某篇高分子英文文献读书笔记

合集下载

高分子专业相关的英语文献

高分子专业相关的英语文献

高分子专业相关的英语文献高分子科学是一门涉及广泛且发展迅速的学科领域,因此,对于高分子专业的学生和研究者来说,掌握相关的英语文献是非常重要的。

以下是一些与高分子专业相关的英语文献的推荐,希望能对你们有所帮助。

1. 学术期刊论文《高分子学报》是中国高分子科学最重要的学术期刊之一,其中刊登的许多论文都是高分子领域的经典之作。

此外,还有《Macromolecules》、《Polymer》、《Journal of Polymer Science》等国际知名期刊,其中刊登的许多研究论文也与高分子专业密切相关。

2. 知名教授的研究成果国内许多知名高校的教授在高分子领域都有深入的研究,他们的研究成果也是学习的重要资源。

例如,复旦大学的吴奇教授、北京大学的李校资本教授等人的研究成果,都是非常值得一读的。

3. 专题论文集一些高分子领域的专题论文集也是非常有价值的资源,其中通常包含了许多该领域专家的研究成果和前沿观点。

例如,《高分子科学进展》等专题论文集,其中包含了众多知名高校和科研机构学者的研究成果。

4. 会议论文每年都有许多高分子领域的会议,其中通常会发表一些与会者的研究成果。

这些会议论文也是学习的重要资源,其中通常包含了许多最新的研究成果和前沿观点。

你可以通过参加相关的学术会议或者查看会议的在线存档来获取这些资源。

5. 网上资源许多高分子领域的网站和论坛也提供了大量的学习资源,例如各种教程、视频、讨论帖等。

这些资源通常比较生动、直观,容易理解。

你可以通过搜索引擎或者专业的学术搜索引擎来查找这些资源。

总之,高分子领域的英语文献资源非常丰富,只要我们善于利用,就能够获取到大量的学习资源。

同时,也需要注意文献的质量和适用性,选择适合自己的文献进行学习,才能取得更好的效果。

高分子专业英语翻译(1-9章)

高分子专业英语翻译(1-9章)

UNIT 1 What are Polymer?What are polymers? For one thing, they are complex and giant molecules and are different from low molecular weight compounds like, say, common salt. 什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。

To contrast the difference, the molecular weight of common salt is only 58.5, while that of a polymer can be as high as several hundred thousand, even more than thousand thousands. 与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。

These big molecules or ‘macro-molecules’ are made up of much sma ller molecules, can be of one or more chemical compounds. 这些大分子或“高分子”由许多小分子组成。

小分子相互结合形成大分子,大分子能够是一种或多种化合物。

To illustrate, imagine that a set of rings has the same size and is made of the same material. 举例说明,想象一组大小相同并由相同的材料制成的环。

When these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same compound.当这些环相互连接起来,可以把形成的链看成是具有同种分子量化合物组成的高聚物。

生物医用高分子读书笔记

生物医用高分子读书笔记

《生物医用高分子》读书笔记一、高分子材料基础知识在开始阅读《生物医用高分子》我对高分子材料的基础知识进行了初步了解。

这部分内容是整个书籍的基石,为后续更深入地探讨生物医用高分子的特性及应用提供了必要的基础。

高分子材料的定义与分类:高分子材料,也被称为聚合物材料,是由大量重复单元通过共价键连接而成的化合物。

根据其来源和特性,高分子材料可分为天然高分子和合成高分子两大类。

天然高分子如蛋白质、淀粉等存在于自然界,而合成高分子则是通过人工化学合成方法得到的。

结构特点:高分子材料具有独特的链状结构,这些长链由许多单体以共价键连接而成。

这些长链又可以聚集形成不同的形态,如结晶态、非结晶态等,不同的结构决定了材料的不同性能。

物理化学性质:高分子材料的物理化学性质是其独特结构决定的。

高分子材料通常具有良好的绝缘性、较高的化学稳定性、较低的导热系数等。

它们还具有一定的弹性和可塑性,可以通过加工得到各种形状和制品。

制备方法与加工技术:高分子材料的制备包括聚合反应和聚合物的合成。

聚合反应是将单体转化为聚合物的过程,而聚合物的合成则是通过不同的加工技术将聚合物转化为具有特定形状和性能的产品。

常用的加工技术包括挤出、注塑、模压等。

在理解了这些基础知识之后,我对生物医用高分子的理解更为深入。

生物医用高分子是专门用于医疗领域的高分子材料,它们需要满足生物相容性、无毒性等要求。

这些材料的性能和应用将在后续章节中详细讨论,通过阅读这本书,我对生物医用高分子的应用领域和未来发展前景有了更清晰的了解。

1. 高分子概念及分类在阅读《生物医用高分子》这本书的过程中,我首先接触到了关于高分子的基本概念。

也称为聚合物,是由大量结构单元重复连接形成的大分子。

这些结构单元通常被称为单体,通过聚合反应,单体之间形成了高分子链。

与传统的低分子相比,高分子在物理和化学性质上具有显著的特点,如较高的分子量、良好的物理稳定性以及独特的机械性能等。

天然高分子:这些高分子存在于自然界中,如蛋白质、核酸、多糖等。

高分子材料工程专业英语课文翻译 (2)

