线性稳压器与开关稳压器的对比分析
开关电源适配器和线性电源适配器谁质量好

开关电源适配器和线性电源适配器谁质量好开关电源适配器和线性电源适配器谁质量好开关电源适配器与线性电源适配器都是电子电器中广泛使用的直流稳压电源,对这两种电源适配器进行详细比较,有利于认识这两种电源电路,有利于电路工作原理的分析和电路故障的检修。
1.工频变压器与脉冲变压器比较开关电源适配器中使用脉冲变压器,线性电源适配器使用工频变压器,对这两种变压器说明下列几点:1)线性电源适配器通过工频变压器降低220V的交流市电。
为了区别于开关电源适配器中的脉冲变压器,将线性电源适配器中的变压器称为工频电源变压器;开关电源适配器中的脉冲变压器称为开关变压器。
2)开关电源适配器是把220伏交流电源用整流器变约300伏的为直流,再利用电子开关电路配合开关电源变压器、整流电路输出适合应用的直流电。
电路种类较多,只有在脉冲变压器耦合的开关电源适配器的电路中才使用脉冲变压器,其他类型的开关电源不使用脉冲变压器,也不使用工频电源变压器。
3)工频电源变压器工作频率低,采用矽钢片作为铁芯;脉冲变压器工作频率高,采用磁芯。
4)脉冲变压器与工频电源变压器相比,体积大幅缩小,重量也只有工频变压器的五分之一。
2.调整管与开关管比较线性电源适配器中的主要三极管是调整管,开关电源适配器中的主要三极管是开关MOS管,对这两种三极管的比较如下:1)开关管工作频率高。
开关电源适配器中使用开关管,线性电源适配器中使用调整管,两者工作方式不同,三极管的工作频率低,开关管的工作频率高得多。
2)开关管工作在开关状态下。
即要么工作在截止状态,要么工作在饱和状态,例如彩色电视机中的开关管工作频率达到15625Hz。
工作在这种方式下的开关管功耗很小,效率高,可以达到百分之八十到百分之九十。
3)开关管功耗小。
工作在开关状态下的三极管由于功率消耗小,不需要给开关管安装很大的散热片,机内温度低,有利于开关电源适配器电路长时间工作,电源的寿命比较长。
4)调整管效率低。
线性电源和开关电源

一、水声设备电源电源分为交流电源和直流电源,就水声设备而言,主要应用为直流稳压电源。
直流电源可分为线性稳压电源和开关稳压电源。
线性稳压电源就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。
与线性稳压电源不同的一类稳电源就是开关型直流稳压电源,它的电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。
它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹,功率管工作在饱或及截止区即开关状态。
线性电源和开关电源的区别:1、工作方式不同(1)线性电源的调整管工作在放大状态,因而发热量大,效率低(不高于50%),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。
(2)开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。
但开关电源输出的直流上面会叠加较大的纹波,另外开关管工作时会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。
2、内部结构不同(1)开关电源利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,缺点是纹波和开关噪声较大,适用于对纹波和噪声要求不高的场合。
(2)线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,纹波噪声小,最大的缺点是效率低。
它们各有有缺点在应用上互补共存。
3、适用要求不一样效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方多选用线性电源。
稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。
二、直流电源主要参数1、源电压效应输入电压的变化引起输出量变化的效应,改变量是源电压,被测量是输出电压的稳态值。
%100max ⨯∆=oNU U U S其中 S U — 源电压效应系数(电压调整率),这个值越小越好,是衡量稳压电源性能的一个重要指标。
电路中的电压调节器线性调节器与开关调节器的比较

