换热器设计说明书
换热器设计说明书

设计任务和设计条件某生产过程的流程如图所示。
反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。
已知混合气体的流量为237301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。
物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度 31/90m kg =ρ定压比热容 1p c =3.297kj/kg ℃热导率 1λ=0.0279w/m粘度 Pas 51105.1-⨯=μ循环水在34℃ 下的物性数据:密度 1ρ=994.3㎏/m 3定压比热容 1p c =4.174kj/kg ℃热导率 1λ=0.624w/m ℃粘度 Pas 3110742.0-⨯=μ 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。
2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。
但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。
浮头式换热器介绍浮头式换热器的特点是有一端管板不与外壳连为一体,可以沿轴向自由浮动。
这种结构不但完全消除了热应力的影响,且由于固定端的管板以法兰与壳体连接,整个管束可以从壳体中抽出,因此便于清洗和检修。
故浮头式换热器应用较为普遍,但它的结构比较复杂,造价较高。
确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
故壳程混和气体的定性温度为T=260110 =85℃管程流体的定性温度为t=3422939=+℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。
换热器设计说明书

3 U 形管换热器设计计算及强度校核...........................................................................................33 3.1 筒体、封头的厚度计算及压力试验校核 ....................................................................... 33 3.1.1 筒体厚度计算 ........................................................................................................ 33 3.1.2 前端管箱筒体计算 ................................................................................................ 34 3.1.3 前端管箱封头计算 ................................................................................................ 35 3.1.4 后端封头计算 ........................................................................................................ 36 3.2 水压试验校核 ................................................................................................................... 37 3.2.1 筒体的水压试验校核 ............................................................................................ 37 3.2.2 前端管箱封头,后端封头的水压试验校核......................................................... 39 3.3 法兰和螺栓 ....................................................................................................................... 40 3.3.1 垫片的选择及计算 ..............................................பைடு நூலகம்............................................... 40 3.3.2 螺栓的选择及计算 ................................................................................................ 41 3.3.3 法兰的选择 ............................................................................................................ 42 3.4 开孔补强计算 ................................................................................................................... 43 3.4.1 进口接管①、出口接管⑤ .................................................................................... 43 3.4.2 进口接管② ............................................................................................................ 