摄像头的工作原理
摄像头工作原理

摄像头工作原理摄像头是一种用于捕捉图像和视频的设备,广泛应用于安防监控、摄影、视频会议等领域。
它通过光学和电子技术的结合,将光信号转换为电信号,然后通过处理和传输,最终生成图像或视频。
一、光学部分1. 透镜系统:摄像头的透镜系统由多个透镜组成,主要用于聚焦和控制光线的入射角度。
透镜的质量和结构对图像质量有重要影响。
2. 快门:摄像头的快门控制光线的进入时间,快门开启时光线进入感光元件,快门关闭时光线停止进入。
快门速度决定了图像的曝光时间。
3. 光敏元件:摄像头常用的光敏元件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)传感器。
光敏元件负责将光信号转换为电信号。
二、图像处理部分1. 增益控制:摄像头可以通过增加信号的增益来增强图像的亮度,但过高的增益会导致图像噪声增加。
2. 自动曝光:摄像头可以通过自动曝光功能根据环境光线的变化调整曝光时间,确保图像在不同光照条件下的合适曝光。
3. 自动对焦:摄像头可以通过自动对焦功能调整透镜的位置,使得被拍摄物体清晰可见。
4. 白平衡:摄像头可以通过白平衡功能校正图像的色彩偏差,使得图像中的白色物体呈现真实的白色。
5. 图像压缩:为了减小图像数据的存储和传输量,摄像头通常会对图像进行压缩,常用的压缩算法有JPEG、H.264等。
三、数据传输部分1. 接口:摄像头通常通过USB、HDMI、网络等接口与设备进行连接和数据传输。
2. 数据格式:摄像头输出的数据可以是原始的图像数据,也可以是经过压缩编码的视频数据。
常见的数据格式有YUV、RGB、H.264等。
3. 帧率:摄像头的帧率指每秒钟显示的图像帧数,常见的帧率有24fps、30fps、60fps等。
4. 分辨率:摄像头的分辨率指图像的像素数量,常见的分辨率有720p、1080p、4K等。
总结:摄像头工作原理主要包括光学部分、图像处理部分和数据传输部分。
光学部分负责光线的聚焦和转换,图像处理部分负责对光信号进行处理和优化,数据传输部分负责将处理后的数据传输给其他设备。
摄像头的工作原理

摄像头的工作原理摄像头是一种用于捕捉图像和视频的设备,广泛应用于监控系统、摄影、视频会议等领域。
它通过光学和电子技术将光信号转换为电信号,然后将电信号传输到其他设备进行处理和显示。
下面将详细介绍摄像头的工作原理。
1. 光学部分:摄像头的光学部分主要由镜头和光敏元件组成。
镜头负责聚焦光线,使其能够准确地投射到光敏元件上。
光敏元件通常采用CMOS或CCD技术,它们能够将光信号转换为电信号。
2. 光信号转换为电信号:当光线通过镜头进入光敏元件时,光敏元件会根据光的强度和颜色产生相应的电信号。
对于CMOS传感器,它将光信号转换为电荷,并通过一系列的电路将电荷转换为电压信号。
对于CCD传感器,光信号会在感光元件上形成电荷,然后通过电荷耦合设备转换为电压信号。
3. 信号处理:摄像头的信号处理部分对电信号进行放大、滤波和数字化处理。
放大电路可以增加信号的强度,滤波电路可以去除噪声和干扰。
数字化处理将模拟信号转换为数字信号,以便后续的存储和传输。
4. 数据传输:经过信号处理后,数字信号可以通过不同的接口进行传输。
常见的接口包括USB、HDMI、网络接口等。
通过这些接口,摄像头可以将图像和视频数据传输到计算机、显示器或网络设备上进行显示、存储或传输。
5. 控制和调节:摄像头通常具有各种控制和调节功能,例如调节焦距、曝光时间、白平衡、对比度等。
这些功能可以通过摄像头的控制接口或软件进行设置和调整,以满足不同场景下的需求。
总结:摄像头的工作原理可以简单概括为光学部分将光信号转换为电信号,信号处理部分对电信号进行处理和数字化,然后通过接口进行传输。
摄像头的工作原理的详细过程包括光学部分的镜头聚焦和光敏元件的转换,信号处理部分的放大、滤波和数字化处理,以及数据传输和控制调节等步骤。
这些步骤共同作用,使得摄像头能够准确地捕捉图像和视频,并将其传输到其他设备上进行处理和显示。
