无机合成方法知识点
无机化合物的合成和结构分析

无机化合物的合成和结构分析无机化合物是由无机元素组成的化合物,其合成和结构分析是无机化学领域的重要研究内容。
本文将探讨无机化合物的合成方法以及常用的结构分析技术。
一、无机化合物的合成方法无机化合物的合成方法多种多样,常见的方法包括溶液法、固相法、气相法等。
溶液法是最常用的合成方法之一。
通过在溶剂中溶解适当的无机物质,通过反应生成所需的化合物。
例如,可以通过在水中溶解硝酸银和氯化钠,生成氯化银沉淀。
固相法是在固体相中进行合成的方法。
通常,将适量的无机物质混合并加热,使其反应生成所需的化合物。
例如,可以将氧化铝和氯化铝混合并加热,生成氯化铝。
气相法是在气体相中进行合成的方法。
通常,将适量的无机物质蒸发或气化,通过气相反应生成所需的化合物。
例如,可以通过将氯气和氢气通入反应室中,生成氯化氢。
二、无机化合物的结构分析技术无机化合物的结构分析是了解其组成和性质的关键。
常用的结构分析技术包括X射线衍射、红外光谱、核磁共振等。
X射线衍射是一种常用的无机化合物结构分析技术。
通过照射样品并测量衍射角度和强度,可以确定无机化合物的晶体结构。
例如,通过X射线衍射技术可以确定金刚石的晶体结构。
红外光谱是一种用于无机化合物结构分析的非常有用的技术。
通过测量无机化合物在红外光波段的吸收谱线,可以确定其分子结构和化学键的性质。
例如,通过红外光谱可以确定氯化铵中氮氢键的存在。
核磁共振是一种用于无机化合物结构分析的高分辨率技术。
通过测量无机化合物中原子核在外加磁场下的共振现象,可以确定其分子结构和化学环境。
例如,通过核磁共振技术可以确定溴化铯中铯原子的化学环境。
三、无机化合物的应用无机化合物在生活和工业中有着广泛的应用。
例如,氯化钠是食盐的主要成分,用于调味和食品加工;硫酸铜是一种重要的工业原料,用于制备铜盐和染料;氧化锌是一种常见的半导体材料,用于制备电子器件。
此外,无机化合物还广泛应用于医药、农业、环境保护等领域。
例如,氯化铵是一种常用的药物成分,用于治疗呼吸道疾病;磷酸三铵是一种常见的肥料成分,用于促进植物生长;硝酸银是一种常用的消毒剂,用于杀灭细菌和病毒。
无机化学合成方法

无机化学合成方法无机化学合成方法指的是通过化学反应将原材料转化成所需的无机化合物的方法。
在实验室中,无机化学合成方法是一种常用的手段,广泛应用于材料科学、催化剂制备、功能材料设计等领域。
本文将介绍几种常见的无机化学合成方法。
1. 沉淀法沉淀法是一种常见的无机化学合成方法,通过控制反应条件,使溶液中的溶负离子与溶正离子发生反应生成沉淀。
沉淀法常用于合成无机盐类、氧化物和氢氧化物等无机化合物。
例如,制备氢氧化铜的实验中,可以将铜盐加入氢氧化钠溶液中反应生成深蓝色沉淀。
2. 水热合成法水热合成法是利用高温高压水溶液中的热力学参数,以及水分子的溶剂能力进行合成的方法。
该方法广泛应用于制备陶瓷材料、纳米颗粒、多孔材料等。
水热合成法具有简单、环境友好等优点。
例如,通过水热合成方法可以制备出具有特定形状和尺寸的二氧化钛纳米颗粒。
3. 气相合成法气相合成法是一种将气体反应物在高温条件下进行化学变换的合成方法。
气体反应物经过一系列反应,形成所需的无机化合物。
常见的气相合成方法包括化学气相沉积(Chemical Vapor Deposition,CVD)和物理气相沉积(Physical Vapor Deposition,PVD)。
气相合成法广泛应用于薄膜的制备、纤维材料的合成等领域。
4. 溶胶-凝胶法溶胶-凝胶法是一种将溶液转变为凝胶或固体的合成方法。
通过溶胶-凝胶法可以合成出具有特定形貌、结构和功能的无机材料。
