最新LDO低压差线性稳压器-知识总结

合集下载

LDO基础知识

LDO基础知识

LDO基础知识LDO基础知识,有关噪声的那些事使用低压差稳压器(LDO)过滤因开关模式电源导致的纹波电压,并不是获得净化直流电源唯一要考虑的事情。

因为LDO是电子设备,它们自身也会生成一定数量的噪声。

选择使用低噪声LDO和采取步骤减少内部噪声,都可以在不损害系统性能的同时形成净化电源轨的不可分割的措施。

识别噪声理想的LDO具备没有交流元件的电压轨。

但缺点在于LDO会和其他电子设备一样生成本体噪声。

图1 显示了这种噪声在时间域中的表现。

图1:有噪声电源的输出噪声快照在时间域中进行分析是困难的。

因此,有两个主要方法来检验噪声:跨越整个频谱,和作为综合值。

您可以使用频谱分析工具来识别LDO输出线路中的各种交流元件。

(应用报告,“如何测量LDO噪声,”介绍了丰富的噪声测量知识。

) 图 2 绘制了1A低噪声LDO TPS7A91的输出噪声。

图2:TPS7A91噪声频谱密度vs. 频率和VOUT如您从各种曲线看到的那样,输出噪声(以每平方根赫兹[μV/ H z]来表示)集中在频谱低端。

该噪声大部分出自内部参考电压,以及误差放大器FET和电阻分压器。

分析跨越整个频谱的输出噪声,能帮助我们确定感兴趣噪声范围的噪声曲线。

例如,音响应用设计师很关注人耳可闻频率(20Hz到20kHz),而电源噪声可能使声音品质下降。

在进行苹果设备之间的比较时,数据表通常提供的是单一、综合噪声值。

输出噪声一般是综合10Hz到100kHz的噪声,用微伏均方根(μVRMS)表示。

(各厂商还将综合来自100Hz到100kHz的噪声,或者综合来自自定义频率范围的噪声。

基于所选频率范围进行综合,有助屏蔽不讨人喜欢的噪音属性,因此,检查除综合值外的噪声曲线很重要。

)图 2 显示了对应各曲线的综合噪声值。

德州仪器供应的LDO 系列综合噪声值低至3.8μVRMS。

降噪除选择低噪声质量的LDO外,您还可以采用几种技术来确保您的LDO具有最低噪声特性。

这些技术包括使用降噪和前馈电容器。

LDO详细介绍

LDO详细介绍

LDO详细介绍LDO是低压差线性稳压器的英文简称,是Lineaer Dropout Regulator的缩写。

它是一种用于电子设备中的电源管理器件,主要用于将高压输入电源转换为稳定的低压输出电源。

LDO稳压器是一种线性的电压稳压器,它通过选用合适的转导电阻和反馈电路,能够在输入电压与输出电压之间产生一个稳定的、低压差的电压源。

与开关稳压器相比,LDO稳压器的设计电路更简单,而且输出电压的纹波更小,输出电压稳定性更好。

LDO稳压器的主要工作原理是通过一个功率NPN晶体管和一个PNP晶体管组成的串联电路对输电机输入电压进行调整,然后通过一个反馈电阻网络进行负反馈控制,从而实现在负载变化的情况下输出电压的稳定性。

