数字图象处理课程设计

合集下载

数字图像处理课设要求

数字图像处理课设要求

《数字图像处理》课程设计一、目的和任务1、进一步深入理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法,掌握基本的处理技术。

2、培养学生了解处理技术相关的应用领域,阅读各类图像处理文献的能力。

3、能够运用一门高级语言编写简单的图像处理软件,实现对图像进行的基本处理。

4、了解与课程有关的工程技术规范,能正确解释和分析实验结果。

二、实验内容1图像变换1了解图像变换的意义和手段;2熟悉离散傅里叶变换、离散余弦变换、离散小波变换的基本性质;3熟练掌握图像变换的方法及应用;4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MA TLAB编程实现数字图像的变换。

2图像增强1掌握灰度直方图的概念及其计算方法;2熟练掌握直方图均衡化和直方图规定化的计算过程;3熟练掌握空间域滤波中常用的平滑和锐化滤波器;4掌握色彩直方图的概念和计算方法;5利用MATLAB程序进行图像增强。

3图像分割1 体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响;2 使用MatLab 软件进行图像的分割;3 能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能;4 能够掌握分割条件(阈值等)的选择;5 完成规定图像的处理并要求正确评价处理结果,能够从理论上作出合理的解释。

三、需要提交的报告1. 课程设计报告(1份,A4纸打印,同时包括一份电子版)报告内容:叙述实验过程;提交实验的原始图像和结果图像。

2. 完整的程序系统(电子方式提交)每位同学创建一个文件夹,名为“学号+姓名”,包含以上两项。

统一交给班长。

四、设计报告的的规范设计结束后要写出课程设计报告,以作为整个课程设计评分的书面依据和存档材料。

设计报告以规定格式的电子文档书写、打印并装订,排版及图、表要清楚、工整。

内容及要求如下:封面:《数字图像处理》课程设计班级:姓名:学号:指导教师:完成日期:正文:1. 题目2. 实验目的3. 实验原理4. 实验步骤5. 实验结果6.参考文献五、成绩评定标准出勤20%,课程设计说明书50%,成果展示30%。

数字图像处理课程设计

数字图像处理课程设计

数字图像处理课程设计1. 课程设计介绍数字图像处理是计算机科学与工程中十分重要的一门课程,它的目的是通过数字计算机技术来处理和分析数码图像,获取图像的特征和信息。

本次课程设计旨在通过阅读相关文献、实践操作和实验报告撰写三个环节,帮助学生掌握数字图像处理的基本概念和方法。

2. 实践操作2.1 图像转换在数字图像处理过程中,最常见的操作之一是图像转换。

通过对图像进行转换,可以得到新的图像,以便进行进一步的处理。

常见的一种图像转换操作是将一幅灰度图像转换成彩色图像。

例如,我们可以通过以下代码,将一幅灰度图像转换成RGB格式的彩色图像:import cv2import numpy as np# 加载灰度图像gray_img = cv2.imread('gray_image.jpg', cv2.IMREAD_GRAYSCALE)# 将灰度图像转换成RGB格式的彩色图像color_img = cv2.cvtColor(gray_img, cv2.COLOR_GRAY2RGB)# 保存彩色图像cv2.imwrite('color_image.jpg', color_img)2.2 像素操作数字图像处理基于像素的操作,因此操作像素是数字图像处理的核心。

在Python中,我们可以使用NumPy数组来表示图像,并可以使用Python编写的函数来操作这些数组。

例如,以下代码演示了如何读取一幅图像、访问其像素、对像素进行操作并保存处理后的图像:import cv2import numpy as np# 加载彩色图像img = cv2.imread('color_image.jpg', cv2.IMREAD_COLOR)# 获取图像尺寸height, width, channels = img.shape# 访问图像像素并对其进行操作for y in range(height):for x in range(width):# 获取像素值b, g, r = img[y, x]# 对像素值进行操作img[y, x] = [b, int(g*0.8), r]# 保存处理后的图像cv2.imwrite('processed_image.jpg', img)2.3 图像过滤图像过滤是数字图像处理中比较常见的一种操作,它可以通过滤波器来减少图像中的噪点和细节信息,从而使图像更加平滑和清晰。