摄像头的工作原理

摄像头的工作原理摄像头是一种用于捕捉图象和视频的设备,广泛应用于安防监控、视频会议、摄影等领域。
它能够将光信号转换为电信号,并通过电子设备进行处理和传输。
下面将详细介绍摄像头的工作原理。
1. 光电转换摄像头的核心部件是图象传感器,它能够将光信号转换为电信号。
常见的图象传感器有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种类型。
CCD传感器通过光电二极管将光信号转换为电荷,并通过移位寄存器将电荷转换为电压信号。
而CMOS传感器则直接将光信号转换为电压信号。
2. 光学系统摄像头的光学系统由镜头组成,它负责聚焦和调整光线,使其能够准确地投射在图象传感器上。
镜头通常由多个透镜组成,通过改变透镜的位置和形状来调整焦距和景深。
不同的镜头可以产生不同的视角和景深效果。
3. 信号处理图象传感器将光信号转换为电信号后,需要经过信号处理电路进行处理和优化。
信号处理包括去噪、增强、色采校正等操作,以提高图象的质量和清晰度。
同时,还可以通过调整暴光时间、增益等参数来适应不同的拍摄环境。
4. 数字转换经过信号处理后,摄像头将摹拟信号转换为数字信号,以便于存储和传输。
这一过程由模数转换器(ADC)完成,它将连续的摹拟信号转换为离散的数字信号,通常使用8位或者12位的分辨率。
5. 压缩编码为了减小图象和视频的文件大小,摄像头通常会对数据进行压缩编码。
常见的压缩编码算法有JPEG、H.264、H.265等。
这些算法通过去除冗余信息和压缩图象细节来减小文件大小,同时尽量保持图象质量。
6. 存储和传输经过压缩编码后,摄像头可以将图象和视频数据存储在本地存储设备(如SD 卡)上,或者通过网络传输到远程服务器或者监控中心。
存储和传输过程需要考虑带宽和存储容量等因素,以保证数据的及时性和稳定性。
总结:摄像头的工作原理可以简单概括为光电转换、光学系统、信号处理、数字转换、压缩编码、存储和传输等步骤。
通过这些步骤,摄像头能够捕捉到光信号,并将其转换为数字信号,最终呈现给用户清晰、高质量的图象和视频。
摄像头的工作原理

摄像头的工作原理摄像头是一种用于捕捉图象或者视频的设备,广泛应用于监控系统、摄影、视频会议等领域。
它能够将光信号转换为电信号,并通过图象传感器将图象信息转化为数字信号,最终输出为可视化的图象或者视频。
一、摄像头的组成部份1. 图象传感器:图象传感器是摄像头最核心的部件,通常采用CMOS(互补金属氧化物半导体)或者CCD(电荷耦合器件)技术。
它能够将光线转化为电荷或者电压信号,进而形成图象。
2. 透镜:透镜用于聚焦光线,使得光线能够准确地落在图象传感器上。
透镜的质量和焦距决定了摄像头的成像质量。
3. 光学滤光片:光学滤光片用于调节光的频谱成份,例如红外滤光片可以阻挡红外光的进入,提高图象的真实性。
4. 控制电路:控制电路负责控制摄像头的各种功能,例如暴光、白平衡、对焦等。
它还负责将图象传感器采集到的摹拟信号转化为数字信号。
5. 数据接口:数据接口用于将摄像头的数字信号传输给显示设备或者存储设备,常见的接口有USB、HDMI、SDI等。
二、摄像头的工作原理1. 光信号转换:摄像头通过透镜将光线聚焦到图象传感器上。
图象传感器上的感光单元将光线转化为电荷或者电压信号。
2. 信号转换:图象传感器上的摹拟信号经过控制电路的放大和处理,转化为数字信号。
控制电路还会对图象进行暴光、白平衡、对焦等处理,以提高图象的质量。
3. 数据传输:摄像头通过数据接口将数字信号传输给显示设备或者存储设备。
数字信号可以通过USB接口传输到电脑上进行实时监控或者录相,也可以通过HDMI接口连接到显示器上进行实时显示。
4. 图象处理:摄像头可以通过内置的图象处理芯片对图象进行处理,例如去噪、增强对照度、调整色采等。
这些处理能够提高图象的质量和清晰度。
5. 功能扩展:一些高级摄像头还具有人脸识别、挪移侦测、云存储等功能。
