最新土力学与地基基础设计实例

合集下载

地基处理施工工程案例(3篇)

地基处理施工工程案例(3篇)

第1篇一、工程概况本工程位于我国某城市,占地面积约30万平方米,是一处集住宅、商业、教育于一体的综合性大型住宅区。

由于该区域地质条件复杂,地基土质松散,承载能力不足,为确保建筑物的安全稳定,需要对地基进行加固处理。

二、地质条件该区域地层主要为第四纪沉积物,主要由粉土、砂土和淤泥质土组成。

土层厚度不等,最大厚度约为15米。

地下水位较浅,约为1.5米。

地基土质松散,压缩性高,抗剪强度低,不能满足建筑物的承载要求。

三、地基处理方案针对该区域地质条件,结合工程要求,经综合分析,确定采用强夯法进行地基加固处理。

1. 强夯法原理强夯法是一种利用重锤从一定高度自由落下,对地基土进行冲击、振动和压缩,使土体密实、提高地基承载能力的一种地基加固方法。

2. 施工工艺(1)施工准备:根据工程规模和地质条件,选用CGE1800型强夯机,并配备相应数量的辅助设备。

(2)施工步骤:a. 根据设计要求,绘制强夯施工平面图,确定夯点位置。

b. 在夯点位置挖设夯坑,深度约为1.5米。

c. 将强夯机放置在夯坑内,调整好锤重和落距。

d. 启动强夯机,将重锤从预定高度落下,冲击地基土。

e. 重复以上步骤,直至满足设计要求。

(3)施工质量控制:a. 施工过程中,对夯击次数、落距、夯击能等进行实时监控,确保施工质量。

b. 施工完成后,对地基土进行取样,进行室内试验,检验地基加固效果。

四、施工效果经强夯法处理后,地基土的密实度、抗剪强度和承载能力均得到显著提高,满足建筑物承载要求。

施工过程中,未出现安全事故和质量问题。

五、结论本工程采用强夯法进行地基加固处理,取得了良好的效果,为类似工程提供了参考。

在今后的工程实践中,应充分考虑地质条件和工程要求,选择合适的地基处理方法,确保工程质量和安全。

第2篇一、工程概况本工程位于某城市住宅区,占地面积约10万平方米,总建筑面积约20万平方米。

该住宅区由多层住宅、商业设施和地下车库组成。

由于地基土质为软土,地基承载力较低,为确保住宅区的安全稳定,对地基进行了加固处理。

土力学与地基基础设计实例

土力学与地基基础设计实例

设计题目某教学楼为两层钢筋混凝土框架结构,采用柱下独立基础,柱网布置如图4-7所示,在基础顶面处的相应于荷载效应标准组合,由上部结构传来的轴心荷载为680kN,弯矩值为80kN·m,水平荷载为10kN。

柱永久荷载效应起控制作用,柱截面尺寸为350mm ×500mm,试设计该基础。

2.工程地质情况该地区地势平坦,无相邻建筑物,经地质勘察:持力层为粘性土(ηb=0、ηd=1.0),土的天然重度为18 kN/m3,f ak=230kN/m2,地下水位在-7.5m处,无侵蚀性,标准冻深为1.0m(根据地区而定)。

3.基础设计⑴确定基础的埋置深度dd=Z0+200 =(1000 +200)mm=1200 mm根据GB50007-2002规定,将该独立基础设计成阶梯形,取基础高度为650 mm,基础分二级,室内外高差300mm,如图4-8所示。

2⑵确定地基承载特征值f a假设b <3m,因d =1.2m >0.5m 故只需对地基承载力特征值进行深度修正, ()[]22m d ak a m /kN 6.242m /kN 5.02.1180.1230)5.0(=-⨯⨯+=-+=d f f γη⑶确定基础的底面面积m 35.1m 21.52.1=+=h A ≥22a km 11.3m 35.1186.242680=⨯-=⨯-+h f P F k γ 考虑偏心荷载影响,基础底面积初步扩大12%,于是 22m 73.3m 11.32.12.1=⨯=='A A取矩形基础长短边之比l/b =1.5,即l =1.5bm 58.15.173.35.1===A b 取b=1.6 m 则l =1.5b =2.4 mA = l ×b =2.4×1.6 m=3.84 m 2⑷持力层强度验算作用在基底形心的竖向力值、力矩值分别为kN 68.783kN )35.184.320680(kN 680K K =⨯⨯+=+=+h A G F γ m kN 5.86m )kN 65.01080(k ⋅=⋅⨯+=+=Vh M Mm 11.0m 68.7835.86k k 0==+=k G F M e <m 4.06m 4.26==l 符合要求。

建筑地基工程施工案例(3篇)

建筑地基工程施工案例(3篇)