该方法具有制备复杂形态材料的能力,广泛应用于催化剂的制备、光催化材料的合成等。
例如,通过溶胶-凝胶法可以制备出二氧化硅凝胶材料,具有高比表面积和孔隙结构,可用于吸附分离、催化反应等领域。
总结:无机化学合成方法是实验室中常用的方法之一,通过控制反应条件和选择合适的原料,可以合成出各种无机化合物。
本文介绍了沉淀法、水热合成法、气相合成法和溶胶-凝胶法四种常见的无机化学合成方法。
这些方法在材料科学、催化剂制备和功能材料设计等领域具有重要的应用价值。
无机化合物的合成和反应

无机化合物的合成和反应无机化合物是由无机元素组成的化合物,与有机化合物相比,无机化合物的结构和性质更加稳定和多样化。
无机化合物的合成和反应是无机化学领域的重要研究内容。
一、无机化合物的合成方法无机化合物的合成方法多种多样,常见的合成方法包括沉淀法、溶液法、气相法、固相法等。
1. 沉淀法沉淀法是通过两种溶液中的离子反应生成沉淀的方法。
例如,当钠离子和氯离子在水溶液中反应时,生成氯化钠沉淀。
这种方法常用于制备无机盐类。
2. 溶液法溶液法是通过溶液中的反应生成目标化合物的方法。
例如,将硫酸铜溶液和氢氧化钠溶液混合反应,生成氢氧化铜沉淀。
这种方法常用于制备金属氢氧化物。
3. 气相法气相法是通过气体相中的反应生成化合物的方法。
例如,氯气和氢气在高温下反应生成氯化氢气体。
这种方法常用于制备气体化合物。
4. 固相法固相法是通过固体相中的反应生成化合物的方法。
例如,将氧化铝和氯化铝固体混合加热反应,生成氯化铝。
这种方法常用于制备无机陶瓷材料。
二、无机化合物的反应类型无机化合物的反应类型多种多样,包括氧化还原反应、酸碱反应、络合反应等。
1. 氧化还原反应氧化还原反应是指物质失去或获得电子的反应。
例如,金属和非金属元素之间的反应常属于氧化还原反应。
例如,铁和氧气反应生成氧化铁。
2. 酸碱反应酸碱反应是指酸和碱之间的中和反应。
例如,盐酸和氢氧化钠反应生成氯化钠和水。
这种反应常用于制备无机盐类。
3. 置换反应置换反应是指一个元素取代化合物中的另一个元素的反应。
例如,氯气和溴化钠反应生成氯化钠和溴气。
这种反应常用于制备卤素化合物。
4. 水解反应水解反应是指化合物与水反应生成新的化合物的反应。
例如,氢氧化钠和硫酸铜反应生成氢氧化铜和硫酸钠。
这种反应常用于制备无机盐类。
三、无机化合物的应用领域无机化合物在生活和工业中有广泛的应用。
例如,氯化钠常用于食盐的制备;氢氧化铝常用于制备陶瓷材料;硫酸铜常用于制备农药等。
此外,无机化合物还广泛应用于电子、能源、材料等领域。
无机化学材料的合成与性能控制

无机化学材料的合成与性能控制无机化学材料的合成与性能控制一直是材料科学领域的研究热点。
通过精确控制合成方法和条件,可以得到具有特定结构和性能的无机化学材料,从而满足特定的应用需求。
本文将介绍无机化学材料的合成方法和性能调控的相关内容。
一、无机化学材料的合成方法在无机材料的合成中,常用的方法包括溶液法、气相法、固相法等。
不同的合成方法适用于不同类型的材料。
1. 溶液法溶液法是一种常用的无机材料合成方法,它通过在适当的溶剂中溶解原料,控制反应条件来实现材料合成。
其中,溶剂的选择和反应条件的控制对合成产物的结构和性能起着重要的影响。
常见的溶液法包括水热法、溶胶-凝胶法等。
2. 气相法气相法是使用气态反应物在气相中直接合成材料的方法。
这种合成方法适用于高温、高压和高纯度的合成条件。
气相法可以通过热分解或气相反应的方式得到无机材料。
主要的气相法包括热蒸发法、气态沉积法等。
3. 固相法固相法是一种将反应物在固相状态下通过热处理或固相反应得到材料的方法。
这种方法适用于矿石、矿砂等固体原料的转化。