高分子材料工程专业英语课文翻译 (2)

高分子材料工程专业英语课文翻译Polymer Science and Polymer Engineering are closely related andoften used interchangeably. Polymer Science is concerned with the chemistry and physics of polymers, while Polymer Engineering teaches students how to design and manufacture polymer products. No matter which field you choose, there is constant innovation and new developments in the field of Polymer Science and Engineering.高分子科学和高分子工程密切相关,常常互换使用。

高分子科学研究聚合物的化学和物理学,而高分子工程则教授学生如何设计和制造聚合物产品。

无论您选择哪个领域,高分子科学和工程的领域中都不断有创新和新发展。

Polymers are large molecules that are made up of repeating units called monomers. These molecules are characterized by their high molecular weight, which gives them unique properties such as strength, elasticity, and durability. There are many types of polymers, including plastics, rubbers, and fibers.聚合物是由称为单体的重复单位组成的大分子。

高分子英文文献

高分子英文文献

高分子英文文献Polymer English LiteraturePolymer materials have gained immense significance in various fields due to their unique properties and diverse applications. This article aims to explore and summarize some key findings from English literature on polymers. The focus will be on recent advancements, emerging trends, and future prospects in the field of polymer science.In recent years, there has been an increasing interest in the development of functional polymers with improved properties. Researchers have been actively working towards the synthesis and characterization of novel polymer materials with tailored functionalities. For instance, the use of advanced polymerization techniques such as controlled radical polymerization, ring-opening polymerization, and living polymerization has led to the synthesis of polymers with controlled molecular weights, narrow molecular weight distributions, and well-defined architectures.Furthermore, the incorporation of various additives and nanofillers into polymer matrices has shown promising results in enhancing their mechanical, thermal, and electrical properties. This has opened up new avenues for the development of advanced polymer composites with improved performance characteristics. The use of nanomaterials, such as carbon nanotubes, graphene, and nanoparticles, has revolutionized the field of polymer nanocomposites, enabling the development of lightweight, high-strength materials with superior mechanical properties.In addition to functional polymers and polymer composites, the development of stimuli-responsive polymers has gained significant attention. These polymers have the ability to respond to external stimuli, such as temperature, pH, light, and magnetic fields, and exhibit changes in their properties, such as solubility, shape, and conductivity. This has paved the way for the development of smart materials, drug delivery systems, and sensors with applications in various fields, including medicine, electronics, and environmental monitoring.The field of polymer science has also witnessed advancements in the area of biodegradable polymers. With the increasing concern for environmental sustainability, the development of biodegradable polymers has become a topic of great interest. Biodegradable polymers offer the advantage of reducing environmental pollution and minimizing waste generation. Researchers have focused on the synthesis of biodegradable polymers from renewable resources, such as plant-based materials and biomass, as well as the design of polymer structures that can be easily degraded by natural processes.Moreover, the field of polymer chemistry has been significantly influenced by the emergence of macromolecular engineering. Macromolecular engineering involves the design and synthesis of polymers with controlled architectures and functionalities through the manipulation of their chemical structures. This approach has enabled the development of tailor-made polymers with specific properties and functionalities for various applications. Researchers have explored various macromolecular engineering techniques, such as click chemistry, grafting-from and grafting-to methods, and self-assembly, to design polymers with precise control over their properties.Looking ahead, the field of polymer science holds immense potential for further advancements. Researchers are expected to focus on the development of sustainable polymers, bio-inspired polymers, and polymers with advanced functionalities. Additionally, the integration of polymers with other disciplines, such as nanotechnology, materials science, and biotechnology, is likely to lead to the development of innovative materials and technologies. The combination of interdisciplinary approaches and the use of advanced characterization techniques are anticipated to contribute to the progress of polymer science and open up new possibilities for the development of high-performance materials.In conclusion, the English literature on polymers showcases the significant progress and advancements made in the field of polymer science. From the development of functional polymers and polymer composites to the design of stimuli-responsive and biodegradable polymers, the field has witnessed remarkable achievements. With the continuous efforts of researchers and the integration of various disciplines, the future ofpolymer science looks promising, and it is expected to play a vital role in addressing the challenges of the modern world and providing innovative solutions for various applications.。