45 3.4.3 出口接管④ ............................................................................................................ 47 3.5 管板及换热管的选择计算 ............................................................................................... 50 3.5.1 换热管的尺寸及排布 ............................................................................................ 50 3.5.2 管板的设计计算 .................................................................................................... 50
管板式换热器设计说明书

管板式换热器设计说明书管板式换热器设计说明书一、概述管板式换热器是一种高效的换热设备,广泛应用于化工、石油、制药、食品等多个领域。
本设计说明书旨在介绍管板式换热器的设计原理、结构特点、选型方法、安装注意事项等相关内容。
二、设计原理管板式换热器采用管道和板式换热器结合的方式进行换热。
其主要原理是利用热流体在管道中流动时,通过管壁和板片与低温流体进行换热。
同时,管道和板片的结构也能使热流体均匀地流过,从而增强换热效果。
三、结构特点1.结构紧凑:管板式换热器体积小,结构紧凑,占用空间少,适用于场地狭小的场合。
2.换热效率高:管板式换热器采用多层板片进行换热,有效增加了换热面积,提高了换热效率。
3.应用广泛:管板式换热器适用于多种流体之间的换热,如液-液、气-液等。
4.可靠性高:管板式换热器采用优质材料制造,工艺先进,具有耐腐蚀、耐压等特点,具有较高的可靠性。
四、选型方法1.按照工艺要求确定换热参数:如换热量、流量、温度等。
2.确定流体性质:如流体介质、流速、粘度等。
3.进行换热器设计:选择合适的板片组合,计算换热器换热面积,确定尺寸和数量。
4.选择合适的材料:选择耐腐蚀、耐高温的合金材料,同时考虑生产成本。
五、安装注意事项1.在安装前,应仔细检查产品是否完好,检查连接处是否严密,以确保安装质量。
2.安装时应注意管路连接方式的选择,可选用法兰连接或焊接连接。
3.在碰到易燃易爆介质时,应注意防火防爆措施。
4.安装后应进行效验,检查管道连接是否泄漏,实验前应做好相应的准备工作。
六、总结管板式换热器具有结构紧凑、换热效率高、应用广泛、可靠性高等特点,是目前工业中使用的一种高效节能的换热设备。
在选型和安装过程中,应注意流体性质、工艺要求的确定,材料的选择和安装质量的保证。
换热器课程设计说明书

换热器原理与设计课程设计计算说明书设计题目换热器原理与设计课程设计学院(系):机电工程学院专业:能源与动力工程班级:姓名:学号:指导老师:完成日期:新余学院目录第一部分确定设计方案 (3)1.1选择换热器的类型 (3)1.2流动空间及流速的确定 (3)第二部分确定物性数据 (4)第三部分工艺流程图 (5)第四部分计算总传热系数 (6)4.1热负荷的计算 (6)4.2平均传热温度 (6)4.3估K值 (6)4.4由K值估算传热面积 (6)4.5冷却水用量 (7)第五部分换热器工艺结构尺寸 (8)5.1 管径,管长,管数 (8)5.2管子的排列方法 (8)5.3 壳体内径的计算 (9)5.4折流板 (9)5.5 计算壳程流通面积及流速 (10)5.6计算实际传热面积 (11)5.7传热温度差报正系数的确定 (11)5.8管程与壳程传热系数的确定 (11)的确定 (13)5.9传热系数K5.10传热面积 (13)5.11附件 (13)5.12换热器流体流动阻力 (14)第六部分设计结果 (17)第七部分总结 (18)第八部分主要参考文献 (20)第九部分附录 (21)第一部分确定设计方案1.1选择换热器的类型两流体温度变化情况:热流体进口温度130℃,出口温度40℃。
冷流体进口温度30℃,出口温度40℃。
从两流体温度来看,估计换热器的管壁温度和壳体壁温之差很大,因此初步确定选用浮头式列管换热器,而且这种型式换热器管束可以拉出,便于清洗;管束的膨胀不受壳体约束。
1.2流动空间及流速的确定由于煤油的粘度比水的大,井水硬度较高,受热后易结垢,因此冷却水走管程,煤油走壳程。
另外,这样的选择可以使煤油通过壳体壁面向空气中散热,提高冷却效果。
同时,在此选择逆流。
选用ф25×2.5的碳钢管,管内流速取u i=0.75m/s。
第二部分确定物性数据定性温度:可取流体进、出口温度的平均值。
壳程煤油的定性温度为: T=(130+40)/2=85℃管程冷却水的定性温度为:t=(30+40)/2=35℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
U型管换热器设计说明书

流体流量进口温度出口温度压力煤油10tℎ⁄180℃40℃1MPa 水?tℎ⁄20℃40℃0.5MPa 一.热力计算1.换热量计算Q=m1∙C p1∙(T1−T2)=100003600∙2100∙(180−40)=817.32KJ/s 2.冷却剂用量计算m2=QC P2∙(t1−t2)=817.32∙1000 4183∙(40−20)=9.77KJ/s由于水的压力较之煤油较大,黏度较之煤油也较大,所以选择水为壳程,煤油为管程。
3.换热面积估算∆t1=|T1−t2|=140℃∆t2=|T2−t1|=20℃∆t m′=∆t1−∆t2ln∆t1∆t2=140−20ln14020=61.67∆t m′——按纯逆流时计算的对数平均温差∆t m=ε∆t∙∆t m′ε∆t——温差矫正系数ε∆t=φ(R.P)R=热流体的温降冷流体的温升=T1−T2t1−t2=180−4040−20=7P=冷流体温升两流体的初始温差=t2−t1T1−t1=40−2080−20=0.16查图d o−−换热管外径,mL=38.1320∙4∙π∙0.019=7.98m考虑到常用管为9m管,为生产加工方便,选用单程管长8m又考虑到单程管长8m会使得换热器较长,在选取换热器壳体内径时,尽量选取较大的,以保证安全,因此换热器内部空间较大,故选用较为宽松的正方形排布。