一般来说,固相法需要高温下进行反应,因此通常需要耐高温的反应容器和设备。
二、无机化学材料的性能调控无机化学材料的性能可以通过合成条件、添加剂以及制备工艺等方面进行调控。
下面将介绍几种主要的性能调控方法。
1. 结构调控通过调控材料的结构,可以影响材料的晶格常数、晶体结构以及晶体缺陷等。
常用的结构调控方法包括离子掺杂、合金掺杂和晶体生长工艺等。
通过离子掺杂可以改变材料的导电性能,而通过合金掺杂可以调节材料的光学性能。
2. 成分调控无机材料的成分调控是指通过调整原料的配比和添加不同的成分来改变材料的性能。
例如,可以在材料中添加不同的掺杂元素或者改变材料的配比比例来调控材料的导电性能、光学性能和磁性能等。
3. 形貌调控材料的形貌对其性能具有重要影响。
通过调节合成条件、添加模板剂或者改变反应速率等,可以控制材料的形貌。
例如,可以通过改变合成温度和反应时间来调控材料的颗粒大小和形态。
无机合成简明教程复习笔记(考研+期末)

无机合成简明教程复习笔记一、第一章●无机合成十大热点/前沿领域1.特种结构无机材料的制备2.软化学合成●硬化学:在超高温、超高压、强辐射、无重力、仿地心、仿宇宙等条件下探索新物质合成●软化学:采取迂回步骤,在较温和条件下实现化学反应过程,以制备相关材料的化学领域●方法:前驱体法、溶胶-凝胶法、溶剂热合成法、插入反应、离子交换过程、熔体(助溶剂)法、酶促合成骨骼和人齿反应、拓扑化学过程及一些电化学过程●特点●不需用高纯金属作原料●制成的合金是具有一定颗粒度的粉末,在使用时无需碾碎●产品本身具有高活性●产品具有良好的表面性质和优良的吸放氢性能●合成方法简单●有可能降低成本●为废旧储氢合金的回收再生开辟了新途径3.极端条件下合成4.杂化材料的制备5.特殊聚集态材料合成6.特种功能材料的分子设计●概念:其指开展特定结构无机化合物或功能无机材料的分子设计、裁剪与分子工程学的研究●步骤:以特定的功能为导向➡️在分子水平上实现结构设计和构建➡️研究分子构建的形成和组装规律➡️对特定性能的材料进行定向合成7.仿生合成●概念:其指在分子水平上模拟生物的功能,将生物的功能原理用于化学,借以改善现有的和创造崭新的化学原理和工艺科学●仿生膜●选择性通透作用●低能耗、低成本和单极效率高●适合热敏物质分离●应用广泛、装置简单、操作方便、不污染环境8.纳米粉体材料制备●化学制备方法●水热-溶剂热法●热分解法●微乳液法●高温燃烧合成法●模板合成法●电解法●化学沉淀法●化学还原法●溶胶-凝胶法●避免高温引起相分离9.组合化学●其是一门将化学合成、组合理论、计算机辅助设计及机器人结合为一体的技术●基本思想和主要过程●设想和定义●选择相关元素●构建化合物库●并行处理技术●加工过程●高通量分析●将新材料及合成与分析数据送交用户10.绿色合成●方法和实例●热化学循环分解水●水热-溶剂热合成●超临界二氧化碳和成●绿色电解合成●低热固相合成●固相合成四个阶段●扩散●反应●成核●生长●五个特点●具有潜伏期●无化学平衡●拓扑化学控制原理●分步反应●嵌入反应●定义:指在制造和应用化学产品时有效利用原料(最好可再生),消除废物和避免使用有毒的、危险的试剂与溶剂●核心和主要特点(原子经济反应)●无毒无害原料,可再生资源●环境友好产品,回归自然,废物回收利用●无毒无害催化剂●无毒无害溶剂二、第二章●Ellingham 图1.吉布斯-亥姆霍兹方程2.如何理解:设(x,y)( x,y分别为两种物质),位于金属氧化物线段之下的温度区间,x可用于还原金属氧化物,而本身被还原为y3.应用●古代制铜器●金属锌制备●耦合反应1.概念:原来不能单独自发进行的反应A,在反应B的帮助下合并,合并在一起的总反应可以进行,这种情况称之为耦合反应2.