具有代表性的样本。
整群抽样优缺点比较
• 适用于某些特定情况:对于某些总体分布不均匀或难以划分的情况,整群抽样 可能更为适用。
整群抽样优缺点比较
抽样误差较大
01
由于是以群为单位进行抽样,可能导致抽样误差较大。
样本代表性不足
02
如果群的划分不合理或随机性不足,可能导致样本代表性不足。
对群内个体差异考虑不足
03
市场调查-第六章抽样技术

N = 721, n = 10, 721/10≈72
K =
用随机数表法,如果第一个确定的数字为102,则 各样本单元编号依次为:102,174,246,318, 390,462,534,606,678,29。其中最后一个编 号应为678 + 72 = 750。因大于N,故减去721,实 际编号取为750- 721 = 29。
多级随机抽样是先把总体划分为 若干一级单元,再把各个一级单 元划分为若干个二级单元,直至 不再划分的个体单元。在抽样时, 先用简单随机抽样方法抽取部分 一级单元,再在抽中的一级单元 中抽取部分二级单元,依次操作, 直到抽得个体单元为止。
多级随机抽样——demo
我国城市住户调查采用的就是多 级抽样,先从全国各城市中抽取 若干城市,再在城市中抽选街道, 然后在各街道中抽选居民会,最 后在各居委会中抽选居民户。
低收入 20%
高收入 20%
中收入 60%
高收入 中收入 低收入
分层比例抽样法
高收入层抽取的样本单元数为: 200×20%=40(户) 中收入层抽取的样本单元数为: 200×60%=120(户) 低收入层抽取的样本单元数为: 200×20%=40(户)
在各层抽样时,只需采 用简单随机抽样法即可。
2、分层最佳抽样法
二、分层随机抽样
分层随机抽样是先将总体所有单位按 某一重要标志进行分层(类),然后在 各层(类)中采用简单随机抽样方式抽 取样本单位的一种抽样技术形式。在 划分层次时应注意,各层次内部保持 确定的同质性,而各层次之间又应有 明显的异质性。
分层比例抽样法 分层最佳抽样法
1、分层比例抽样法
分层比例抽样法,指各层 抽取的样本单元数是按各 层单元数占总体单元数的 比例加以确定。
第六章抽样调查习题答案

第六章抽样调查习题答案一、单项选择题1、 C2、 A3、 D4、 D5、C6、 D7、 C8、 A9、 D 10、A11、 D 12、C 13、B 14、 A 15、A16、 B 17、 B 18、D 19、 A 20、A21、 A 22、 D 23、 D 24、 B 25、A二、判断题1、CD2、AE3、BCD4、ABDE5、ABD6、AB7、ABCD8、AC9、ABCD三、判断题1、×2、√3、√4、√5、√6、×7、√8、×9、√10、√11、×12、√13、√14、×15、×16、√17、√18、×四、填空题1、随机、部分、总体2、计算、控制3、重复、不重复4、大于5、点估计、区间估计6、增加到4倍、减少三分之二、减少四分之三7、大样本、小样本8、正、反五、复习思考题1、影响抽样误差的主要因素有哪些?答:影响抽样误差大小的因素主要有:(1)总体单位的标志值的差异程度。
差异程度愈大则抽样误差愈大,反之则愈小。
(2)样本单位数的多少。
在其他条件相同的情况下,样本单位数愈多,则抽样误差愈小。
(3)抽样方法。
抽样方法不同,抽样误差也不相同。
一般说,重复抽样比不重复抽样,误差要大些。
(4)抽样调查的组织形式。
抽样调查的组织形式不同,其抽样误差也不相同,而且同一组织形式的合理程度也会影响抽样误差。
2、什么是抽样调查?它有哪些特点?答:抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。
它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。
(1)只抽取总体中的一部分单位进行调查。
(2)用一部分单位的指标数值去推断总体的指标数值(3)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
统计学原理-第六章 抽样调查(复旦大学第六版)