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。

技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。

本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。

课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。

针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。

二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。

教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。

数字图像处理课程设计

数字图像处理课程设计

目录1 设计目的 (1)2设计要求 (1)3 MATLAB简介 (2)3.1 MATLAB主要功能 (2)3.2图形处理功能 (2)4 设计方案 (3)4.1 RGB图像与HSI图像转换 (3)5 程序设计 (5)5.1将RGB图像与HSI图像互相转换 (5)6 仿真结果与分析 (8)7结论 (11)参考文献 (12)摘要数字图像处理,在空间上离散的,在幅度上量化分层的数字图像,在经过一些特定数理模式的加工处理,以达到有利于人眼视觉或某种接收系统所需要的图像过程。

Matlab是当今最优秀的科技应用软件之一,它一强大的科学计算与可视化功能,简单易用,开放式可扩展环境,特别是所附带的30多种面向不同领域工具箱支持,使得它在许多科学领域中成为计算机辅助设计与分析,算法研究和应用开发的基本工具盒首选平台在图像处理中,Matlab也得到了广泛的应用。

彩色图像的处理有时需要将图像数据在不同的颜色空间中表示,因此,图像的颜色空间之间的转换成为一项有意义的工作。

其中RGB在颜色空间转换中其关键作用,是各个空间转换的桥梁。

Matlab中的颜色空间转换只涉及到了RGB、HSV、YCbCr、YIQ等,没有包含lαβ和其它颜色空间的转换。

关键词:颜色模型;RGB;HIS;MATLAB1 设计目的彩色模型也称为彩色空间或彩色系统,是描述色彩的一种方法。

我们用它来制定、生产、可视化一种色彩。

目前表达颜色的色彩模型有许多种,他们是根据不同的应用目的而提出的。

在数字图形处理中,实际上最常用的彩色模型是RGB模型、HSI模型。

前者主要是应用于彩色显示屏和彩色视频摄像机;后者更符合人类描述和解释颜色的方式。

为了图像处理的目的,有必要在RGB和HSI、彩色模型之间进行坐标转化。

本次课程设计的目的在于提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。

熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。

数字图像处理课设

数字图像处理课设

目录1、目的与要求 (2)2、图像二值化和马赛克应用背景 (3)3、设计内容以及原理 (4)4、各个功能模块的主要实现程序以及代码 (5)5、程序运行结果以及图像处理结果 (9)6、课程设计总结与心得体会 (11)7、参考文献 (12)一、目的与要求本课程着重研究数字图像处理的方法,训练学生运用所学基础知识解决实际问题的能力,同时要求拓宽专业知识面。

该课程是一门涉及多领域的专业选修课。

它是图像通信、模式识别、计算机视觉等学科的基础。

通过对本课程的学习,要求学生掌握数字图像处理的基本处理技术,较深入地理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法。

从而使学生具有初步综合利用所学知识深入研究有关信息领域问题的能力。

本课程数字图像处理是论述其基本理论、方法及其在计算机领域中应用的学科分支,是实现机器视觉的有效工具。

学习本门课程的主要目的是使学生掌握数字图像处理的基本概念、原理、和方法,并未以后在此方向上的深入研究奠定基础。

通过本课程设计,使学生理解和巩固所学的理论知识,树立解决实际问题的严谨科学态度。

实验前要求做好编程准备工作,提高实验效果,注重独立分析问题、解决问题的能力培养,训练实际操作,鼓励创新设想。

课程设计报告要求:1.目的与要求这部分主要说明本课程设计的目的、任务和要求。

提高分析问题、解决问题的能力,巩固数字图像处理系统中的基本原理与方法。

熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。

2.设计的内容根据指导书的讲述,介绍系统中所设计的主要功能和原理方法;3.总体方案设计根据课程设计的具体情况,描述系统的具体构架,包括:功能模块的划分、系统运行的环境、选用的工具及主要实现功能的原理。

4.各个功能模块的主要实现程序主要的功能实现和函数要进行详细的说明,包括其用法,使用范围,及参数等。

5.测试和调试按课程设计要求,选用多幅图像对程序进行测试,并提供系统的主要功能实现的效果图。

数字图像处理课程设计报告

数字图像处理课程设计报告

数字图像处理设计报告【设计目的】配合《数字图像处理》课程的教学,使学生能巩固和加深对数字图像处理基础理论和基本知识的理解;掌握使用图像处理软件处理图像基本思想和方法;提高学生对图像处理方面的实际问题的应对能力并将所学知识在实践中巩固。