应用实例●单质磷的制备●四氯化钛的制备●氧化法制备硫酸铜●泡佩克斯图1.概念:它是相关电对的电极材料-参加反应各物种浓度-温度-溶液酸度图●电极反应类型●既有氢离子或氢氧根离子参加,又有电子参加,这时的泡佩克斯图为一直线,斜率为(-m/n)*0.059,截距为E池●电极反应只有电子得失,没有氢离子或氢氧根离子参加,其图形为平行于横坐标的直线●电极反应有氢离子或氢氧根离子参加,但没有电子得失,其图形为平行于纵坐标的直线2.性质●直线上方为氧化态的稳定区,下方为还原态的稳定区●直线左边是物种离子的稳定区,右边是沉淀的稳定区3.应用●判断氧化还原反应进行的方向和顺序●对角线规律●两条直线间的距离越大,E池越大,➡️G越负,则反应自发进行的趋势越大●对同时存在的几个反应,氧化还原反应进行的顺序可按直线之间距离的大小排序(从大到小)●确定水的稳定区●如图,凡是泡佩克斯图落在j-k之间的氧化剂或还原剂都不会与水反应●可判断物种在水中存在的区域,或者提供制备的条件●湿法冶金中的应用●在电化学中的应用●热力学相图1.一致熔融化合物2.不一致熔融化合物三、第三章●低温合成1.物态●物质的第四态:等离子态,升高温度(数百万度)●物质的第五态:波色-爱因斯坦凝聚(超导态和超流态),温度低至临界温度2.低温温区划分●普冷区:环境温度到120k●深冷区:120k到绝对零度●普冷与低温的分界线:123k3.低温获得●恒温低温浴●制冷产生低温P78●低温恒温器●储存液化气体装置●高压气体钢瓶●气体钢瓶的颜色●气体钢瓶的安全使用●原因:钢瓶内部填充的气体压力很大,并且有的气体具有可燃性和助燃性,故钢瓶具有一定的易燃易爆性●注意点●气瓶必须连接压力调节器,经降压后,再流出使用●安装调节器,配管一定要用合适的,安装后试接口,不漏气方可使用●保持清洁,防污秽侵入,防漏气●小心使用,不可过度用力●易燃气体钢瓶应装单向阀门,防止回火●避免和电器电线接触,以免产生电弧使气体受热发生危险●瓶内气体不可用尽,即压力表指压不可为0,否则可能混入空气,重装气体时会有危险●气体附近必须有灭火器➡️,且工作场所通风良好4.低温的测量●蒸气压温度计●低温热电偶●低温热电阻温度计5.应用●稀有气体合成●KrF2的低温放电合成● XeO4的低温水解合成●在高氙酸盐中缓慢滴入零下五摄氏度的浓硫酸,生成四氧化氙气体●真空升华得纯品,储存于零下78摄氏度的冷凝容器中●XeF2的低温光化学合成P84●RnF2的光化学合成●金属,非金属同液氨的反应●碱金属及其化合物同液氨的反应●U型汞鼓泡管主要作为液氨蒸发的出口,并在所有的液氨蒸发后,阻止气体进入杜瓦瓶●碱土金属同液氨反应●某些化合物在液氨中的反应●非金属同液氨的反应●液氨中配合物的生成●低温下挥发性化合物的合成●二氧化三碳的合成●氯化氰的合成●磷化氢的合成●实验结束时不断的使氢气通过烧瓶,同时使烧瓶中的物质冷却,直至磷完全凝固。
化学物质无机合成

化学物质无机合成化学物质是现代社会中不可或缺的一部分,它们广泛应用于医药、农业、工业等各个领域。
其中,无机合成是一项重要的化学技术,涉及到合成无机化合物和材料。
本文将探讨化学物质无机合成的原理、方法和应用。
一、无机合成的原理无机合成是指通过无机化学原理和方法,将不同的无机物质反应生成目标无机物质的过程。
无机合成涉及到多种反应类型,包括酸碱中和反应、氧化还原反应、置换反应、络合反应等。
在无机合成中,化学反应的速度和产率是重要的考虑因素。
因此,在设计无机合成的过程中,需要选择合适的反应条件和催化剂,以促进反应的进行。
此外,反应物的纯度和比例也是影响合成效果的重要因素。
二、无机合成的方法无机合成方法繁多,下面介绍几种常见的方法。
1. 溶液法溶液法是一种常用的无机合成方法。