2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
统计学第六章 抽样法

第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
第六章抽样调查练习及答案

第 六章 抽样调查一、填空题1.抽选样本单位时要遵守 原则,使样本单位被抽中的机会 。
2.常用的总体指标有 、 、 。
3.在抽样估计中,样本指标又称为 量,总体指标又称为 。
4.全及总体标志变异程度越大,抽样误差就 ;全及总体标志变异程度越小,抽样误差 。
5.抽样估计的方法有 和 两种。
6.整群抽样是对被抽中群内的 进行 的抽样组织方式。
7.误差分为 和代表性误差;代表性误差分为________和偏差;偏差是____________________________,也称为________________。
8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下: ;不重复抽样条件下: 。
9.误差范围△,概率度t 和抽样平均误差μ之间的关系表达式为 。
10.抽样调查的组织形式有: 。
二、单项选择题1.所谓大样本是指样本单位数在( )及以上A 30个B 50个C 80个 D100个2.抽样指标与总体指标之间抽样误差的可能范围是( )A 抽样平均误差B 抽样极限误差C 区间估计范围D 置信区间3.抽样平均误差说明抽样指标与总体指标之间的( )A 实际误差B 平均误差C 实际误差的平方D 允许误差4.是非标志方差的计算公式( )A P(1-P)B P(1-P)2C )1(P P -D P 2(1-P)5.总体平均数和样本平均数之间的关系是( )A 总体平均数是确定值,样本平均数是随机变量B 总体平均数是随机变量,样本平均数是确定值C两者都是随机变量 D两者都是确定值6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。
A 95.45%B 99.7396C 68.27%D 90%7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量( )A 扩大为原来的3倍B 扩大为原来的2/3倍C 扩大为原来的4/9倍D 扩大为原来的2.25倍8.根据抽样调查得知:甲企业一等品产品比重为30%,乙企业一等品比重为50%一等品产品比重的抽样平均误差为 ( )A 甲企业大B 两企业相同C 乙企业大D 无法判断9.是非标志的平均数是( )A -P)1P(B P(1-P)C pD (1-P)210.重复抽样的误差一定( )不重复抽样的误差。
胡德华版统计学第六章

6.2.2 机械抽样
机械抽样又称等距抽样或系统抽样, 机械抽样又称等距抽样或系统抽样,就是将总体的各单位按某一标 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔, 志的大小进行排队,用总体单位数除以样本单位数求得抽样间隔,然后 按照相同的间隔等距抽取样本的一种抽样方式。 按照相同的间隔等距抽取样本的一种抽样方式。 根据总体单位排列方法,等距抽样可分为两类: 根据总体单位排列方法,等距抽样可分为两类:一是按有关标志排 二是按无关标志排队。 队;二是按无关标志排队。 所谓有关标志就是指与调查问题直接相关的标志。 所谓有关标志就是指与调查问题直接相关的标志。 采用等距抽样法,主要应解决以下两个问题: 采用等距抽样法,主要应解决以下两个问题: 一是要计算抽样间隔, 代表抽样间隔, 代表总体单位数 代表总体单位数, 代 一是要计算抽样间隔,若K代表抽样间隔,N代表总体单位数,n代 代表抽样间隔 表抽取的样本单位数, 表抽取的样本单位数,则K=N / n 。 二是要确定起点样本,即第一个样本。 二是要确定起点样本,即第一个样本。通常的方法可采取在第一组 1-K个样本单位中随机抽取的方法,也可以在第一组 个样本单位中随机抽取的方法, 个样本单位中随机抽取的方法 也可以在第一组1-K个样本单位中采 个样本单位中采 用取中间值的方法,然后,每隔K个单位抽取一个样本 个单位抽取一个样本, 用取中间值的方法,然后,每隔 个单位抽取一个样本,直到抽够样本 为止。 