LDO稳压器有以下几个特点:1.低压差:LDO稳压器通常具有较低的压差,一般在0.1V至0.5V之间。

这意味着它可以将高压输入电源转换为非常接近输出电路所需的稳定低压电源,从而减少了能量损耗。

2.高效率:由于LDO稳压器是线性的电压稳压器,没有开关元件,因此其效率相对较低。

但是,由于输入到输出的压差较小,使其输出功率损耗相对较小。

3.稳定性:LDO稳压器有较好的负载调节性和线性调节性能,可以在较大的负载变化范围内保持输出电压的稳定性。

4.低纹波:LDO稳压器的输出电压纹波较小,通常在几毫伏到几十毫伏之间,这对需要较低纹波的电子设备非常重要,如音频放大器。

LDO稳压器广泛应用于各种电子设备中,包括移动通信设备、计算机、工业控制系统、可穿戴设备、消费电子产品等。

由于其输出电压稳定性好、纹波小、封装紧凑等优点,使得LDO稳压器成为电子设备中一种常见的电源管理解决方案。

在选择LDO稳压器时1.输入电压范围:根据应用的需求选择合适的输入电压范围,确保稳压器能够正常工作。

2.输出电压范围:根据所需的输出电压确定合适的LDO稳压器型号,确保输出电压满足应用需求。

3.输出电流能力:考虑应用所需的最大输出电流,选择具有足够输出电流能力的LDO稳压器。

低压差线性稳压器(LDO)简介

低压差线性稳压器(LDO)简介

低压差线性稳压器(LDO)的基本原理和主要参数摘要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO 的典型应用和国内发展概况。

引言便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。

比如单体锂离子电池充足电时的电压为4.2V ,放完电后的电压为2.3V ,变化范围很大。

各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。

为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。

小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。

为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。

一.LDO 的基本原理低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT 、取样电阻R1和R2、比较放大器A 组成。

取样电压加在比较器A 的同相输入端,与加在反相输入端的基准电压Uref 相比较,两者的差值经放大器A 放大后,控制串联调整管的压降,从而稳定输出电压。

当输出电压Uout 降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。

相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。

供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。

图1-1 低压差线性稳压器基本电路应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET 。

二.低压差线性稳压器的主要参数1.输出电压(Output Voltage)输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。

低压差线性稳压器有固定输出电压和可调输出电压两种类型。

LDO线性稳压器

LDO线性稳压器

线性稳压器(LDO)一、应用场景图1所示电路是一种最常见的AC/DC电源,交流电源电压经变压器后,变换成所需要的电压,该电压经整流后变为直流电压。

在该电路中,低压差线性稳压器的作用是:在交流电源电压或负载变化时稳定输出电压,抑制纹波电压,消除电源产生的交流噪声。

图 1 LDO在AC-DC电路中的应用各种蓄电池的工作电压都在一定范围内变化。

为了保证蓄电池组输出恒定电压,通常都应当在电池组输出端接入低压差线性稳压器,如图 2所示。

低压差线性稳压器的功率较低,因此可以延长蓄电池的使用寿命。

同时,由于低压差线性稳压器的输出电压与输入电压接近,因此在蓄电池接近放电完毕时,仍可保证输出电压稳定。

图 2 LDO在电池供电电路中的应用众所周知,开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。

在开关性稳压器输出端接入低压差线性稳压器,如图 3所示,就可以实现有源滤波,而且也可大大提高输出电压的稳压精度,同时电源系统的效率也不会明显降低。

图 3 DC-DC电路中LDO的应用在某些应用中,比如无线电通信设备通常只有一足电池供电,但各部分电路常常采用互相隔离的不同电压,因此必须由多只稳压器供电。

为了节省共电池的电量,通常设备不工作时,都希望低压差线性稳压器工作于睡眠状态。

为此,要求线性稳压器具有使能控制端。

有单组蓄电池供电的多路输出且具有通断控制功能的供电系统如图 4所示。

图 4 多路LDO供电中的应用二、原理1)定义LDO 是一种线性稳压器。

线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压,即输出电压是输入电压与晶体管或FET产生的管压降的差值。

图 5 基本原理框图所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV 之内所需的输入电压与输出电压差额的最小值。