在溶液中,通过控制反应物的加入顺序和条件,可以合成出各种无机化合物。
同时,溶液法也可用于合成纳米材料,通过调控溶液中的反应条件,可以控制纳米材料的粒径和形貌。
2. 沉淀法沉淀法是通过加入一种沉淀剂,使溶液中的某些离子沉淀下来形成固体产物的方法。
此方法常用于制备无机颗粒材料和无机薄膜材料。
3. 水热合成法水热合成法是一种在高温高压水环境下进行的无机合成方法。
在水热条件下,反应速度加快,反应物更容易溶解和反应,从而促进无机合成的进行。
这种方法适用于合成金属氧化物、金属硫化物等材料。
4. 气相沉积法气相沉积法是通过将反应物的气态前体物质在高温下分解或反应,生成目标无机材料的方法。
此方法常用于制备薄膜材料和纳米颗粒。
三、无机合成的应用无机合成在各个领域都有广泛应用。
1. 医药领域无机合成用于合成药物的中间体或活性成分。
许多药物,如抗癌药物、抗生素等,都需要通过无机合成来制备。
2. 农业领域农业领域需要大量的无机化合物,如肥料、农药等。
通过无机合成,可以制备出高效、环保的农药和肥料,提高农作物的产量和质量。
3. 工业领域工业领域需要大量的无机材料,如金属氧化物、金属硫化物等。
化学中的无机化合物合成

化学中的无机化合物合成化学是与我们日常生活息息相关的一门科学,其中无机化合物的合成是一个重要的研究领域。
无机化合物合成的过程需要化学家们分析反应机理,掌握反应条件和方法,以期得到理想的产物。
本文将从合成方法、化学反应原理和应用实例三个方面阐述无机化合物的合成,希望可以让读者对无机化学有更深入的了解。
一、合成方法在化学制品生产和科学研究中,为了得到目标产物,化学家们常常采用不同的物质合成方法,常见的方法有以下几种:1. 直接反应法直接反应法是指通过将两种或多种化合物直接混合或加热直接得到所需产物的方法。
例如,通过将CaO和H2O加热反应可以合成Ca(OH)2,这种方法常用于实验性的小规模合成。
2. 气相法气相法是指通过将反应物气体混合后通入反应器中进行化学反应,并在合适的条件下使得气相反应的物质沉积下来的化学合成方法。
例如,在制备氮化硼陶瓷材料时会使用气相沉积的方法,即将N2和BCl3的混合气体通入反应器中,然后通过热解反应使BCN沉积在基底表面。
3. 溶液法溶液法是将反应物在溶剂中反应来制备化学品的方法。
通常反应物是经溶解在溶剂中后逐渐反应,产生结果稳定和纯度高的产物。
溶液法可以局部和彻底地控制反应条件,确保得到具有一定纯度和晶体形态的无机物。
溶解物的类型和浓度、反应温度和时间对反应结果有重要影响。
4. 沉淀法沉淀法是将两种物质在水溶液中反应,并通过沉淀将所得产物与反应溶液分离。
例如,在制备BaSO4时会使用沉淀法,先将水溶液中的BaCl2与Na2SO4混合反应,然后分离出BaSO4沉淀。
二、化学反应原理无机化合物的合成是基于各种化学反应原理的。
以下是常见的无机化合物合成反应原理:1. 氧化还原反应氧化还原反应是指在化学反应过程中电子转移的现象,常涉及元素的氧化数的变化,即“自加”的现象,同时产生能量释放和吸收。
例如,制取银粉是一种氧化还原反应,将过量的添加剂NH4Cl混合到银氨水中,产生AgCl沉淀,随后将氨放入混合物中形成AgCl/NH3混合物,最后分离得到纯银。
第4讲无机材料合成和制备知识

磷(砷)酸盐分子筛
eg: MgC2 + 2H2O→Mg(OH)2 + C2H2↑
溶剂:有机胺(H2NCH2CH2NH2、三乙胺) 醇(CH3OH、C2H5OH) CCl4、苯、DMF、THF、吡啶…
溶剂 的 作用:
溶剂 矿化促进剂 反应组分 压力传递媒介
溶剂热反应路线主要是由钱逸泰先生 领导的课题组研究并广泛应用的.