为止。 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 等距随机抽样方法可以使样本单位均匀地分布在总体的各个部分, 因而使样本具有更高的代表性,减少了抽样误差; 因而使样本具有更高的代表性,减少了抽样误差;采用机械顺序抽取样 简单易行,便于操作。但是,在应用等距抽样方法时, 本,简单易行,便于操作。但是,在应用等距抽样方法时,要注意抽样 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 间隔与现象本身所具有的规律不能重叠,否则,会加大抽样误差。 等距随机抽样方法比较适合于同质性较高的总体。 等距随机抽样方法比较适合于同质性较高的总体。
第六章抽样调查习题答案

第六章抽样调查习题答案一、单项选择题1、 C2、 A3、 D4、 D5、C6、 D7、 C8、 A9、 D 10、A11、 D 12、 C 13、 B 14、 A 15、A16、 B 17、 B 18、 D 19、 A 20、A21、 A 22、 D 23、 D 24、 B 25、A二、判断题1、 CD2、 AE3、 BCD4、 ABDE5、ABD6、 AB7、 ABCD8、 AC9、 ABCD三、判断题1、×2、√3、√4、√5、√6、×7、√8、×9、√10、√11、× 12、√ 13、√ 14、×15、×16、√ 17、√ 18、×四、填空题1、随机、部分、总体2、计算、控制3、重复、不重复4、大于5、点估计、区间估计6、增加到4倍、减少三分之二、减少四分之三 7、大样本、小样本 8、正、反五、复习思考题1、影响抽样误差的主要因素有哪些?答:影响抽样误差大小的因素主要有:(1)总体单位的标志值的差异程度。
差异程度愈大则抽样误差愈大,反之则愈小。
(2)样本单位数的多少。
在其他条件相同的情况下,样本单位数愈多,则抽样误差愈小。
(3)抽样方法。
抽样方法不同,抽样误差也不相同。
一般说,重复抽样比不重复抽样,误差要大些。
(4)抽样调查的组织形式。
抽样调查的组织形式不同,其抽样误差也不相同,而且同一组织形式的合理程度也会影响抽样误差。
2、什么是抽样调查?它有哪些特点?答:抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。
它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。
(1)只抽取总体中的一部分单位进行调查。
(2)用一部分单位的指标数值去推断总体的指标数值(3)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章抽样调查第一节抽样调查的意义及全然概念一、抽样调查的意义抽样调查(随机抽样):按照随机原那么从总体中抽取一局部单位进行瞧瞧,并运用数理统计的原理,以被抽取的那局部单位的数量特征为代表,对总体作出数量上的推断分析。
二、抽样调查的适用范围抽样调查方法是市场经济国家在调查方法上的必定选择,和普查相比,它具有正确度高、本钞票低、速度快、应用面广等优点。
一般适用于以下范围:1.实际工作不可能进行全面调查瞧瞧,而又需要了解其全面资料的事物;2.虽可进行全面调查瞧瞧,但比立困难或并不必要;3.对普查或全面调查统计资料的质量进行检查和修正;4.抽样方法适用于对大量现象的瞧瞧,即组成事物总体的单位数量较多的情况;5.利用抽样推断的方法,能够关于某种总体的假设进行检验,判定这种假设的真伪,以决定取舍。
三、抽样调查的全然概念(一)全及总体和抽样总体(总体和样本)全及总体:所要调查瞧瞧的全部事物。
总体单位数用N表示。
抽样总体:抽取出来调查瞧瞧的单位。
抽样总体的单位数用n表示。
n≥30大样本n<30小样本(二)全及指标和抽样指标(总体指标和样本指标)全及指标:全及总体的那些指标。
抽样指标:抽样总体的那些指标。