2)工作原理图 6 LDO内部基本结构LDO内部电路主要由串联调整管、取样电阻、比较放大器组成。

高精度_ldo_电容负载_解释说明以及概述

高精度_ldo_电容负载_解释说明以及概述

高精度ldo 电容负载解释说明以及概述1. 引言1.1 概述本篇文章旨在探讨高精度LDO(低压差线性稳压器)电容负载的解释说明和概述。

LDO作为一种常用的电源管理器件,广泛应用于各种电子设备中,其稳定输出电压对系统性能至关重要。

然而,在实际应用中,电容负载对LDO性能会产生影响,并可能引起诸如振荡、温漂、噪声等问题。

因此,本文将深入研究电容负载问题,并介绍解决该问题的方法和技术。

1.2 文章结构本文分为五个部分进行阐述。

首先是引言部分,主要对文章进行介绍和概述。

其次是“高精度LDO 电容负载解释说明”部分,将详细探讨LDO的基本原理和功能,以及电容负载对LDO性能的影响。

同时,还将介绍解决电容负载问题的方法和技术。

接着是“常见的高精度LDO 电容负载方案概述”部分,在这一部分中,我们将分析理想的电容负载方案,并介绍在实际应用中常见的电容负载问题及其解决方法。

此外,还将讨论在高精度LDO 设计中需要考虑的因素和注意事项。

第四部分是“实验验证及结果分析”,我们将介绍实验所使用的设备和测试方法,并通过对比不同电容负载下高精度LDO 的性能表现,进行结果分析和讨论。

最后一部分是“结论与展望”,我们将总结文章的主要观点和结论,并展望进一步研究该领域可能涉及的方向和发展趋势。

1.3 目的本文旨在帮助读者深入了解高精度LDO 电容负载的相关知识,并提供解决电容负载问题的方法和技术。

通过本文的阅读,读者将能够更好地理解LDO的基本原理、电容负载对其性能的影响以及解决这些问题的方案。

希望本篇文章能够为LDO设计工程师、电子工程师以及其他相关领域从业人员提供有益的参考信息,推动相关研究与应用的进一步发展。

2. 高精度LDO 电容负载解释说明2.1 LDO 的基本原理和功能低压差线性稳压器(LDO)是一种广泛应用于电子设备中的电压稳定器。

其主要功能是将输入电压稳定地转换为所需的输出电压,并保持在给定的范围内,以提供稳定可靠的电源给各个电路模块使用。

LDO低压差线性稳压器-知识总结

LDO低压差线性稳压器-知识总结

LDO一.LDO的基本介绍LDO是low dropout regulator, 意为低压差线性稳压器, 是相对于传统的线性稳压器来说的。

传统的线性稳压器, 如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上, 否则就不能正常工作。

但是在一些状况下, 这样的条件明显是太苛刻了, 如5v转3.3v,输入及输出的压差只有1.7v, 明显是不满意条件的。

针对这种状况, 才有了LDO类的电源转换芯片。

LDO是一种线性稳压器。

线性稳压器运用在其线性区域内运行的晶体管或FET, 从应用的输入电压中减去超额的电压, 产生经过调整的输出电压。

所谓压降电压, 是指稳压器将输出电压维持在其额定值上下100mV之内所需的输入电压及输出电压差额的最小值。

正输出电压的LDO(低压降)稳压器通常运用功率晶体管(也称为传递设备)作为PNP。

这种晶体管允许饱和, 所以稳压器可以有一个特别低的压降电压, 通常为200mV左右;及之相比, 运用NPN 复合电源晶体管的传统线性稳压器的压降为2V左右。

负输出LDO 运用NPN作为它的传递设备, 其运行模式及正输出LDO的 PNP设备类似。

更新的发展运用 MOS 功率晶体管, 它能够供应最低的压降电压。

运用功率MOS, 通过稳压器的唯一电压压降是电源设备负载电流的 ON 电阻造成的。

假如负载较小, 这种方式产生的压降只有几十毫伏。

DC-DC的意思是直流变(到)直流(不同直流电源值的转换), 只要符合这个定义都可以叫DCDC转换器, 包括LDO。

但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。

LDO是低压降的意思, 这有一段说明: 低压降(LDO)线性稳压器的成本低, 噪音低, 静态电流小, 这些是它的突出优点。

它须要的外接元件也很少, 通常只须要一两个旁路电容。

新的LDO 线性稳压器可达到以下指标: 输出噪声30μV, PSRR为60dB, 静态电流6μA(TI的TPS78001达到Iq=0.5uA), 电压降只有100mV(TI量产了号称0.1mV的LDO)。