溶剂选择对产物的影响
Chen Jun, et.al. JACS 2006
溶剂选择对产物的影响
Chen Jun, et.al. JACS 2006
溶剂选择
溶剂应该有较低临界温度,其低粘度有利于离子的扩散; 所选溶剂有利于产物从反应介质中结晶; 在所选择溶剂中反应物不分解; 需要溶剂参与反应的,考虑反应性能. (还原?)
ex: Fe(OH)3 FeOOH
特殊水热法
水热反应体系
+
电
作用力场 磁
微波
极性反应物分子吸收了微波能量,提高分子 运动速度,致使分子运动杂乱无章,导致熵 的增加,降低了反应活化能。
大大降低反应时间,反应温度也有所下降,从而 在水热过程中能以更低温度和更短时间进行晶核 的形成和生长,限制产物微晶粒的进一步长大, 有利于制备超细粉体材料。
Proportion of collisions with energy between E and E + d E
Microwave Heating Ti > TB (High Ti)
Ea
Energy
Dipole Moment and Dielectric Constant for Liquids
“水热” 地位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分无机合成的基础知识知识点:溶剂的作用与分类例如:根据溶剂分子中所含的化学基团,溶剂可以分为水系溶剂和氨系溶剂根据溶剂亲质子性能的不同,可将溶剂分为碱性溶剂、酸性溶剂、两性溶剂和质子惰性溶剂。
例如:丙酮属于()溶剂:A 氨系溶剂 B 水系溶剂 C 酸性溶剂 D 无机溶剂进行无机合成,选择溶剂应遵循的原则:(1)使反应物在溶剂中充分溶解,形成均相溶液。
(2)反应产物不能同溶剂作用(3)使副反应最少(4)溶剂与产物易于分离(5)溶剂的纯度要高、粘度要小、挥发要低、易于回收、价廉、安全等试剂的等级及危险品的管理方法例如酒精属于()A 一级易燃液体试剂B二级易燃液体试剂C三级易燃液体试剂D四级易燃液体试剂真空的基本概念和获得真空的方法低温的获得及测量高温的获得及测量第二部分溶胶-凝胶合成溶胶-凝胶法:用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解/醇解、缩聚化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
金属醇盐是介于无机化合物和有机化合物之间的金属有机化合物的一部分,可用通式M(OR)n来表示。
M是价态为n的金属,R代表烷基。
*金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体*金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。
*金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基的试剂。
例如:关于溶胶-凝胶合成法中常用的金属醇盐,以下说法错误的是(D )A金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体B金属醇盐可看作是金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。
C金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基的试剂。
D 异丙醇铝不属于金属醇盐溶胶-凝胶合成法的应用溶胶一凝胶法作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中占有重要地位。
在制备玻璃、陶瓷、薄膜、纤维、复合材料等方面获得重要应用,更广泛用于制备纳米粒子。
溶胶与凝胶结构的主要区别:溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,粒子自由运动,分散的粒子大小在1~1000nm之间,,具有流动性、无固定形状。
凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,无流动性,有固定形状。
溶胶-凝胶合成法的特点:(1)能与许多无机试剂及有机试剂兼容,通过各种反应物溶液的混合,很容易获得需要的均相多组分体系。
反应过程及凝胶的微观结构都较易控制,大大减少了副反应,从而提高了转化率,即提高了生产效率。
(2)对材料制备所需温度可大幅降低,形成的凝胶均匀、稳定、分散性好,从而能在较温和条件下合成出陶瓷、玻璃、纳米复合材料等功能材料。
(3)由于溶胶的前驱体可以提纯而且溶胶-凝胶过程能在低温下可控制地进行,因此可制备高纯或超纯物质。
(4)溶胶或凝胶的流变性质有利于通过某些技术如喷射、旋涂、浸拉等加工成各种形状,容易制备出粉末、薄膜、纤维、块体等各种形状的材料。
(5)制品的均匀性好,尤其是多组分制品,其均匀度可达到分子或原子尺度,产品纯度高。
(6)与通常的烧结法相比,合成温度较低。
溶胶一凝胶法也存在某些问题:通常整个溶胶-凝胶过程所需时间较长(主要指陈化时间),常需要几天或几周;另一方面凝胶中存在大量微孔,在干燥过程中又将会逸出许多气体及有机物,并产生收缩。
第三部分水热及溶剂热合成水热法(Hydrothermal Synthesis),是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。
水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。
其中水热结晶用得最多。
例如水热反应依据反应类型的不同可分为()A水热氧化、水热还原B水热沉淀、水热合成C水热水解、水热结晶D 脱水反应、水解反应•低温水热:100 oC以下;中温水热:100-200 oC ;高温水热:300 oC以上溶剂热法(Solvothermal Synthesis),是在水热法的基础上发展起来的一种新的材料制备方法,将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料,如III-V族半导体化合物、氮化物、硫族化合物、新型磷(砷)酸盐分子筛三维骨架结构等。
国内实验室常用于无机合成的简易水热反应釜,釜体和釜盖用不锈钢制造,反应釜体积较小(<100 mL)也可直接在釜体和釜盖设计丝扣,直接相连,以达到较好的密封性能。
内衬材料是聚四氟乙烯。
采用外加热方式,以烘箱或马弗炉为加热源。
由于使用聚四氟乙烯,使用温度应低于聚四氟乙烯的软化温度(250℃)。
釜内压力由加热介质产生,可通过装添度在一定范围控制,室温开釜水热与溶剂热合成的一般工艺:水热反应根据反应温度可分为低温水热、中温水热和高温水热。
常用的溶剂热合成的溶剂有醇类,N,N-二甲基甲酰胺,四氢呋喃,乙腈和乙二胺等。
对于水热合成,反应温度在300度以上的属于高温水热。
例如对于水热和溶剂热合成,下列说法正确的是(A C)A 水热与溶剂热合成主要以液相反应为特点B 水热与溶剂热合成主要以界面扩散为特点C在溶剂热条件下,有机溶剂是传递压力的介质,同时起到矿化剂的作用。
D 实验室常用的以聚四氟乙烯为内衬材料的水热反应斧,其使用温度应低于500度。
水热合成中水的作用:在水热合成中水的作用可归纳如下:作为化学组分起化学反应;作为反应和重排促进剂;起溶剂作用;起低熔点物质作用;起压力传递介质作用;提高物质溶解度作用。
第四部分化学气相沉积化学气相沉积是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。
CVD设备的心脏,在于其用以进行反应沉积的“反应器”。
CVD反应器的种类,依其不同的应用与设计难以尽数。
以CVD的操作压力来区分,CVD基本上可以分为常压与低压两种。
若以反应器的结构来分类,则可以分为水平式、直立式、直桶式、管状式烘盘式及连续式等。