第二节抽样调查的组织形式通常有以下四种组织形式:一、简单随机抽样(纯随机抽样)即从总体单位中不加任何分组、排队,完全随机地抽取调查单位。
随机抽选可有各种不同的具体做法,如:1.直截了当抽选法;2.抽签法;3.随机数码表法;二、类型抽样(分类抽样)先对总体各单位按一定标志加以分类(层),然后再从各类(层)中按随机原那么抽取样本,组成一个总的样本。
类型的划分:一是必须有清楚的划类界限;二是必须明白各类中的单位数目和比例;三是分类型的数目不宜太多。
类型抽样的好处是:样本代表性高、抽样误差小、抽样调查本钞票较低。
要是抽样误差的要求相同的话那么抽样数目能够减少。
两种类型:1.等比例类型抽样(类型比例抽样);2.不等比例类型抽样(类型适宜抽样)。
三、机械抽样(等距抽样)先将全及总体的所有单位按某一标志顺序排队,然后按相等的距离抽取样本单位。
排列次序用的标志有两种:1.选择标志与抽样调查所研究内容无关,称无关标志排队。
例:研究工人的平均收进水平常,按工号排队。
2.选择标志与抽样调查所研究的内容有关,称有关标志排队。
例:研究工人的生活水平,按工人月工资额上下排队。
机械抽样按样本单位抽选的方法不同,可分为三种:1.随机起点等距抽样2.半距起点等距抽样3.对称等距抽样机械抽样的好处:1.能够使抽样过程大大简化,减轻抽样的工作量;2.要是用有关标志排队,还能够缩小抽样误差,提高抽样推断效果。
机械抽样,实际上是一种特不的类型抽样。
因为,要是在类型抽样中,把总体划分为假设干相等局部,每个局部只抽一个样本,在这种情况下,那么类型抽样就成了机械抽样。
四、整群抽样整群抽样即从全及总体中成群地抽取样本单位,对抽中的群内的所有单位都进行瞧瞧。
整群抽样的好处:组织工作比立简单方便,适用于一些特不的研究对象。
其缺乏之处是,一般比其它抽样方式的抽样误差大。
五、多时期抽样即把抽样本单位的过程分为两个或几个时期来进行。
〔要是一次就直截了当抽选出具体样本单位,这喊单时期抽样〕具体讲:①先抽大单位(能够用类型抽样或机械抽样),②再在大单位中抽小单位(可用整群抽样或简单随机抽样),③小单位中再抽更小的单位;而不是一次就直截了当抽取基层的调查单位。
六、重复抽样和不重复抽样以上每一种组织方式又有不同的抽取样本方法(机械抽样和整群抽样没有重复抽样):重复抽样:又称有放回抽样不重复抽样:又称不放回抽样。
第三节抽样平均误差一、抽样误差的概念及其碍事程度在统计调查中,调查资料与实际情况不一致,两者的偏离称为统计误差。
抽样误差即指随机误差,这种误差是抽样调查固有的误差,是无法防止的。
抽样误差的碍事因素:1.全及总体标志变异程度。
——正比关系2.抽样单位数目的多少。
——反比关系3.不同的抽样方式。
4.不同的抽样组织形式。
抽样误差的作用:1.在于讲明样本指标的代表性大小。
误差大,那么样本指标代表性低;误差小,那么样本指标代表性高;误差等于0,那么样本指标和总体指标一样大。
2.讲明样本指标和总体指标相差的一般范围。
二、抽样平均误差抽样平均误差实际上是样本指标的标准差。
通常用μ表示。
在N 中抽出n 样本,从排列组合中能够有各种各样的样本组:1.要是是重复抽样:2.要是是不重复抽样:⑴考虑顺序的不重复抽样:⑵不考虑顺序的不重复抽样:三、纯随机抽样的抽样平均误差(一)平均数的抽样平均误差1.重复抽样取得σ的途径有:1.用过往全面调查或抽样调查的资料,假设同时有n 个σ的资料,应选用数值较大的那个;2.用样本标准差S 代替全及标准差σ;3.在大规模调查前,先搞个小规模的试验性的调查来确定S ,代替σ;4.用估量的方法。
例:某灯泡厂从一天所生产的产品10,000个中抽取100个检查其寿命,得平均寿命为2000小时(一般为重复抽样),依据以往资料:σ=20小时,依据以往资料,产品质量不太稳定,假设σ=200小时,2.不重复抽样:(二)成数的抽样平均误差已证实得:成数的方差为p(1-p)某玻璃器皿厂某日生产15000只印花玻璃杯,现按重复抽样方式从中抽取150只进行质量检验,结果有147只合格,其余3只为不合格品,试求这批印花玻璃杯合格率(成数)的抽样平均误差。