电路中的电压调节器线性调节器与开关调节器的比较电路中的电压调节器:线性调节器与开关调节器的比较电压调节器是电路中常用的一种元件,用于调节电源输出的电压稳定性和精度。
在电路设计和应用中,线性调节器和开关调节器是两种常见的电压调节器。
本文将对线性调节器与开关调节器进行比较,分析其特点和适用场景。
1. 线性调节器线性调节器是一种使用线性元件(如二极管和晶体管)来调节输出电压的电压调节器。
其工作原理是将输入电压通过一个线性稳压电路,使得输出电压保持在一个稳定的值。
1.1 特点(1)稳定性高:线性调节器的输出电压稳定性较高,能够在负载变化时保持较为恒定的输出。
(2)精度高:线性调节器通常具有较高的输出精度,可以满足一些对电压精度要求较高的应用。
(3)低噪声:线性调节器的噪声水平相对较低,适用于在对噪声要求较高的应用场景。
1.2 适用场景线性调节器适用于对电压稳定性和精度要求较高的场景,如模拟电路、精密仪器和音频设备等。
它们通常需要较低的噪声和高精度的电压输出。
2. 开关调节器开关调节器是一种利用开关元件(如晶体管和MOSFET)来调节输出电压的电压调节器。
其工作原理是通过开关元件的开关动作,将输入电压按占空比调整成所需的输出电压。
2.1 特点(1)高效率:开关调节器的转换效率较高,能够在输入电压变化范围内实现较高的功率转换效率。
(2)较小体积:开关调节器采用开关转换的方式,可以实现更紧凑的电路设计和较小的尺寸。
(3)较大功率:开关调节器通常可以承受较大的负载功率,适用于一些功率要求较高的应用。
2.2 适用场景开关调节器适用于对转换效率和体积要求较高的场景,如DC-DC 电源等。
它们通常具有较高的转换效率和较小的体积,适合于一些对空间有限的应用。
3. 比较与选择线性调节器和开关调节器在电路设计中有各自的优势和适用场景。
具体选择哪种调节器取决于具体的应用需求。
若对电压稳定性和精度要求较高,且负载变化范围较小,可以选择线性调节器。
开关电源与线性电源的优缺点和区别

开关电源与线性电源的优缺点和区别电源是电路设计中的重要部分,电源的稳定性在很大程度上打算了电路的稳定性。
线性电源和开关电源是比较常见的两种电源,在原理上有很大的不同,原理上的不同打算了两者应用上的不同。
一、开关电源与线性电源原理上的区分线性电源的基本原理是市电经过一个工频变压器降压成低压沟通电之后,通过整流和滤波形成直流电,最终通过稳压电路输出稳定的低压直流电。
电路中调整元件工作在线性状态。
线性电源原理图开关电源的基本原理是输入端直接将沟通电整流变成直流电,再在高频震荡电路的作用下,用开关管掌握电流的通断,形成高频脉冲电流。
在电感(高频变压器)的关心下,输出稳定的低压直流电。
开关电源原理图二、开关电源与线性电源的优缺点1.开关电源的优缺点主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。
主要缺点:由于逆变电路中会产生高频电压,对四周设备有肯定的干扰。
需要良好的屏蔽及接地。
沟通电经过整流,可以得到直流电。
但是,由于沟通电压及负载电流的变化,整流后得到的直流电压通常会造成20%到40%的电压变化。
为了得到稳定的直流电压,必需采纳稳压电路来实现稳压。
2.线性电源的优缺点优点:线性电源的优点是结构相对简洁、输出纹波小、高频干扰小。
结构简洁给我们带来的最大好处是修理便利,修理一台线性电源的难度往往远远低于开关电源,线性电源的修理胜利率也大大高于开关电源。
纹波是叠加在直流稳定量上的沟通重量。
输出纹波越小也就是说输出直流电纯洁度越高,这也正是直流电源品质的重要标志。
过高纹波的直流电将影响收发信机的正常工作。
目前高档线性电源纹波可以达到0.5mV的水平,一般产品可以做到5mV水平。
线性电源没有工作在高频状态下的器件所以假如输入滤波做得好的话几乎没有高频干扰/高频噪声。
缺点:需要浩大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有肯定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低,还要安装很大的散热片。
试解释为什么开关电源的效率高于线性电源。