第1篇一、项目背景某高层住宅项目位于我国某大城市,总建筑面积约为10万平方米,建筑高度为100米,共30层。

该项目地基基础设计采用桩基础,主要地质条件为粘性土和砂土。

为确保建筑物的稳定性和安全性,施工单位在施工过程中严格遵循相关规范和标准,确保工程质量。

二、施工难点1. 地质条件复杂:该项目地质条件复杂,粘性土和砂土层厚度不均,给桩基础施工带来了较大难度。

2. 施工周期紧张:该项目工期紧,施工进度要求高,对施工组织和管理提出了较高要求。

3. 施工安全风险大:桩基础施工过程中,存在桩身倾斜、断桩、地面塌陷等安全风险。

三、施工方案1. 地质勘察:在施工前,对场地进行详细的地质勘察,了解地层分布、土层性质、地下水情况等,为桩基础设计提供依据。

2. 施工组织设计:制定详细的施工组织设计,明确施工流程、施工方法、施工顺序、施工资源配置等。

3. 施工技术措施:(1)桩基础施工:采用旋挖钻机成孔,然后进行钢筋笼制作、混凝土灌注等工序。

为确保桩身质量,采用低应变法检测桩身完整性,检测数量不宜少于总桩数的20%。

(2)地基处理:针对粘性土和砂土层,采用强夯法进行地基处理,提高地基承载力。

(3)基坑支护:采用钢板桩围护结构,确保基坑开挖过程中的安全。

4. 施工质量控制:(1)材料检验:对桩基础施工所需原材料进行严格检验,确保材料质量符合要求。

(2)施工过程控制:对成孔、钢筋笼制作与安装、混凝土灌注等工序进行严格控制,确保施工质量。

(3)质量验收:按照相关规范和标准,对桩基础、地基处理、基坑支护等工序进行质量验收。

四、施工效果1. 施工进度:通过优化施工方案,合理安排施工资源,确保了施工进度按计划进行。

2. 施工质量:严格遵循施工规范和标准,确保了桩基础、地基处理、基坑支护等工序的质量。

3. 安全生产:通过加强安全管理,确保了施工过程中的安全生产。

4. 社会效益:该项目的顺利实施,为我国高层住宅建设积累了宝贵经验,提高了我国建筑行业的技术水平。

土力学与地基基础--典型案例

土力学与地基基础--典型案例

与土有关的典型工程案例一、与土或土体有关的强度问题1.加拿大特朗斯康谷仓加拿大特朗斯康谷仓,由于地基强度破坏发生整体滑动,是建筑物失稳的典型例子。

(1)概况加拿大特朗斯康谷仓平面呈矩形,长59.44 m,宽23.47 m。

高31.0m。

容积36368 m3。

谷仓为圆筒仓,每排13个圆筒仓,共5排65个圆筒仓组成。

谷仓的基础为钢筋混凝土筏基,厚61cm,基础埋深3.66m。

谷仓于1911年开始施工,1913年秋完工。

谷仓自重20000t,相当于装满谷物后满载总重量的42 5% 。

1913年9月起往谷仓装谷物,仔细地装载,使谷物均匀分布、10月当谷仓装了31822m3谷物时,发现1小时内垂直沉降达30.5cm。

结构物向西倾斜,并在24小时间谷仓倾倒,倾斜度离垂线达26o53ˊ。

谷仓西端下沉7.32m,东端上抬加拿大谷仓地基滑动而倾倒端下沉7 32m,东端上抬1.52m。

1913年10月18日谷仓倾倒后,上部钢筋混凝土筒仓艰如盘石,仅有极少的表面裂缝。

(2)事故原因1913年春事故发生的预兆:当冬季大雪融化,附近由石碴组成高为9 14m的铁路路堤面的粘土下沉1m左右迫使路堤两边的地面成波浪形。

处理这事故,通过打几百根长为18.3m的木桩,穿过石碴,形成一个台面,用以铺设铁轨。

谷仓的地基土事先未进行调查研究。

根据邻近结构物基槽开挖试验结果,计算承载力为352kPa,应用到这个仓库。

谷仓的场地位于冰川湖的盆地中,地基中存在冰河沉积的粘土层,厚12.2m.粘土层上面是更近代沉积层,厚3.0m。

粘土层下面为固结良好的冰川下冰碛层,厚3.0 m.。

这层土支承了这地区很多更重的结构物。

1952年从不扰动的粘土试样测得:粘土层的平均含水量随深度而增加从40%到约60%;无侧限抗压强度qu从118.4kPa减少至70.0kPa平均为100.0kPa;平均液限wl =105%,塑限wp=35%,塑性指数Ip=70。

试验表明这层粘土是高胶体高塑性的。

土力学基础设计例题

土力学基础设计例题

基础设计计算案例题2. 某沉箱码头为一条形基础,在抛石基床底面处的有效受压宽度Be ˊ =12m,墙前基础底面以上边载的标准值为q k =18kPa,抛石基床底面以下地基土的指标标准值为:内摩擦角k ϕ=30º,粘聚力c k =0,天然重度γ=19kN/m 3·抛石基床底面合力与垂线间夹角δˊ=11.3º。