四、类型抽样的抽样平均误差在重复抽样情况下:x μ=22i ii N N σσ=∑五、机械抽样(等距抽样)的抽样平均误差1.假设按无关标志排队公式用以上纯随机抽样的公式,一般采纳不重复抽样公式:2.假设按有关标志排队公式用类型抽样的公式:六、整群抽样的抽样平均误差整群抽样的抽样平均误差受三个因素碍事:(1)抽出的群数(r)多少(反比关系)(2)群间方差( δ)(正比关系)(3)抽样方法七、多时期抽样的抽样平均误差以两时期抽样为例设总体分R 组,每组包含个单位,假设各组相等,那么RM N =在抽样第一时期,从R 组中抽出r 组;在抽样第二时期,在中选的r 组中随机抽选个单位,假设各组m 相等,那么n=rm那么:在重复抽样下在不重复抽样下设某大学在学期初对学生进行体重抽样调查,先从全校80个班以不重复抽样方法随机抽取8个班,然后再从抽取的班中再分不抽取10个人作为第二时期抽样单位。
计算所得的抽样平均体重为千克,抽样各班内方差平均数2σ为50,各班之间体重方差2x δ为22。
假设全校各班均为40人。
试以94.45%〔t=2〕的概率,推断该校学生平均体重的范围。
:第四节全及指标的推断一、点估量和区间估量(一)点估量100x 1002p 98%X 1002P 98%====例:在全部产品中,抽取件进行仔细检查,得到平均重量克,合格率,我们直接推断全部产品的平均重量克,合格率。
只要在样本代表性大,且对全及指标精确性要求不高的情况下,可采纳点估量法。
如能满足以下三个准那么:无偏性、一致性、有效性,就会得到合理的估量(二)区间估量是依据样本指标和抽样误差往推断全及指标的可能范围,它能讲清楚估量的正确程度和把握程度。
依据中心极限定理,得知当n 足够大时,抽样总体为正态分布,依据正态分布规律可知,样本指标是以一定的概率落在某一特定的区间内,统计上把那个给定的区间喊抽样极限误差,也称置信区间,即在概率F(t)的保证下:抽样极限误差△=t μ,〔t 为概率度〕可见,抽样极限误差,即扩大或缩小了以后的抽样误差范围。
抽样误差范围的实际意义是要求被估量的全及指标X 或P 落在抽样指标一定范围内,即落在p x x p ±∆±∆或的范围内。
例:当F(t)=68.27%时,抽样极限误差等于抽样平均误差的1倍(t=1);当F(t)=95.45%时,抽样极限误差等于抽样平均误差的2倍(t=2);当F(t)=99.73%时,抽样极限误差等于抽样平均误差的3倍(t=3);二、全及平均数和全及成数的推断例1:某农场进行小麦产量的抽样调查,该农场小麦播种面积为10000亩,采纳不重复的简单随机抽样从中选100亩作为样本,进行实割实测,得到样本的平均亩产量为400千克,样本标准差为12千克。
那么:例2:某机械厂日产某种产品8000件,现采纳纯随机不重复抽样方式(按重复抽样公式计算),从中抽取400件进行瞧瞧,其中有380件为一级品,试以概率95.45%的可靠程度推断全部产品的一级品率及一级品数量的范围。
那么:抽样一级品率:三、全及总体总量指标的推断(一)直截了当推断法抽样平均数(成数)×总体单位数=总体标志总量1.要是采纳点估量方法:上例1中:400×10000=400(万千克)要是用区间估量方法:上例1中该农场小麦总产量的范围为:t=2:(397.62~402.38)×10000=397.62~402.38(万千克)t=3:(396.43~403.57)×10000=396.43~403.57(万千克)2.上例2中,全部一级品数量的范围为:(92.82%~97.18%)×8000=7425.6~7774.4(件)例2:某市房地局,年报工资总额万元。
现抽查14个单位:年报:万元多报:万元少报:万元抵冲后1.47-0.44=1.03(万元)第五节必要抽样数目确实定一、碍事必要抽样数目的因素二、必要抽样数目的计算公式(一)简单随机抽样(二)类型抽样重复抽样:222xtnσ=∆22(1)pt p pn-=∆不重复抽样:22222xt NnN tσσ=∆+222(1)(1)pt p p NnN t p p-=∆+-(三)机械抽样在有总体差异程度和比重的全面资料时,可采纳类型抽样的公式;没有总体的全面资料时,可采纳简单随机抽样的公式。
(四)整群抽样。