高分子英语课文翻译修订版

高分子英语课文翻译修订版

高分子英语课文翻译集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]unit1all polymers are built up from bonding together a single kind of repeating unit. At the other extreme ,protein molecules are polyamides in which n amino acide repeat units are bonded together. Although we might still call n the degree of polymerization in this case, it is less usefull,since an amino acid unit might be any one of some 20-odd molecules that are found in proteins. In this case the molecular weight itself,rather than the degree of the polymerization ,is generally used to describe the molecule. When the actual content of individual amino acids is known,it is their sequence that is of special interest to biochemists and molecular biologists.并不是所有的聚合物都是由一个重复单元链接在一起而形成的。

在另一个极端的情形中,蛋白质分子是由n个氨基酸重复单元链接在一起形成的聚酰胺。

尽管在这个例子中,我们也许仍然把n称为聚合度,但是没有意义,因为一个氨基酸单元也许是在蛋白质中找到的20多个分子中的任意一个。

国外高分子物理英文教材研究

国外高分子物理英文教材研究

国外高分子物理英文教材研究1. 引言1.1 研究背景Polymer physics is a branch of physics that studies the physical properties of polymers, which are large molecules composed of repeating structural units. The field has seen significant advancements in recent years due to the growing importance of polymers in various industrial applications, such as plastics, textiles, and pharmaceuticals.1.2 研究意义Furthermore, studying these textbooks can facilitate international collaboration and exchange of knowledge in the field of polymer science. It can provide researchers and students with access to diverse perspectives and approaches to high polymer physics, leading to a more enriched and global understanding of the subject.2. 正文2.1 国外高分子物理英文教材概述Foreign Polymer Physics English Textbook OverviewForeign polymer physics textbooks provide valuable resources for students and researchers in the field of polymer science. These textbooks cover a wide range of topics related to the properties, structure, and behavior of polymers, offeringin-depth explanations and examples to help readers grasp complex concepts.2.2 国外高分子物理英文教材内容分析The content analysis of foreign polymer physics English textbooks is essential for understanding the materials covered in these textbooks. These textbooks typically cover a wide range of topics related to polymer physics, including polymer structure, polymer properties, polymer dynamics, and polymer processing.2.3 国外高分子物理英文教材研究方法Research methods in foreign polymer physics English textbooksResearch methods play a crucial role in studying foreign polymer physics English textbooks. In order to effectively analyze and understand the content of these textbooks, researchers utilize various research methods. Some common research methods used in the study of foreign polymer physics English textbooks include:2.4 国外高分子物理英文教材发展趋势The development trends of foreign polymer physics English textbooks are closely related to the advancement of the field and the needs of students and researchers. In recent years, several key trends have emerged:2.5 国外高分子物理英文教材对比分析The comparison of foreign polymer physics English textbooks is crucial in determining the strengths and weaknesses of each textbook in order to assist educators in choosing the most appropriate materials for their students. In this analysis, we will compare the following textbooks: "Polymer Physics" by Michael Rubinstein and Ralph H. Colby, "Principles of Polymerization" by George Odian, and "Introduction to Polymers" by Robert J. Young and Peter A. Lovell.3. 结论3.1 总结与展望Looking ahead, it is clear that the field of polymer physics education will continue to evolve as new research advances and technologies emerge. As such, future research should focus on updating existing textbooks to incorporate the latestdevelopments in the field and explore innovative teaching methods to enhance students' learning experiences.。