换热管材料由于管程压力大于0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。
按照GB—151管壳式换热器1999选取常用管心距p i= 25mm;分程隔板两侧管心距p s=38mm按下图作正方形排列选择布管限定圆直径D L=D i−0.5d o=400−10=390mm由布管限定圆从《GB151—1999》管壳式换热器中选定工程直径DN=400mm的卷制圆筒,查得碳素钢,低合金钢圆筒最小厚度不得小于8mm,高合金钢圆筒最小厚度不得小于3.5mm圆筒厚度计算:选用壳体材料为现在工业生产中压力容器的常用材料Q345R,为一种低合金钢。
换热器设计手册

换热器设计手册换热器设计手册第一部分:引言换热器在许多工业领域中起着至关重要的作用,能够有效地传递热量和冷却介质。
本手册旨在提供关于换热器设计的详细说明和指导,以确保设计和运行的安全性、可靠性和高效性。
第二部分:换热器的基本原理和分类2.1 换热器的基本原理换热器是通过将热量从一个介质传递到另一个介质来实现的。
基于传热原理,换热器可以分为传导、对流和辐射换热器。
2.2 换热器的分类根据换热介质的流动方式和传热机理,换热器可以分为管壳式换热器、板式换热器、螺旋板换热器等。
第三部分:换热器设计的影响因素3.1 流体参数流体参数包括流体的流量、温度、压力、热导率等。
这些参数将直接影响到换热器的传热效果和换热面积的确定。
3.2 材料选择换热器的材料选择对其使用寿命和换热效率有着重要的影响。
应根据介质的性质和工作环境进行材料选择,并考虑材料的耐腐蚀性、导热性等因素。
3.3 热负荷计算通过计算热负荷,可以确定换热器的尺寸和换热面积。
热负荷计算依赖于流体参数和换热器的设计要求。
第四部分:换热器的设计步骤4.1 确定换热方式根据介质的性质和工艺要求,选择合适的换热方式,如对流换热、辐射换热或传导换热。
4.2 计算传热面积根据热负荷计算结果,确定换热器的传热面积。
传热面积的计算需要考虑流体参数和介质的传热特性。
4.3 确定换热器尺寸和形状根据换热器的传热面积和流体参数,确定换热器的尺寸和形状。
应确保设计的换热器能够有效地传递热量和具有合理的流体阻力。
4.4 选择材料根据介质的性质和工作环境,选择合适的材料。
应考虑材料的耐腐蚀性、导热性和可加工性等因素。
第五部分:换热器的安装和维护5.1 安装要求换热器的安装应符合相关的安全标准和操作规程。
在安装过程中,应注意保护换热器的密封性和防止外部损坏。
5.2 运行和维护换热器的运行和维护需要定期检查和保养。
应注意定期清洗换热器以防止结垢和污垢的堆积,避免影响换热器的传热效果。
换热器设计说明书

列管式换热器设计说明书设计题目:列管式换热器的设计设计者:同组人:班级:学号:日期: 2011年1月12日指导教师:一、化工原理课程设计任务书(一)设计题目21万吨/年煤油冷却器的设计(二)设计任务与操作条件1、煤油:入口温度140℃,出口温度40℃2、冷却介质:自来水,入口温度26℃,出口温度40℃3、允许压强降:不大于100kPa4、煤油定性温度下的物性数据:密度825kg/m3,黏度7.15×10-4Pa.s,比热容2.22kJ/(kg.℃),导热系数0.14W/(m.℃)5、每年按330天计,每天24小时连续运行。
(三)具体要求本设计要求完成以下设计及计算:1、换热器工艺设计及计算:包括物料衡算、能量衡算、工艺参数选定及其计算;2、换热器结构设计:包括换热设备的主要结构设计及其尺寸的确定等;3、绘制换热器装配图:包括设备的各类尺寸、技术特性表等,用2号图纸绘制;4、编写设计说明书:作为整个设计工作的书面总结,说明书应简练、整洁、文字准确。
内容应包括:封面、目录、设计任务书、概述或引言、设计方案的说明和论证、设计计算与说明、对设计中有关问题的分析讨论、设计结果汇总(主要设备尺寸、各物料量和状态、能耗、主要操作参数以及附属设备的规格、型号等)、参考文献目录、总结及感想等。
(四)完成后应上交的材料1、设计说明书1份2、换热器装配简图1张(五)推荐参考资料1、《化工原理》上册天津大学出版社2、《化工原理课程设计》天津大学出版社3、《化工流体流动与传热》化学工业出版社4、《换热器设计》上海科技出版社一、化工原理课程设计任务书.................................................................................................. - 1 -二、目录...................................................................................................................................... - 2 -三、引言...................................................................................................................................... - 3 -3.1换热器概述.................................................................................................................... - 3 -3.2.列管式换热器概述........................................................................................................ - 3 -3.3列管式换热器的设计原则............................................................................................ - 5 -3.3.1 流动空间的选择.............................................................................................. - 5 -3.3.2 流速的选择...................................................................................................... - 5 -3.4 传热管排列和分程方法............................................................................................... - 6 -四、工艺计算及主要设备设计................................................................................................ - 7 -4.1确定设计方案................................................................................................................ - 7 -4.1.1选择换热器的类型[4].......................................................................................... - 7 -4.1.2流程安排............................................................................................................. - 7 -4.2 确定物性数据............................................................................................................... - 7 -4.3估算传热面积................................................................................................................ - 8 -4.3.1计算热负荷和冷却水流量................................................................................. - 8 -4.3.2计算两流体的平均传热温差............................................................................. - 8 -4.3.3估算传热面积..................................................................................................... - 9 -4.4主体构件的工艺结构尺寸............................................................................................ - 9 -4.4.1管径和管内流速................................................................................................. - 9 -4.4.2管程数和传热管数........................................................................................... - 10 -4.4.3传热管的排列和分程方法............................................................................... - 10 -4.4.4壳体内径........................................................................................................... - 10 -4.4.5折流板............................................................................................................... - 11 -4.4.6接管................................................................................................................... - 11 -4.4.7换热器的结构基本参数................................................................................... - 11 -4.5换热器主要传热参数核算.......................................................................................... - 12 -4.5.1热流量核算....................................................................................................... - 12 -4.5.2壁温核算........................................................................................................... - 14 -4.5.3换热器内流体的流动阻力(压强降)........................................................... - 15 -五、换热器主要结构尺寸和计算结果.................................................................................... - 18 -六、自我评价............................................................................................................................ - 19 -七、主要参考文献.................................................................................................................... - 19 -八、主要符号说明.................................................................................................................... - 20 -3.1换热器概述热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器设计说明书

1 绪论1.1 课题介绍本次设计为余热回收装置中软水预热器的设计,主要任务是设计一台立式管壳式换热器。
管壳式换热器又称列管式换热器,它适用于冷却,冷凝,加热、蒸发及废热回收等方面。
是理论研究水平最高、设计技术最完善、标准化和规范化历史最悠久以及计算机程序软件开发最早的换热设备,在石油、化工生产中应用十分广泛。
它的工艺设计一般是指传热设计和压降(或流动)设计,传热尤为复杂[1]。
目前在食品行业中,粮食干燥作业中多用列管式换热器,这种换热器结构简单,制造容易,检修方便。
干燥行业中,换热器的热介质是烧烟煤与无烟煤混合燃料产生的高温烟道气。
在管内流动,冷介质是空气,在管外横向冲刷管子流动[2]。
固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。
当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。
特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。
固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。
固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。
这种换热器管程可以用隔板分成任何程数。
固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。
壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。
当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。
固定管板式换热器的特点是:旁路渗流较小、造价低、无内漏。
固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学与传热学课程设计管壳式换热器设计说明书学院:机械与动力工程学院班级:热动10—1班姓名:谷阳学号:1003120122指导教师:董丽娜赵兰英目录一、设计任务书———————————11、换热器的概念及意义2、固定管板式换热器结构3、工作原理4、设计参数二、设计计算书———————————31、换热管的材料、内径、长度、管间距等的确定2、壳体内径3、管程接管直径4、折流板缺口高度、间距、数目以及折流板直径5、壳程接管直径的确定6、传热面积和传热面积之比三、计算表格四、设计结果汇总表—————————7五、设计自评————————————8六、参考文献————————————9一、设计任务书1、换热器的概念及意义在化工生产中为了实现物料之间能量传递过程需要一种传热设备。
这种设备统称为换热器。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。
它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工炼油等工业生产来说,换热器尤为重要。
换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成部分,因此换热器在化工生产中应用是十分广泛的。
任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。
2、固定管板式换热器结构3、工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。
管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。
4、设计参数:二、设计计算书根据设计任务书进行设计计算: 204565''2'1max =-=-=∆t t t ℃252550'2''1min =-=-=∆t t t ℃热损失系数取0.98传热量:()()kJ t t c M Q L p 48098.0506561.244.14''1'121=⨯-⨯⨯=-=η 冷却水量:()()s kg t t c M p 73.52545187.4480'2''222=-⨯=-逆流时的对数平均数温差:41.222025ln 2025ln minmax min max 1=-=∆∆∆-∆=∆⋅t t t t t c m 参数;P 、R5.025652545'2'1'2''2=--=--=t t t t P 75.025455065'2''2''1'1=--=--=t t t t R设计本管壳式换热器为2壳程-4管程<2-4>型,则975.0=ψ 有效平均温差:85.214.22975.01=⨯=∆=∆⋅c m m t t ψ 初选传热系数:()C kg w K ︒⋅=300'0 估算传热面积:2'0'022.7385.21300480000m t K Q F m =⨯=∆= 管子材料:铝制管5.320⨯φ管程所需流通截面:222100573.0110003.57m M A t =⨯==ωρ 每程管数:根43013.000573.044221=⨯⨯==πd A n t每根管长:m l d nZ F l t 60'0==取π管子排列方式为:等边三角形 管间距s=26mm 分程隔板槽处管间距mm l E 40=平行于流向的管距mm s s p 