【设计要求】1.按照题目的要求,简要介绍算法,并对算法进行分析;2.用MATLAB完成算法代码(不能利用MATLAB自身的图像处理函数完成具体算法,读写和显示可以利用MATLAB函数),注释要清晰;3.给出代码运行的结果,并对结论进行总结;4.每人可选一个给出的题目或自己感兴趣的题目,按照上面要求上交报告,内容不得少于5页A4纸。

【所选题目】用直方图均衡化一幅8位的灰度图像【设计环境】MATLAB7.1,所选图片为彩色动画图片,大小为1024*666*24b【算法介绍和分析】1、算法概述:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

2、算法分析:直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

数字图像处理的课程设计

数字图像处理的课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的数字化表示方法;2. 掌握图像处理的基本操作,如图像变换、滤波、增强和复原;3. 了解常见的图像分割和特征提取方法,并应用于实际问题;4. 掌握图像压缩的基本原理及常用算法。

技能目标:1. 能够运用图像处理软件进行基本的图像编辑和操作;2. 能够编写简单的数字图像处理程序,实现对图像的基本处理功能;3. 能够运用所学的图像处理方法解决实际问题,如图像去噪、图像增强等;4. 能够对图像进行有效的压缩,以适应不同的应用场景。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣和热情,激发其探索精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的实际操作能力,使其认识到理论与实践相结合的重要性;4. 引导学生关注图像处理技术在日常生活和各领域的应用,提高其科技素养。

课程性质:本课程为高年级选修课程,旨在使学生掌握数字图像处理的基本原理和方法,培养其实际应用能力。

学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但尚未深入学习。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,以实际应用为导向,提高学生的动手能力和创新能力。

通过本课程的学习,使学生能够达到上述课程目标,为未来进一步学习和研究打下坚实基础。

二、教学内容1. 数字图像基础:包括图像的数字化表示、图像质量评价、颜色模型等基本概念;- 教材章节:第1章 数字图像处理基础2. 图像增强:介绍直方图均衡化、图像平滑、锐化等增强方法;- 教材章节:第3章 图像增强3. 图像复原:涉及图像退化模型、逆滤波、维纳滤波等复原方法;- 教材章节:第4章 图像复原4. 图像分割与特征提取:包括阈值分割、边缘检测、区域生长等分割方法,以及特征点的提取和描述;- 教材章节:第5章 图像分割与特征提取5. 图像压缩:介绍图像压缩的基本原理,如JPEG、JPEG2000等压缩算法;- 教材章节:第6章 图像压缩6. 数字图像处理应用:分析图像处理在医学、遥感、计算机视觉等领域的应用案例;- 教材章节:第7章 数字图像处理应用教学进度安排:1. 数字图像基础(2学时)2. 图像增强(4学时)3. 图像复原(4学时)4. 图像分割与特征提取(6学时)5. 图像压缩(4学时)6. 数字图像处理应用(2学时)三、教学方法为提高教学效果,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过系统的讲解,使学生掌握数字图像处理的基本概念、原理和方法。

基数字图像处理课程设计

基数字图像处理课程设计一、课程目标知识目标:1. 让学生掌握数字图像处理的基本概念,包括图像的数字化表示、图像格式和颜色模型;2. 培养学生了解并运用图像处理的基本方法,如图像滤波、边缘检测、图像增强和图像分割;3. 使学生了解图像处理技术在现实生活中的应用,如计算机视觉、医学影像和遥感等领域。

技能目标:1. 培养学生运用编程软件(如Python和MATLAB)实现数字图像处理算法的能力;2. 培养学生运用图像处理工具包(如OpenCV和Pillow)解决实际问题的能力;3. 提高学生团队协作和沟通表达的能力,以便在项目实践中共同解决问题。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发学生主动探索和创新的欲望;2. 培养学生具备良好的科学素养,认识到科技发展对社会进步的重要性;3. 引导学生树立正确的价值观,认识到图像处理技术在保护个人隐私、版权等方面的责任和道德约束。

课程性质分析:本课程为高年级选修课,旨在帮助学生掌握数字图像处理的基础知识和实践技能,培养具备创新意识和实际操作能力的人才。

学生特点分析:学生具备一定的编程基础和数学知识,对图像处理有一定了解,但实践能力有待提高。

教学要求:1. 理论与实践相结合,注重培养学生的实际操作能力;2. 鼓励学生积极参与课堂讨论和项目实践,提高团队协作能力;3. 注重过程评价,关注学生在学习过程中的成长和进步。