若以反应器器壁的温度控制来评断,也可以分为热壁式(hot wall)与冷壁式(cold wall)两种。
若考虑CVD的能量来源及所使用的反应气体种类,我们也可以将CVD反应器进一步划分为等离子增强CVD(plasma enhanced CVD,或PECVD),TEOS-CVD,及有机金属CVD(metal-organic CVD,MOCVD)等。
冷壁CVD和热壁CVD装置的特点:热壁式CVD 装置的的特点是使用外置的加热器将整个反应室加热至较高的温度。
显然,这时薄膜的沉积位置除了衬底上以外,还有所有被加热到高温、且接触反应气体的所有部分。
冷壁式CVD 装置的特点是它们使用感应加热方式对有一定导电性的样品台进行加热,而反应室壁则由导电性差的材料制成,且由冷却系统冷却至低温。
冷壁式装置可减少CVD 产物在容器壁上的沉积。
金属有机化合物(organic metals, MO)指的是有机基团与金属元素结合而形成的化合物,如三甲基铝(TMAl)、三甲基镓(TMGa)、二乙基锌(DEZn)等MOCVD 装置与一般CVD 装置的区别仅在于前者使用的是有机金属化合物作为反应物使用有机金属化合物的优点在于这类化合物在较低的温度下即呈气态存在,避免了Al、Ga、Zn 等液态金属蒸发过程的复杂性,因而其对工艺的敏感性小,重复性好化学气相沉积的五个主要的步骤(a)反应物扩散通过界面边界层;(b)反应物吸附在基片的表面;(c)吸附物之间或者吸附物与气态物质之间的化学沉积反应发生;(d) 吸附物从基体解吸;(e)气体从系统中排出第五部分自蔓延高温合成(SHS)自蔓延高温合成:自蔓延高温合成(Self-Propagating High Temperature Synthesis---SHS),也称燃烧合成,是一种利用化学反应自身放热使反应持续进行,最终合成所需材料或制品的新技术。
任何化学物质的燃烧只要其结果是形成了有实际用途的凝聚态的产品或材料,都可被称为SHS过程。
在SHS过程中,参与反应的物质可处于固态、液态或气态,但最终产物一般是固态。
绝热燃烧温度Tad,是指绝热条件下燃烧所能达到的最高温度,即反应放出的热量全部用来加热生成产物。
绝热燃烧温度是描述SHS反应特征的最重要的热力学参量。
它不仅可以作为判断反应能否自我维持的定性判据,并且还可以对燃烧反应产物的状态进行预测并且可为反应体系的成分设计提供依据。
根据Merzhanov等人提出的经验判据,绝热燃烧温度大于1800K 时,自蔓延燃烧反应才能进行。
SHS一般有如下特点:由于燃烧温度高,对杂质有自净化作用,因此产品纯度高✧燃波波传播速度快,生产率高✧无须供能,节约能源✧可获得有独特结构的材料(例如陶瓷内衬钢管)✧工艺设备简单,成本低SHS反应过程示意图SHS的技术归为六类:✧SHS粉末:TiC、MoSi2、SiC、SiN、铁氧体…..✧SHS烧结:Ti-Ni、Ti-Co、Ni-Al、Fe-Al 金属间化合物✧SHS致密化:TiC-Al2O3陶瓷刀具✧SHS冶金:铝热剂✧SHS焊接:铝热剂焊接钢轨✧SHS涂层:陶瓷内衬钢管、Fe-Al、钢结硬质合金涂层。
采用离心式自蔓延高温合成法制备陶瓷内衬复合钢管的原理及过程:采用自蔓延高温合成制备陶瓷内衬复合钢管的反应原理是:Fe2O3+2Al→2Fe+Al2O3+836KJ/mol;3Fe3O4+8Al→9Fe+4Al2O3+3265KJ/mol反应物粉料经混合、烘干、点火燃烧后,合成反应就从点火处自发地蔓延开去。
反应一开始就形成了反应燃烧波,产生大量的热量,使反应系温度达2000oC以上。
在燃烧波前面有预热区,在燃烧波后面有合成区,随着反应的进行,反应波迅速前移,高温合成区和预热区也迅速前移,生成物区不断扩大,反应物区不断缩小,直至反应结束。
离心式自蔓延高温合成制备陶瓷内衬复合钢管的过程:将Fe2O3(或Fe3O4)和铝粉按一定比例均匀混合装入钢管后,固定在离心机上,待离心机转数达到一定值后将反应物点燃,便发生燃烧反应。
放热反应的燃烧温度达2450K,使生成物Al2O3和Fe 瞬时熔化。