5.2230cos =⨯=ο垂直于流向的管距mm s s n 1330sin =⨯=ο 拉杆直径取12mm 估计管壳直径mm 400≤ 管排列可做如下草图则六边形层数为6层,一台管子数为86=t n ,一台拉杆数为4根一台传热面积为24.32602.086m dl n c =⨯⨯⨯=ππ 两台传热面积:2''08.64m F =管束中心至最外层管束中心距离为0.135m ,管束外缘直径m D L 29.0=壳体m 325.0取S D 则长径比5.18325.06==s D l管程接管直径:6895.511100073.513.113.122⨯=⨯==φρω取M D管程雷诺数:1793110725013.010001Re 621222=⨯⨯⨯==-μρωd 管程换热系数:52469.417931023.0013.0621.0Re 023.04.08.04.08.0122=⨯⨯⨯=⨯=τλαP d 折流板形式选弓形,折流板缺口高度m D h S 08.035.025.025.0=⨯== 折流板的圆心角为120度,折流板间距取m l s 4.0=,折流板数目为14块,折流板上管孔数为60个,折流板上管孔直径m d H 0204.0=,通过折流板管子数为56个,折流板缺口处管子数为30根,折流板直径m D b 3.0=。
折流板缺口面积:01622.060sin 325.08.021180120214325.02sin 2121422=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--⨯=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=︒πθθs S wgD h D A 错流区内管数占总管数的百分数:67.0=c F 缺口处管子所占面积:()()00446.067.0186802.018220=-⨯⨯⨯=-=ππc t wt F n d A流体在缺口处流通面积:01176.000446.001622.0=-=-=wt wg b A A A流体在两折流板间错流流通截面积:()()0390.002.0026.0026.002.029.029.0325.04.000=⎥⎦⎤⎢⎣⎡--+-=⎥⎦⎤⎢⎣⎡--+-=d s s d D D D l A L L s s c 壳程流通截面积:02142.00390.001176.0=⨯==c b s A A A错流区面积中旁流面积所占分数:564.0039.04.004.012129.0325.021=⨯⎪⎭⎫ ⎝⎛⨯⨯+-=⨯⎪⎭⎫⎝⎛+-=c E E E L s bp A l l N D D F一块折流板上管子和管孔间泄露面积:()()0018.08667.121004.002.01210=⨯⨯⨯⨯⨯=+-=ππc c b H tb n F d d d A 折流板外缘与壳体内壁之间泄露面积:()()000788.05.08.021arccos 23.0325.0325.021arccos 2=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯---=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---=ππs b s s sb D h D D D A 壳程雷诺数:1797702142.01075002.044.14Re 61011=⨯⨯⨯==-sA d M μ理想管束传热因子:005.0=H j折流板缺口校正因子:03.1=c j 折流板泄露校正因子:8.0=l j 旁通校正因子:48.0=b j 壳程传热因子:0019776.048.08.003.1005.00=⨯⨯⨯==b lc H j j j j j壳程质量流速:()sm kg A M G Ss ⋅===2167402142.044.14壳侧换热系数:()C m W P c G j p s ︒--⋅=⨯⨯⨯==2323210162395.086.922616740019776.095.0τα水垢热阻:()W C m S ︒⋅⋅=2200034.0τ 有机液热阻:()W C m s ︒⋅⋅=2100017.0τ 传热系数:()C m W d d d d K S S ︒--⋅⋅⋅=⎥⎦⎤⎢⎣⎡+⨯++=⎥⎦⎤⎢⎣⎡+++=211102101210386132052461132000034.000017.0623111αττα传热面积:2009.5685.21386480000m t K QF m=⨯=∆=传热面积之比14.19.568.640''0==F F三、设计结果汇总表四、设计自评通过本次课程设计,我对换热器的结构、性能都有了一定的了解,同时,在设计过程中,我也掌握了一定的工艺计算方法。
换热器是化工厂中重要的化工设备之一,而且种类繁多,特点不一,因此,选择合适的换热器是相当重要的。
在本次设计中,我发现进行换热器的选择和设计是要通过反复计算,对各项结果进行比较后,从中确定出比较合适的或最优的设计,为此,设计时应考虑很多方面的因素。
首先要满足传热的要求,本次设计时,由于初选总传热系数不合适,使规定条件下的计算结果与初设值的比值不在要求范围内,因此,经过多次计算,才选择到合适的K 值为300,传热面积之比14.19.568.640''0==F F ,满足要求。
其次,在满足工艺条件的前提下选择合适的换热器类型,通过分析操作要求及计算,本次设计选用换热器为上述计算结果。
本次设计中,在满足传热要求的前提下,考虑了其他各项问题,但它们之间是相互矛盾的。
如:若设计换热器的总传热系数较小,将导致换热管管长增大,长径比将不符合标准;若增加换热管的管径,可能使总管子数减小,但却又受到换热器所能允许的尺寸限制,并且折流板间距也影响着传热面积。
因此,只能综合考虑来选择相对合适的换热器。
然而在本次设计中由于经验不足,知识有限,还是存在着很多问题。
比如在设计中未考虑对成本进行核算,仅在满足操作要求下进行设计,在经济上是否合理还有待分析。
通过本次设计,我发现自己需要继续学习的知识还很多,我将会认真请教老师,不断提高自己的知识水平,扩展自己的知识面。
五、参考文献1、杨世明、陶文栓编著《传热学》(第三版)北京:高等教育出版社,19982、史美中、王中铮编《热交换器原理与设计》南京:东南大学出版社,19963、钱颂文主编《热交换器设计手册》北京:化学工业出版社,20029。