这些功能可以通过摄像头的控制电路和软件来实现。
三、摄像头的应用领域1. 监控系统:摄像头广泛应用于安防领域,用于实时监控和录相。
摄像头工作原理

摄像头工作原理摄像头,简称摄像机,是将光学成像、信号转换、数字信号处理、通信传输等技术集成于一体的电子设备,可实现光影转换的功能。
它是电子影像技术的核心组成部分,广泛应用于视频监控、安防、远程通讯、电子教育、医疗等领域。
下面,将深入分析摄像头的工作原理,让您更好地了解此设备。
1. 光学成像摄像头的基本原理是利用光学成像,将光影变换成电信号进行采集与传输。
摄像头通过镜头对光线进行聚焦,在传感器上形成一个倒立的实物影像。
这个影像是通过镜头入射于感光器表面的光线在传感器上逆向成像形成的。
传感器通常采用CCD或CMOS元件。
这些元件的光敏单元将光信号转化为电信号,形成传输到后续模拟或数字处理器的图像数据流。
2. 信号转换摄像头将光学信号转化为电子信号的过程,是通过将成像传感器的光电转换进行的。
CCD和CMOS传感器是常用的两种光电转换方式。
在CCD传感器中,每个像素对应一个光电导管,通过在导管中引入电荷传输来收集光电信号。
传感器的控制电路控制电荷传输,产生的电荷流通过串行输出到模数转换器。
在CMOS传感器中,每个像素采用单独的感光器件。
产生的电子信号被用来控制驱动转换器板上的模拟开关。
这些开关开启时,充电电流会流入像素,并导致电荷积累。
当电压被施加,电荷就会流经采集电路,形成传输的模拟电压信号。
3. 数字信号处理CCD和CMOS传感器将光学成像转化为电子信号后,需要进一步的数字信号处理来进行压缩、编解码、加密、存储和传输等操作。
数字信号处理是将模拟信号转换为数字信号的过程,普遍应用于飞行器、医疗设备、无人驾驶汽车等领域。
数字信号处理可分为两个步骤:抽样和量化。
抽样是将连续时间信号发电成离散时间信号,而量化将连续时间信号转换为离散幅度信号。
4. 通信传输数字信号处理之后,将产生的数据可以通过指定的通信方式,传输到远程终端进行后续处理。
这些通信方式包括有线和无线两种。
有线方式主要通过电缆进行数据传输,此方式保证传输的带宽和信号质量,但存在布线和距离限制。
家里摄像头工作原理是啥

家里摄像头工作原理是啥
摄像头是一种能够捕捉图像或视频的设备,工作原理主要包括三个方面:光学成像、传感器转换和信号处理。
1. 光学成像:摄像头通过透镜系统将被摄对象的光线聚焦到感光元件上。
透镜系统由多个镜片组成,能够调节光线的入射角度和聚焦距离,使图像能够清晰地投影在感光元件上。
2. 传感器转换:感光元件主要分为两种类型,一种是CCD (Charge-coupled Device,电荷耦合器件),另一种是CMOS (Complementary Metal-Oxide-Semiconductor,互补金属氧化半导体),它们能够将光信号转换为电信号。
- CCD传感器:通过聚焦的光线使感光表面上的特定化学元素电场发生变化,电荷耦合器件将这些电荷转移到像元的输出端,通过模拟信号处理电路最终转换为数字信号。
- CMOS传感器:每个像元都具备一组放大器、模数转换器和数字信号处理器,可以直接将光信号转化为数字信号,简化了电路设计和成本。
3. 信号处理:通过感光元件转换的数字信号会经过一系列的信号处理过程,包括放大、去噪、色彩处理、压缩等,最终得到可以显示、存储或传输的视频信号。
总结起来,摄像头工作原理就是通过光学成像将被摄对象的光线转换为电信号,再经过信号处理得到图像或视频。
摄像头工作原理

摄像头工作原理摄像头是一种能够捕捉图像的设备,广泛应用于摄影、视频通话、监控等领域。
它的工作原理是通过光学和电子技术将光信号转换成电信号,从而实现图像的捕捉和传输。
下面将详细介绍摄像头的工作原理。
一、光学成像1.1 光学透镜:摄像头中的透镜起到聚焦和成像的作用,它能够将光线聚焦到摄像头的感光元件上。
1.2 光圈控制:光圈的大小会影响图像的清晰度和景深,通过控制光圈大小可以调节摄像头的曝光量。