试解释为什么开关电源的效率高于线性电源。
开关电源的效率高于线性电源的主要原因有以下几点:
1.工作原理差异:开关电源和线性电源的工作原理不同。
开
关电源通过开关器件(如MOSFET、IGBT等)的开关操作,将输入电源以高频率开关进行转换,然后通过滤波器将转
换后的电源输出。
而线性电源则通过放大和稳压器件(如
晶体管、电阻、电容等)的线性调节方式,将输入电源降
压至输出电压。
开关电源的转换过程利用了高频开关操作
和电感储能机制,减少了能量损耗,从而提高了效率。
2.低功耗损耗:由于开关电源在转换过程中能量主要以高频
周期方式传递,存在在开关状态下能量损耗较小的优势。
而线性电源则通过线性调节方式调整电压,较大功率损耗
会产生在线性稳压器件上,导致效率较低。
3.小型化和轻量化:由于开关电源采用高频开关转换方式,
可以通过适当的设计和控制来实现小型化和轻量化。
相比
之下,线性电源多使用较大的线性稳压器件来调整电压,
造成体积较大且较重。
4.更广的输入电压范围:开关电源具有较宽的输入电压范围,
可以适应不同电源环境下的输入电压波动。
而线性电源通
常需要稳定的输入电压来保持稳定的输出,对于电源波动
要求较高。
综上所述,开关电源通过其工作原理、功耗损耗、小型化和轻
量化以及更广的输入电压范围等方面的优势,实现了比线性电源更高的效率。
这使得开关电源在许多应用领域,如计算机、通信设备、工业控制等,得到了广泛应用。
线性稳压电源和开关电源哪一种好?

线性稳压电源和开关电源哪一种好?凡事都有两面性,看如何用?用之前,想到它们各自优缺点,再与实际情况结合,避开缺点利用优点就是好的。
如今电子设备琳琅满目,应用于生活各个方面,肯定离不开电源,其中绝大多数电子设备又要直流稳压电源提供电源。
因此电源质量与可靠性直接关系到电子设备的工作安全性和技术指标。
说到直流稳压电源无非就是线性稳压电源开关电源两类。
线性稳压电源
其主要有调整管、采样电阻、方法电路、基准电压这四部分组成,其组成框图如下。
线性稳压电源原理
用误差放大器抓获反馈信号,随之控制MOS管或三极管的门极信号,再通过管控流流过晶体管的电流控制调整管的压降,最终稳压输出直流电源。
开关电源
其理论基础是电力电子技术,开关状态是由于它的功能管工作在饱和区或截止区,最终是通过对可控器件通断时间比的控制来实现稳压输出电压。
开关电源工作原理
用误差放大器抓获反馈信号,随之控制MOS管或三极管的门极开关,通过晶体管实现储能工作,确保稳定的直流电压输出。
开关电源和线性稳压电源区别
线性稳压电源工作于方大区,发热量大、效率低、纹波小,但需要较大体积散热片及较大体积的变压器,多路电压输出变压器体积更大。
开关电源调整管工作于饱和与截止区,发热量小效率高,大体积变压器省去,但直流输出电压会叠加较大纹波。
结束语;线性稳压电源和开关电源哪个好用?结合实际应用情况,发挥各自优点避开缺点。
例如,纹波要求小,压差、电流小、模拟信号处理系统等,线性稳压电源优势明显。
例如,便携式电子产品、升降压、在意效率及散热等,开关电源优势明显。
线性电源和开关电源原理区别及优缺点

线性电源和开关电源原理区别及优缺点一、线性电源的原理及优缺点:线性电源是利用变压器、整流滤波电路和稳压器等组成的电子电路,将交流电转换为稳定的直流电供给电子设备。
具体工作原理如下:1.变压器:变压器通过变压比将输入的交流电压降低或升高到所需的电源电压。
2.整流滤波:将变压器输出的交流电压通过整流电路转化为直流电压,并利用滤波电路去除直流电压中的波动。
3.稳压器:稳压器通过消耗过多的电能将直流电压稳定在所需的电压值上。
线性电源的优点:1.输出纹波小:由于线性电源只进行一次整流滤波,输出纹波较小,对于对输出纹波要求较高的设备,如音频设备,线性电源更为适用。
2.稳压能力强:线性电源采用反馈稳压技术,能够稳定输出以满足负载的要求。
3.输出电压准确:线性电源的输出电压精度较高,波动范围较小,能够满足对精度要求较高的设备。
线性电源的缺点:1.效率低:线性电源的效率较低,工作时会有较大的功耗,会导致能源浪费。
2.体积大、重量重:线性电源中的变压器和稳压器等部件决定了整个电源的体积较大、重量较重,限制了其在大型设备或移动设备中的应用。
3.散热困难:由于线性电源的效率不高,其内部会产生大量的热量,需要散热器来散热,但是由于体积限制,散热困难。
二、开关电源的原理及优缺点:开关电源是通过快速开关管将输入交流电转换为高频脉冲信号,再经过变压器变换、滤波和稳压途径得到所需稳定直流电压的电子电源。
具体工作原理如下:1.输入整流:将输入的交流电通过整流电路转换为直流电。
2.DC/DC变换:通过开关元件(如MOSFET或IGBT)将直流电转换为高频脉冲信号。
3.变压器:将高频脉冲信号通过变压器变换为合适的输出电压。
4.输出整流滤波:将变压器输出的信号通过整流滤波电路转换为稳定的直流电压。
5.稳压器:稳压器通过反馈控制将输出电压稳定在所需的电压值上。
开关电源的优点:1.高效率:开关电源采用高频开关技术,能够提高电源的工作效率,减少电源的功耗。
线性稳压器的工作原理及比较