二、教学内容本课程教学内容分为五个部分:1. 数字图像处理基础- 图像的数字化表示:包括像素、分辨率、颜色深度等;- 图像格式和颜色模型:如JPEG、PNG、RGB、HSV等;- 教材章节:第1章 数字图像处理基础。

2. 图像处理基本方法- 图像滤波:如高斯滤波、中值滤波等;- 边缘检测:如Sobel算子、Canny算子等;- 图像增强:如直方图均衡化、对比度增强等;- 图像分割:如阈值分割、区域生长等;- 教材章节:第2章 图像处理基本方法。

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论和方法,学会使用MATLAB软件进行图像处理和分析。

通过本课程的学习,学生应达到以下具体目标:1.理解数字图像处理的基本概念、原理和算法。

2.熟悉MATLAB图像处理工具箱的使用。

3.能够运用数字图像处理的基本算法解决实际问题。

4.能够使用MATLAB进行图像处理和分析,撰写相关的程序代码。

情感态度价值观目标:1.培养学生的创新意识和团队协作精神。

2.培养学生对数字图像处理技术的兴趣,提高其综合素质。

二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:图像处理的基本概念、图像数字化、图像表示和图像变换。

2.图像增强和复原:图像增强、图像去噪、图像复原。

3.图像分割和描述:图像分割、图像特征提取和描述。

4.图像形态学:形态学基本运算、形态学滤波、形态学重建。

5.MATLAB图像处理工具箱的使用:MATLAB图像处理工具箱的基本功能、常用图像处理函数。

6.图像处理实例分析:结合实际案例,分析数字图像处理技术的应用。

三、教学方法为了实现课程目标,本课程将采用以下教学方法:1.讲授法:通过讲解图像处理的基本概念、原理和算法,使学生掌握图像处理的基本知识。

2.案例分析法:通过分析实际案例,使学生了解数字图像处理技术在实际中的应用。

3.实验法:通过上机实验,使学生熟练掌握MATLAB图像处理工具箱的使用,提高学生的实际操作能力。

4.讨论法:学生进行课堂讨论,激发学生的思维,培养学生的创新意识和团队协作精神。

四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《数字图像处理(MATLAB版)》。

2.参考书:相关领域的经典教材和论文。

3.多媒体资料:教学PPT、视频教程等。

4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的与要求1. 实验目的(1) 理解数字图像处理的基本概念和原理;(2) 掌握常用的数字图像处理方法和技术;(3) 能够运用数字图像处理软件进行图像处理和分析。

2. 实验要求(1) 熟悉计算机操作和图像处理软件的使用;(2) 能够阅读和理解图像处理相关的文献资料;二、实验内容与步骤1. 实验内容(1) 图像读取与显示;(2) 图像的基本处理方法:灰度化、二值化、滤波;(3) 图像的增强与复原;(4) 图像的分割与描述;(5) 图像的压缩与编码。

2. 实验步骤(1) 打开图像处理软件,导入实验所需的图像;(2) 进行图像的基本处理,观察处理前后的效果;(3) 应用图像的增强与复原方法,改善图像的质量;(4) 使用图像的分割与描述技术,提取图像中的目标区域;(5) 对图像进行压缩与编码,观察压缩后的效果。

三、实验注意事项1. 实验前请确保已经安装了图像处理软件,并熟悉其基本操作;3. 在进行图像分割与描述时,请合理选择阈值和算法,确保目标区域的准确提取;四、实验报告要求1. 实验报告应包括实验目的、实验内容、实验步骤、实验结果和实验总结;2. 实验报告中应详细描述实验过程中遇到的问题及解决方法;3. 实验报告应有清晰的图像处理结果展示,并附上相关图像的处理参数和效果对比;五、实验评分标准1. 实验目的与要求(20分):是否达到实验目的,是否符合实验要求;2. 实验内容与步骤(30分):是否完成实验内容,是否遵循实验步骤;3. 实验注意事项(20分):是否注意实验注意事项,处理过程中是否出现错误;4. 实验报告要求(30分):报告结构是否完整,描述是否清晰,图像处理结果是否合理,总结是否到位。