1.3 对焦机制:摄像头通过调节透镜的位置来实现对焦,确保拍摄的图像清晰度。
二、感光元件2.1 CCD传感器:CCD传感器是摄像头中常用的一种感光元件,它能够将光信号转换成电信号,并传输给图像处理器。
2.2 CMOS传感器:CMOS传感器是另一种常见的感光元件,它在成本和功耗上有优势,逐渐取代了CCD传感器。
2.3 感光元件的像素:感光元件的像素数量决定了摄像头的分辨率,像素越多,图像越清晰。
三、图像处理3.1 色彩处理:摄像头会对捕捉到的图像进行色彩校正和处理,保证图像的真实性和准确性。
3.2 对比度调整:对比度是图像中明暗部分的对比程度,摄像头会对图像的对比度进行调整,使图像更加鲜明。
3.3 噪声处理:摄像头会对图像中的噪声进行处理,提高图像的清晰度和质量。
四、数据传输4.1 数字化处理:摄像头会将捕捉到的模拟信号转换成数字信号,以便传输和存储。
4.2 数据压缩:为了减小数据量和提高传输效率,摄像头会对图像数据进行压缩处理。
4.3 数据传输接口:摄像头通常通过USB、HDMI等接口将数据传输到电脑或其他设备。
五、应用领域5.1 摄影领域:摄像头在数码相机、手机相机等设备中被广泛应用,为用户提供拍摄高质量照片的功能。
5.2 视频监控:摄像头在监控系统中起到重要作用,可以实时监控和录制视频,确保安全和防范犯罪。
5.3 视频通话:摄像头在视频通话应用中被广泛使用,可以实现远程通讯和沟通。
综上所述,摄像头通过光学成像、感光元件、图像处理、数据传输等环节实现图像的捕捉和传输,广泛应用于摄影、视频监控、视频通话等领域,是现代科技发展中不可或缺的重要设备。
摄像头的工作原理

摄像头的工作原理摄像头是一种用于捕捉图象或者视频的设备,广泛应用于安防监控、摄影、视频会议等领域。
它通过光学和电子技术的结合,将光信号转换为电信号,进而生成数字图象或者视频。
摄像头的工作原理主要包括以下几个步骤:1. 光学成像:摄像头通过镜头将光线聚焦在图象传感器上。
镜头通常由多个透镜组成,通过调整透镜的位置和焦距来实现对光线的聚焦和变焦功能。
聚焦后的光线通过光圈控制进入图象传感器。
2. 图象传感器:图象传感器是摄像头的核心部件,主要有两种类型:CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)。
CCD传感器通过光电效应将光信号转换为电荷信号,再通过摹拟信号处理电路转换为电压信号。
CMOS传感器则直接将光信号转换为电压信号。
两种传感器各有优劣,CMOS传感器在功耗和集成度上具有一定优势。
3. 信号处理:图象传感器输出的电信号经过摹拟信号处理电路进行放大、滤波和增强等处理,然后转换为数字信号。
数字信号经过数字信号处理器(DSP)进行数字滤波、降噪、增强等算法处理,最平生成高质量的数字图象或者视频。
4. 数据传输:生成的数字图象或者视频可以通过多种方式传输,常见的有USB、HDMI、网络传输等。
USB接口是最常见的摄像头接口,可直接连接到计算机或者其他设备上。
HDMI接口适合于高清视频传输,可连接到电视、显示器等设备上。
网络传输则可以通过网络连接将图象或者视频传输到远程设备进行监控或者存储。
5. 控制与处理:摄像头通常配备有控制芯片,可以通过软件或者硬件接口进行控制和配置。
用户可以通过摄像头的控制界面调整图象的亮度、对照度、色采等参数,以及设置自动对焦、白平衡等功能。
一些高级摄像头还具备人脸识别、运动检测等智能功能。
总结:摄像头的工作原理是通过光学和电子技术将光信号转换为数字图象或者视频。
它包括光学成像、图象传感器、信号处理、数据传输和控制与处理等步骤。
摄像头的工作原理的理解对于使用和选择合适的摄像头具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摄像头的工作原理是:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。