LDO的基本原理

LDO的基本原理

一.LDO的基本原理低压差线性稳压器(LDO)的基本电路如图所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。

取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。

当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。

相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。

供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。

应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。

二.低压差线性稳压器的主要参数1.输出电压(Output Voltage)输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。

低压差线性稳压器有固定输出电压和可调输出电压两种类型。

固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。

但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。

LDO基本原理、参数及典型应用一.LDO的基本原理低压差线性稳压器(LDO)的基本电路如图所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。

取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A 放大后,控制串联调整管的压降,从而稳定输出电压。

当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。

相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。

LDO的基本原理与特点通俗易懂

LDO的基本原理与特点通俗易懂

LDO的基本原理与特点通俗易懂LDO(Low Drop-Out)是一种线性稳压器,它的基本原理是在输入电压高于输出电压时,通过控制功率晶体管的导通程度来维持稳定的输出电压。

LDO的特点包括低电压差、快速响应、低噪声和低漂移等。

LDO的基本原理是通过一个差分放大器、一个参考电压源和一个功率晶体管来实现稳压功能。

差分放大器的作用是将输出电压与参考电压进行比较,并将差值放大。

当差值过大时,放大器会通过控制功率晶体管的导通程度来调整输出电压,使其达到预设的参考电压。

LDO的一个重要特点是低电压差,也就是输入电压与输出电压之间的差值。

一般来说,LDO的电压差在几十毫伏到几百毫伏之间。

低电压差意味着LDO可以在输入电压接近输出电压的情况下工作,从而减少能量的浪费和热量的产生。

另一个特点是快速响应。

LDO具有快速的动态响应能力,可以迅速地调整输出电压以适应输入电压的变化。

这使得LDO在对负载要求较高的应用中,如处理器、FPGA等芯片的供电中表现出色。

LDO还具有低噪声的特点。

噪声是指电路中的随机信号,会对电路的性能产生负面影响。

LDO通过精心设计和优化电路结构,可以降低输入、输出和参考电压等位置的噪声,从而提供干净、稳定的输出电压。

此外,LDO还具有低漂移的特点。

漂移是指电路参数随着时间、温度和其他条件的变化而发生的不稳定性。

LDO通过采用特殊的电路设计和工艺技术,使得其输出电压在面对不稳定条件时能够保持较低的漂移,从而提高系统的稳定性和可靠性。

综上所述,LDO具有低电压差、快速响应、低噪声和低漂移等特点,适合于对电压稳定性要求较高的场合。

在移动设备、无线通信、传感器等领域的应用中,LDO发挥着重要作用。

随着电子技术的发展,LDO不断进化和改进,以满足日益复杂和高性能的应用需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LDO一.LDO的基本介绍LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。

传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。

但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。

针对这种情况,才有了LDO类的电源转换芯片。

LDO是一种线性稳压器。

线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。

所谓压降电压,是指稳压器将输出电压维持在其额定值上下100mV之内所需的输入电压与输出电压差额的最小值。

正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为PNP。

这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为200mV左右;与之相比,使用NPN复合电源晶体管的传统线性稳压器的压降为2V左右。

负输出LDO使用NPN作为它的传递设备,其运行模式与正输出LDO的PNP设备类似。

更新的发展使用MOS 功率晶体管,它能够提供最低的压降电压。

使用功率MOS,通过稳压器的唯一电压压降是电源设备负载电流的ON 电阻造成的。

如果负载较小,这种方式产生的压降只有几十毫伏。

DC-DC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。

但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。

LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。

它需要的外接元件也很少,通常只需要一两个旁路电容。

新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA(TI的TPS78001达到Iq=0.5uA),电压降只有100mV(TI量产了号称0.1mV的LDO)。

LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。

P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流;另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力,输入和输出之间的电压降不可以太低;而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。