高分子材料英文论文翻译

高分子材料英文论文翻译

《高分子材料研究方法》课程作业题目:<New Opportunities for anAncientMaterial>论文翻译化学与材料工程学院学院高分子专业学号XXXXXXX学生姓名KITTY指导教师二〇XX年X月<New Opportunities for an Ancient Material>论文翻译Science 30 July 2010:V ol. 329 no. 5991 pp. 528-531DOI: 10.1126/science.1188936New Opportunities for an Ancient MaterialFiorenzo G. Omenetto, David L. Kaplan*Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.E-mail: david.kaplan{at}一种古老材料的新机遇Fiorenzo G. Omenetto, David L. Kaplan*美国,马萨诸塞州(邮编02155),梅德福,塔夫茨大学,生物医学工程系邮箱:david.kaplan{at}ABSTRACTSpiders and silkworms generate silk protein fibers that embody strength and beauty. Orb webs are fascinating feats of bioengineering in nature, displaying magnificent architectures while providing essential survival utility for spiders. The unusual combination of high strength and extensibility is a characteristic unavailable to date in synthetic materials yet is attained in nature with a relatively simple protein processed from water. This biological template suggests new directions to emulate in the pursuit of new high-performance, multifunctional materials generated with a green chemistry and processing approach. These bio-inspired and high-technology materials can lead to multifunctional material platforms that integrate with living systems for medical materials and a host of other applications.摘要蜘蛛或桑蚕生成的丝蛋白纤维,是力与美的结合体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《用PVC对天然橡胶的改性》读后认识
研究背景:热塑性弹性体如PVC / ELNR-30交融具有广泛的兴趣在材料研究与发展。

这类聚合物描述了多种多样的材料,于常温下的弹性性能,消除了硫化一步需要依靠橡胶弹性体的典型。

热塑性弹性体开始取代专业胶鞋在各种各样的使用如于粘合剂、电线电缆的绝缘材料。

聚乙烯基氯化物,PVC,作为一个质子聚合物与油和碳氢化合物相互作用生成橡胶树脂。

以环氧液体天然橡胶(ELNR),可以制备天然橡胶(NR),在其乳胶形式,由氧化降解的天然橡胶NR液体(LNR)使用苯肼/氧气系统和随后的烯烃环氧化反应生成与过甲酸配位合成甲酸和过氧化氢。

天然橡胶是一种高分子量的聚合物。

在液体天然橡胶分子量通常小于Mv 100000。

共混是一个较常用的技术来使聚合物改性。

已经有科学证据表明,一个特定的聚合物混合物能够变得更易混合,必须降低分子量的一个或两个成分。

这个理论是基于Flory-Huggins理论。

根据这一理论获得了聚合物混合焓数与平均分子量呈负相关关系。

大多数溶混聚合物共混物,形成两个或两个以上的不同的阶段通常是显而易见的。

溶解、合并或吸收现象确实发生在任何混合系统。

应该指出的是,该阶段间分子间的粘着力尤为重要,因为它融合的过程中影响力学性能的交融。

它的主要部分形成基体或连续相而次要部件形成分散相。

混合的PVC和ELNR已经引起研究人员的浓厚兴趣的。

现在的工作所涉及的制备及表征PVC和ELNR-30的混合。

有一个潜在的问题是氯乙烯的聚合物增塑剂的选择。

一个解决方案是在2-丁酮中使PVC混合ELNR-30。

PVC构成连续相而ELNR-30为分散相。

内容与结论:本文主要研究PVC对天然橡胶的改性。

聚氯乙烯(增值系数粘度值65,密度1.37)是由中国乐金大沽化学有限公司提供。

ELNR是通过LNR即液体乳胶,通过其后与98%的甲酸混合。

反应混合搅拌15分钟后缓慢滴入30% 双氧水。

等到环氧化反应持续3小时后得到ELNR-30。

将pvc溶液按照不同的混合成分加入到ELNR-30中。

用转速为1500rmp的机械搅拌器在50℃搅拌5小时使其混合均匀然后放在玻璃器皿中。

去除溶剂中的残留把样品放在70℃真空下2天。

被指定的混合如下:PVC / ELNR-30(90/10):90份的pvc和百分之三十环氧化的液体橡胶10份混合.PVC / ELNR-30(80/20):80份的pvc和百分之三十环氧化的液体橡胶20份共混。

浇铸混合的聚氯乙烯(PVC)和天然的30%环氧化橡胶(ELNR-30)的力学和热性能使用Zwick材
料试验机、空气循环加热烤箱(200°C)分别在不同的时间间隔进行实验检测。

ELNR的制备通过ELNR酰胺的氧化降解所得的天然乳胶,使用苯肼/氧气系统和随后的烯烃环氧化反应与盐酸和30%过氧化氢。

实验数据显示,PVC / ELNR-30(80/20)比起PVC /ELNR-30(90/10)有更好的均一性。

PVC/ELNR-30(80/20)比未混合PVC和PVC / ELNR-30(90/10)伸长率大。

随着PVC、PVC
/ELNR-30(90/10)、PVC / ELNR-30(80/20)中ELNR含量变大,热稳定性也降低。

研究表明,在ELNR-30与PVC共混的比例为20 pphr聚合物共混物塑化(PVC / ELNR-30(80/20)]
所得到的开环体的热稳定性较未混合的聚氯乙烯差。

进一步研究共混后的性质还在进行。

相关文档
最新文档