评分总分:100分。

六、实验一:图像读取与显示1. 实验目的(1) 学习如何使用图像处理软件读取和显示图像。

2. 实验步骤(1) 打开图像处理软件。

(2) 导入实验所需的图像文件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计(论文)题目彩色图像融合姓名学号指导老师指导教师职称年级专业班级所在学院2015年7 月8日目录目录............................................................................................................ 摘要............................................................................................................ 前言............................................................................................................ 1课题背景. 01.1 课题要求 01.2 课题意义 01.3 文献综述 (1)2设计方案论证 (2)2.1 实验基本步骤 (2)2.2 理论依据 (2)3图像融合的设计 (7)3.1 图像对象的分割 (7)3.2 分割对象的场景融入 (9)4GUI界面设计及滤波结果分析 (10)4.1 GUI界面设计 (10)4.2 滤波结果及分析 (11)4.2.1 滤波结果图 (11)4.2.2 结果分析 (12)5总结 (13)致 (15)参考文献 (16)程序代码 (17)摘要本课题主要是运用MATLAB 7.0,解决数字图像处理的彩色图像融合问题的开发程序。

我们对被处理的图像进行二值化、分割操作得到图像中的想要的对象,然后对分割后的图像和背景图像进行HSI色彩空间转换,最后将分割后的对象嵌入到背景图像中。

本文还给出了对这一程序的测试情况、测试结果的分析和完整程序代码。

关键词:二值化、图像分割、HSI空间转换前言本文详细介绍了关于彩色图像融合课题容的应用程序的设计与开发。

全文共5章。

第1章是介绍了本次课题的课题要求、课题意义和文献综述。

第2章介绍了实验的基本步骤和这次试验的主要理论原理支持。

第3章主要介绍了关于图像融合的主要算法实现。

全文的核心部分都写在程序代码中。

第4章主要是由两部分构成,包括程序运行后的结果和对结果的具体分析。

第5章是对彩色图像融合问题程序开发过程的总结。

总结了本次课程设计的意义,以及谈到了我在本次课程设计中的收获与感想。

全文的最后是致、参考文献。

XX2015-07-08 于工程大学理学院1课题背景1.1课题要求对象与场景融合是图像融合的一个应用方向,它是指把感兴趣的目标对象从它原来所在的场景中分割出来后,通过叠加、组合和加工处理合成到另一个场景中去,所形成的新的对象场景图像看起来必须是真实自然的,从而创造出新的图像效果。

对象场景融合在图像编辑领域有非常广泛的应用,特别是在影视制作过程中,很多镜头无法通过实地拍摄获得,这些镜头就可以借助对象场景融合技术来实现。

对象与场景融合技术的关键是如何使融合得到的效果逼真,也就是说使得目标对象在新的场景里看起来光照一致、过渡自然,而不会出现明显的人工拼接痕迹。

1.2课题意义数字信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。

通过语言相互传递信息是人类最重要的基本功能之一。

语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。

语音是语言的声学表现,是相互传递信息的最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。

数字信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。

1.3文献综述文献0较详细地介绍了数字图像处理这门学科的发展历史和经典定义定理,对于解决本次课题容提供了很好地参考。

文献错误!未找到引用源。

介绍了关于计算机图像处理的方法和程序代码实现,对于本次课题容起到了很大的帮助。

2设计方案论证2.1实验基本步骤方案步骤:(1)读入包含对象的图像,(2)分割图像中的对象,(3)将已经分割好的对象进行颜色空间转换,比如转换到IHS色彩空间,(4)读入背景图像,也转换到HIS空间,(5)将分割出的对象嵌入到背景图像中合适的位置,并且进行光照和颜色的处理,让效果看起来真实可信。

(6)设计GUI界面,完成软件。

2.2理论依据1.图像二值化图像的二值化处理就是将图像上的点的灰度置为0或255,也就是将整个图像呈现出明显的黑白效果。

即将256个亮度等级的灰度图像通过适当的阈值选取而获得仍然可以反映图像整体和局部特征的二值化图像。

在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于在对图像做进一步处理时,图像的集合性质只与像素值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。