由于MOSFET的导通电阻很小,因而它上面的电压降非常低。

如果输入电压和输出电压很接近,最好是选用LDO稳压器,可达到很高的效率。

所以,在把锂离子电池电压转换为3V输出电压的应用中大多选用LDO稳压器。

虽说电池的能量最後有百分之十是没有使用,LDO稳压器仍然能够保证电池的工作时间较长,同时噪音较低。

如果输入电压和输出电压不是很接近,就要考虑用开关型的DCDC了,因为从上面的原理可以知道,LDO的输入电流基本上是等于输出电流的,如果压降太大,耗在LDO上能量太大,效率不高。

DC-DC转换器包括升压、降压、升/降压和反相等电路。

DC-DC转换器的优点是效率高、可以输出大.电流、静态电流小。

随著集成度的提高,许多新型DC-DC转换器仅需要几只外接电感器和滤波电容器。

但是,这类电源控制器的输出脉动和开关噪音较大、成本相对较高。

近几年来,随著半导体技术的发展,表面贴装的电感器、电容器、以及高集成度的电源控制芯片的成本不断降低,体积越来越小。

由于出现了导通电阻很小的MOSFET可以输出很大功率,因而不需要外部的大功率FET。

例如对于3V的输入电压,利用芯片上的NFET可以得到5V/2A的输出。

其次,对于中小功率的应用,可以使用成本低小型封装。

另外,如果开关频率提高到1MHz,还能够降低成本、可以使用尺寸较小的电感器和电容器。

有些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。

总的来说,升压是一定要选DCDC的,降压,是选择DCDC还是LDO,要在成本,效率,噪声和性能上比较。

二.LDO原理分析根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。

此外,还有一种使用稳压管的小电源。

这里说的线性稳压电源,是指调整管工作在线性状态下的直流稳压电源。

而在开关电源中则不一样,开关管是工作在开、关两种状态下的。

简单介绍下分类:NPN稳压管:内部用一个PNP管控制达林顿调整管。

LDO稳压管:调整管是一个PNP管。

Squasi-LDO:调整管是由一个PNP管控制一个NPN管LDO(low drop output)低压差线性稳压器LDO的工作原理是通过反馈调整MOSFET的Vsd压降以使输出电压不变。

输出电压纹波小,电流也较小,用于RF模块或音频模块等对电压要求高的电路。

特点是成本低噪音小。

缺点是效率低,输出电流小,只能用在降压的场合。

必须要注意,为了达到稳定的回路就必须使用负反馈。

下面这是LDO S-1167 Series的基本原理图。

该电路主要是由串联调整管、取样电阻、比较放大器组成。

取样电压加在比较放大器的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。

当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。

相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。

供电过程中,输出电压校正连续进行,调整时间只受比较放大器和串联调整管回路反应速度的限制。

环路内的负反馈总是强制比较放大器调节输入两端的电压使其相等。

稳压管的另一个重要的指标就是稳定性,在我们的设计线路中常常看到在其输出端会有大大小小的电容,其作用是什么呢?下面具体分析稳压管的反馈及回路稳定性。

前面提到过三中稳压管:1.NPN稳压管例如:LM340 LM317 比较老的3端稳压管2.LDO稳压管例如:S-1167 Series3.准LDO稳压器三种稳压器的最大区别在于压降和接地引脚电流。

很明显NPN和准LDO的稳压管在调整管上稍微复杂点,所以压降也大些。

达林管的增益很高,所以只需要很小的电流就可以驱动,准LDO也是这样,IGND很小。

PNP管的放大系数一般是15-20,LDO的IGND电流能达到负载电流的7%。

NPN稳压管的最大好处就是无条件的稳定(大多数不需要加外接电容),LDO则需要在输出端加上电容,以减少回路带宽及提供些正的相位补偿。

所有的稳压器都使用负反馈回路以保持输出电压的稳定。

但反馈信号在通过回路后都有一定的增益和相位变化。

如果反馈信号相位有180度变化,负反馈就会变成正反馈,造成输出不稳定。

因此反馈信号经过整个回路的相位偏移,需要有至少20度的相位裕度,这样才能保证电路的稳定。

(相位裕度定义为回路总的相位偏移与-180度的差)。

环路的不稳定来自于相位移量,我们可以在反馈回路中通过变压器注入正弦小信号,如下图所示,Loop Gain=Va/Vb,从Vb传入交流小信号,同过回路产生相移到达Va。