具体而言(参见下图),摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,该电压信号的高低起伏反映了该行图像的灰度变化。
当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如0.3V),并保持一段时间。
这样相当于,紧接着每行图像信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。
然后,跳过一行后(因为摄像头是隔行扫描的),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着又会出现一段场消隐区。
该区中有若干个复合消隐脉冲,其中有个远宽于(即持续时间长于)其它的消隐脉冲,称为场同步脉冲,它是扫描换场的标志。
场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。
摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。
奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。
摄像头有两个重要的指标:有效像素和分辨率。
分辨率实际上就是每场行同步脉冲数,这是因为行同步脉冲数越多,则对每场图像扫描的行数也越多。
事实上,分辨率反映的是摄像头的纵向分辨能力。
有效像素常写成两数相乘的形式,如“320x240”,其中前一个数值表示单行视频信号的精细程度,即行分辨能力;后一个数值为分辨率,因而有效像素=行分辨能力×分辨率。
值得注意的是,通常产品说明上标注的分辨率不是等于实际分辨率(即每场行同步脉冲数),而是等于每场行同步脉冲数加上消隐脉冲数之和。
因此,产品说明上标注的“分辨率”略大于实际分辨率。
我们要知道实际的分辨率,就得实际测量一下。
摄像头工作原理.jpg
摘要:本文基于freescale 16位HCS12单片机的输入捕捉功能设计一种视频信号采集系统。
在该系统中,将CMOS摄像头的输出信号二值化,利用单片机输入捕捉功能实时对信号采样、处理,提取出黑色导引线的形状特征。
实验证明:系统能很好地满足智能车对路径识别性能和抗干扰能力的要求,实时性好,测量精度高,同时硬件和软件的开销都比较小。
关键词:图像二值化;HCS12单片机;视频图像;比较器
引言
第二届“飞思卡尔”杯全国大学生智能车竞赛中,要求各参赛队赛车在规定的赛道上行驶,速度快者胜出。
由于跑道只有黑、白两色,对图像的灰度没有要求,所以只需要反映反射光线的强弱。
若用A/D进行采样,不仅软件设计比较麻烦,而且测量的精度和响应时间都不够理想,抗干扰能力也较差。
本文摒弃传统的视频信号采集方法,结合单片机的输入捕捉功能,提出一种新的路径识别方法,并在实际系统中得到应用,实践表明该方法不仅使系统具有良好的性能,而且容易实现。
视频信号的特征
使用CHD-918B面阵CMOS摄像头,通过对内部电路的改造,可以在5V电压环境下正常工作,输出PAL 制式模拟视频信号,如图1所示。
每秒扫描50场图像,一场又有312.5行,每行图像信号时间为64μs,除去行同步头,其中有效的图像信号约为59.3μs。
所以,若选用S12的A/D转换器采集,转换耗时压力大,图像分辨率低。
系统设计思想
设计是于白色跑道和黑色导引线对光反射能力不同的设计思路,同时又结合单片机的输入捕捉功能模块来实现的。
根据竞赛的实际情况和要求,只需要在白色背景的跑道中提取出黑色的导引线,而与图像的灰度无关,通过分析摄像头输出信号的特点,利用比较器将视频信号二值化,进而把黑色导引线与白色背景区分开来,如图2所示。
同时,由于导引线的宽度是恒定的,行扫描时间和同步头时间也是定值,通过软件简单编程就可以滤除环境干扰,达到不错的滤波效果。
鉴于MC9S12DG128是HCS12系列单片机的一种,片内设有增强型定时器(ECT),具有输入捕捉功能,可通过捕捉系统时钟脉冲来检测导引线。