为了得到理想的二值图像,一般采用封闭、连通的边界定义不交叠的区域。

所有灰度大于或等于阈值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。

如果某特定物体在部有均匀一致的灰度值,并且其处在一个具有其他等级灰度值的均匀背景下,使用阈值法就可以得到比较的分割效果。

如果物体同背景的差别表现不在灰度值上(比如纹理不同),可以将这个差别特征转换为灰度的差别,然后利用阈值选取技术来分割该图像。

动态调节阈值实现图像的二值化可动态观察其分割图像的具体结果。

2.图像分割把图像分解为一些特定的性质相似的部分(区域或对象),并用这些部分对图像进行分析和描述。

一幅图像往往包含许多不同类型的区域,如物体、环境和背景等。

图像分析的一个重要方法就是用它们作为基本组成成分对图像进行描述。

例如为了在气泡室图片中检出质点碰撞形式并判定其发生位置,就要在图像中分割出气泡的轨迹及其端点。

为了从输入的文本中识别出一串字符,首先就要把各个字符从背景和其他字符中分离出来。

因此把图像分割为若干子图像,并利用各子图像的特性和它们之间的关系描述图像,对于图像识别和解释、物景分析以及图像的分块处理和存储都有很大的意义。

3.RGB和HSI的互相转换1)将颜色从RGB转换为HSI给出一幅RGB彩色格式的图像,那么每个RGB像素的H分量可用下面的公式得到:其中:饱和度由下面的式子给出:最后,亮度由下面的式子给出:假定RGB值已经归一化在[0,1]之间,角度θ使用关于HSI空间的红轴来度量。

将从H的公式中得出的所有结果除以360°,即可将色调归一化在[0,1]之间。

如果给出的RGB值在[0,1]之间,那么其他的两个HSI分量就已经在[0,1]之间了。

2)将颜色从HSI转换为RGB给定在[0,1]之间的HSI值,我们现在希望找出同一围相应的RGB值。

可用的公式依赖于H的值。

有三个感兴趣的部分,正如早些时候提到的那样,分别对应原色之间相隔120°的围。

我们用360°乘以H,这样就将色调的值还原成了原来的围——[0°, 360°]。

RG区域如果H在这个区域,那么RGB分量由下式给出:和GB区域如果给出的H值在这个区域,我们就先从中减去120°:那么,这时RGB分量是:并且BR区域(240°≤H≤360°) 最后,如果H在这个区域,我们就从中减去240°:RGB分量分别是:其中:和3图像融合的设计3.1图像对象的分割我们通过对图像进行二值化处理、滤波、构造模板以及图像矩阵的像素相乘来得到分割图像的对象。

主要程序代码如下:I = imread('C:\MATLAB7\work\small.jpg') ;% 载入图像axes(handles.axes3);imshow(I);title('原图像','Fonts',8, 'FontWeight', 'Bold');I=imresize(I,[120,180]);I1 = rgb2hsv(I); % RGB转换到HSV空间h = I1(:,:,3); % S层bw = im2bw(h ,graythresh(h)); % 二值化bw = ~bw; % 取反A = imfill(bw, 'holes'); % 补洞B = imopen(A, strel('disk', 1)); % 图像开操作C = bwareaopen(B, 2000); % 面积滤波axes(handles.axes4); imshow(C); title('二值图像','Fonts',8, 'FontWeight', 'Bold');bw2 = cat(3, A, B, C); % 构造模板I2 = I .* uint8(bw2); % 点乘axes(handles.axes5); imshow(I2); title('分割图像','Fonts',8,'FontWeight', 'Bold');3.2分割对象的场景融入通过对图像对象进行适当的大小调整和平移,我们将其叠加进背景图像适当的位置中。

主要程序代码如下:I=imresize(I,[120,180]);[M,N,h]=size(Img);%取背景图的大小B=zeros(M,N,h);%建全零矩阵for h=1:3for n=1:180for m=1:120B(m+50,n+100,h)=I2(m,n,h);endendendb=uint8(B);c=b+Img;4GUI界面设计及滤波结果分析4.1GUI界面设计在控件布局设计区放置个2Panel控件、7个Axes控件、9个Text控件、6个PushButton控件、2个RadioButton控件、1个ButtonGroup控件。

程序运行后的界面外观如下:图4-1 程序运行后的界面外观图4.2滤波结果及分析4.2.1滤波结果图图4-2 图像融合结果图4.2.2结果分析从图中可以看出,我们将图像中的对象提取出来的效果显著,基本上将目标区域分割出来,然后对于图像的HSI空间转换的效果很差,最后两图像融合的效果一般,对象并不能与背景图像中的颜色一致,不能满足真实可信的效果。

我们还需要进一步地对颜色进行还原处理。

相关文档
最新文档