这样可以计算回路增益,相位的偏移量。

(此处以LDO分析)。

可以通过网络分析仪来测量回路增益,它通过向网络回路注入低电平的正弦波,然后从直流信号扫描到使增益下降到0dB的频率来测量增益的响应。

下面以一幅波特图具体分析反馈回路的增益及相位变化情况。

概念:极点增益曲线出现-20dB/10倍频变化的点零点在增益与相位上的效果与极点相反。

极点相移=-arctan(f/fp)零点相移=arctan(f/fz)假设直流增益为80dB(10-100Hz处的增益),100到1KHz增益减少了20dB,10K-100KHz 增益减少20dB,100K-1MHz增益减少40dB(斜率有-20dB/10倍频的变化)。

图中可以看出有3个POLE,一个ZERO。

1MHz处的增益是0dB,说明1MHz的小信号在此截止,此回路的带宽就是1MHz。

从这个波特图能看出这个系统稳定么?前面说了系统是否稳定主要看相位移量,而我们只要看在0dB时的相移就可以了(图中是1MHz)。

上图中有3个极点和1个零点,前两个极点产生-180度相移,零点产生90度相移,最后一个极点在40dB到0dB处,斜率为-40dB/10倍频。

根据极点相移公式-arctan(f/fp)=-arctan(10)=-1.47,换算成角度为-84.3度。

所以总的相移为-180+90-84.3=174.2度。

前面说到相位裕度等于|-180+174.2|=5.8<20.所以此回路不稳定。

看似上面的分析比较复杂,其实是自动控制理论里面的传输函数和根迹图的概念.简单的说,一个(线形)系统是否稳定(不会产生振荡)取决于它的传输函数的极点分布.(极点的实部必须小于零),而且极点实部负数的绝对值越大,系统越稳定.我们就可以通过增加极点或是零点来调节相位裕度,从而使系统达到稳定。

调节LDO系统的稳定性,最常见的补偿方法是在系统中插入零点来取消相移和极点。

由于LDO 已经就正常运行要求了一个输出电容器,因此使用输出电容器的ESR通常就是最简单也最廉价的生成零点的方法。

等效串联电阻(ESR)是每个电容都具有的几个基本特性。

可以看为电阻和电容的串联等效电路。

输出电容的ESR在回路增益中产生一个零点,用来减少过量的负相移。

增加系统的带宽,使更稳定。

零点处的频值:Fzero = 1/(2πxCoutxESR)假设一个LDO系统在0dB时的截止频率是30kHz。

在其输出端增加输出电容为10uF,输出电容的ESR=1ohm。

则在16kHz处产生零点。

一般的LDO会由负载阻抗、输出容抗等自身产生一些极点。

图中有3个极点(具体由来就不做分析,可由网络分析仪扫描出),但有1个Ppwr在0dB之后的频段,也就是带宽之外,可以不考虑。

从上面两幅波特图的对比看出,第二张图增益曲线,当增加了输出电容后,从80dB到0dB变得更平缓些。

系统的带宽大概从40KHz增加到100KHz左右。

相位裕度也相应的增加。

那么系统对ESR又有什么要求呢?比如此例中设ESR=20ohm,则零点频率会降低到Fzero=800Hz,使系统的带宽增加到2MHz,从整个的波特图我们发现在100K到2MHz之间又多了一个极点Ppwr。

这就意味着系统又有了-90度的相移,零点就失去了其意义。

那么ESR是不是越小越好呢?设ESR=50mohm。

零点频率会降到320kHz。

不用看就知道,系统地稳定性基本没改变,因为系统的带宽就是40KHz,增加的零点频率为320KHz已经超出了带宽。

综上所述,在输出端加入输出电容是为了补偿LDO稳压器的。

相关文档
最新文档