这样,计算单片机相应阶段内输入捕捉系统时钟脉冲的个数就能反映当前的路径信息。
系统的实现如图3所示。
系统实现
视频信号同步分离:视频信号分离电路主要采用视频同步分离芯片1881,电路原理图如图4所示。
先将经过预处理的视频信号通过一个滤波电路接至LM1881的2脚,为了滤除杂波,匹配阻抗,C4选取0.1μF,C2取510pF,R2取620Ω。
1脚输出行同步信号,3脚输出场同步信号,在实际运用中,二者存在高频干扰,所以必须加上低通滤波器。
选行电路:在一场视频信号中共扫描312.5行,没有必要每一行都进行采样,只需要选择性的采集特定行,计算出跑道的大致形状,同时也为后续处理留出时间。
该部分电路主要由一片二进制计数器74LS161实现,原理图如图5所示。
对行使能信号控制行同步信号的开关,通过对拨码开关的设置,可对行同步2、4、8、16分频,选择采集不同的行。
本文在调试过程中设置成4分频。
二值化电路
视频信号的二值化主要由芯片MAX941完成,通过调节滑动变阻器的阻值来改变阈值电压。
经反复试验本文将阈值定在2.55V。
防止黑色导引线的边界处出现毛刺干扰,在二值化输出端加上RC低通滤波电路。
电路图如图6所示。
时序关系:在上述几个电路模块中,使用了门电路、计数器、比较器,使原有的时序关系发生了变化,后续编程处理和系统的可靠性受到挑战。
在比较器的输出端加入两片非门,增大延时,情况得到改善。
最后得到的时序关系如图7所示。
其中a为场同步,b为行同步,c 是经过4分频后的行同步信号,d为二值化后的视频信号,包含着路径信息。
输入捕捉:MC9S12DG128单片机的外部晶振为16MHz,,由于输入捕捉寄存器为16 位,其计数值最大为65535,需要对系统时钟进行分频处理,设分配系数为a,其中
a=2-n,(n=0,1,2…7) (1)
则分频后的系统时钟可由(2)式得,
f1=f0×a=16MHz×2-3=2MHz (2)
即最小单位为0.5μs,对应的跑道采集精度,远处的分辨率为0.4cm,近处的为0.2cm ,完全符合路径识别的要求。
输入捕捉的触发方式设置成任意沿捕捉,这样可以简化硬件电路的设计。
以,仅仅需要计算几个沿变化之间输入捕捉系统时钟脉冲的个数,就能精准的反映当前的路径信。
对应图2,BC段是黑线,DE段是同步头,AB与CD段反映的是左右视场边沿到黑线的距离,在后续处理中,可以利用这些信息方便的计算出跑道的曲率和斜率。
由于黑色导引线的宽度是一定的,每行有效图像扫描时间都约为59.3μs,根据这些信息就可以剔除明显的坏点,增强系统得抗干扰能力。
软件实现:为了节约系统时间,在编程中主要采用中断处理,并且设置成上升沿触发。
在场中断期间,先调用屏蔽场同步消隐子程序,把成像效果不好的部分滤除掉,随后打开行中断。
当经过分频后的行同步头到来时,开始捕捉图像信号的4个任意沿,在相应两个沿之间,所捕捉到的系统时钟脉冲个数就反映了当前的路径信息。
另外,为了消除偶然误差的影响,在不降低系统速度测量精度的前提下,通过使用软件上的循环队列算法,保证了路径信息的准确性。
循环队列的具体实现过程为:通过设置一个长度为L的队列,每发生一次输入捕捉中断就进行一次入队操作,由队列“先进先出”的性质,即替换最先入队数据,能够保证将最新的刷新数据进行数据处理并进行控制,提高了控制的实时性。
该系统部分软件流程图如图8所示。
结语
若采用片内A/D采集,在最高时钟频率2MHZ的情况下,进行一次10位精度A/D转换的时间为7μs。
这样,采集的图像每行只有8个像素,图像分辨率过低。
如果采用超频的手段来补偿,又会降低系统的可靠性。
而本文采集的图像数据分辨率为128×64,每行有128个像素,并且分辨率留有进一步提高的余留量,软件的编写也比较简单。
但是该方法目前还不能区分图像的灰度,是以后需要改进之处。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。