线性稳压器的工作原理及比较一、线性稳压器的工作原理线性稳压器是一种电子元件,用于将输入电压稳定在一个固定的输出电压上。
它通过调整电路中的阻抗来实现电压的稳定。
线性稳压器的工作原理可以分为三个主要步骤:输入电压的采样、误差放大和反馈控制。
1. 输入电压采样:线性稳压器首先对输入电压进行采样,以获取实际电压值。
这通常通过一个电阻分压网络来实现,其中一个电阻连接到输入电压,另一个电阻连接到地。
2. 误差放大:采样后的电压与参考电压进行比较,产生一个误差信号。
这个误差信号被放大器放大,以便能够控制输出电压。
3. 反馈控制:放大后的误差信号通过一个反馈回路传送给稳压器的控制端。
这个信号与稳压器内部的参考电压进行比较,产生一个控制信号。
稳压器根据控制信号调整输出电压,使其保持在一个稳定的水平上。
二、线性稳压器的比较线性稳压器有很多不同的类型,每种类型都有其特点和适用范围。
以下是几种常见的线性稳压器及其比较:1. 简单线性稳压器(Series Linear Regulator,简称SLR):简单线性稳压器是最基本的线性稳压器类型,由一个功率晶体管和一个反馈电路组成。
它的工作原理简单,成本低廉,但效率相对较低。
它适用于低功率应用,如模拟电路和传感器。
2. 低压差线性稳压器(Low Dropout Regulator,简称LDO):低压差线性稳压器是一种特殊的线性稳压器,它能够在输入电压与输出电压之间保持很小的压差。
这意味着它可以在输入电压接近输出电压的情况下正常工作,提供更高的效率。
LDO适用于需要较高输出电流和较低输入电压的应用。
3. 开关稳压器(Switching Regulator):开关稳压器是一种比较先进的稳压器类型,它通过开关元件(如晶体管)来控制电路中的能量流动。
开关稳压器的效率较高,能够提供更大的输出功率。
然而,它的设计和调试相对复杂,成本也较高。
开关稳压器适用于高功率和高效率要求的应用,如电源管理和电动车辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性稳压器与开关稳压器的对比分析
一、线性稳压器和开关稳压器的不同概念
1.什么是线性稳压器?
线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。
所谓压降电压,是指稳压器将输
出电压维持在其额定值上下100mV 之内所需的输入电压与输出电压差额的最小值。
正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为PNP.这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为200mV 左右;与之相比,使用NPN 复合电源晶体管的传统线性稳压器的压降为2V 左右。
负输出LDO 使用NPN 作为它的传递设备,其运行模式与正输出LDO 的PNP 设备类似。
2.什么是开关稳压器?
开关稳压器使用输出级,重复切换开和关状态,与能量存贮部件(电容器和感应器)一起产生输出电压。
它的调整是通过根据输出电压的反馈样本来调整切换定时来实现的。
在固定频率的稳压器中,通过调节开关电压的脉冲宽度来调
节切换定时这就是所谓的PWM 控制。
在门控振荡器或脉冲模式稳压器中,开关脉冲的宽度和频率保持恒定,但是,输出开关的开或关由反馈控制。
根据开关和能量存贮部件的排列,产生的输出电压可以大于或小于输入电压,并且
可以用一个稳压器产生多个输出电压。
在大多数情况下,在同样的输入电压和
输出电压要求下,脉冲(降压)开关稳压器比线性稳压器转换电源的效率更高。
二、线性稳压器与开关稳压器的优劣势
1.线性稳压器与开关稳压器的主要优劣势特点如下表所示:。