不考虑波浪力的作用,按《港口工程地基规范》(1T7250-98 )算得的地基极限承载力的竖向分力标准值最接近下列哪一个数值?(k ϕ=30º时,承载力系数N γB =8.862, N qB =12.245)(A) 7560.5kN/m ; (B) 7850.4kN/m ;(C) 8387.5kN/m ;(D) 8523.7kN/m 。

1. 某建筑物基础底面尺寸为3m×4m ,基础理深d =1.5m ,拟建场地地下水位距地表1.0m ,地基土分布:第一层为填土,层厚为1米,γ=18.0kN/m 3;第二层为粉质粘土,层厚为5米,γ=19.0kN/m 3,φk =22º,C k =16kPa ;第三层为淤泥质粘土,层厚为6米,γ=17.0kN/m 3,φk =11º,C k =10kPa ;。

按《地基基础设计规范》(GB50007-2002)的理论公式计算基础持力层地基承载力特征值f a ,其值最接近下列哪一个数值?(A) 184kPa ; (B) 191kPa ;(C) 199 kPa ;(D) 223kPa 。

3. 某建筑物的箱形基础宽9m ,长20m ,埋深d =5m ,地下水位距地表2.0m ,地基土分布:第一层为填土,层厚为1.5米,γ=18.0kN/m 3;第二层为粘土,层厚为10米,水位以上γ=18.5kN/m 3、水位以下γ=19.5kN/m 3,L I =0.73,e =0.83由载荷试验确定的粘土持力层承载力特征值f ak =190kPa 。

土力学课程设计

土力学课程设计

《土力学与地基基础》课程设计任务书一、挡土墙的设计(最多10人可选)1、挡土墙高5m背直立,光滑,墙后填土面水平,用毛石和M5水泥砂浆砌筑。

砌体抗压强度fk =1.07MPa ,砌体重度γk=22KN/m3,砌体的摩擦系数μ1=0.5。

填土为中砂,重度γ=18.5KN/m3,内摩擦角ψ=300,基底摩擦系数为值0.5,地基承载力设计值为160KPa.设计此挡土墙。

要求:绘出相应图形,列出具体计算过程(手算),并进行挡土墙尺寸及构造设计并绘图。

(最多4人可选)2、已知某挡土墙高8m,墙背倾斜ε=10°,填土表面倾斜β=10°,用混凝土砌筑,重度γk=4KN/m3.墙与填土摩擦角δ=20°,填土内摩擦角ψ=40°,c=0,γ=19KN/m3,基底摩擦系数μ=0.4,地基承载力设计值为200kpa.设计此挡土墙。

要求:绘出相应图形,列出具体计算过程(手算),并进行挡土墙尺寸及构造设计并绘图。

(最多4人可选)二、浅基础(最多36人可选)1.某厂房柱截面为600mm×400mm。

基础受竖向荷载Fk=1100KN,水平荷载Qk=68KN,弯矩M=120kN·m。

地基土层剖面如图所示.基础埋深2.0m,基础材料选用C15混凝土,试设计该柱下刚性基础。

(注:最多5人可选)设计地面粉质粘土,γ=19.2kN/m3,f ak=212KPae=0.78, I L=0.45, E S1=9.6MPa-5.00m 淤泥质粘土,γ=16.5kN/m3,f ak=80KPaE S2=3.2MPa2.某住宅外承重墙厚370mm,基础受到上部结构传来的竖向荷载标准值为280KN/m,弯矩标准值为60KN.m/m.土层分布如图所示,基础采用条形基础。

试分别设计砖基础、素混凝土基础。

(砖基础最多3人可选,混凝土基础最多3人可选)3.某工厂职工6层住宅楼,基础埋深d=1.10m。

《土力学与地基基础》课程设计

《土力学与地基基础》课程设计

《土力学与地基基础》课程设计第一部分墙下条形基础课程设计一、墙下条形基础课程设计任务书(一)设计题目某教学楼采用毛石条形基础,教学楼建筑平面如图4-1所示,试设计该基础。

图4-1平面图(二)设计资料所示。

⑴工程地质条件如图4-2图4-2工程地质剖面图⑵室外设计地面-0.6m,室外设计地面标高同天然地面标高。

⑶由上部结构传至基础顶面的竖向力值分别为外纵墙∑F1K=558.57kN,山墙∑F2K=168.61kN,内横墙∑F3K=162.68kN,内纵墙∑F4K=1533.15kN。

⑷基础采用M5水泥砂浆砌毛石,标准冻深为1.2m。

(三)设计内容⑴荷载计算(包括选计算单元、确定其宽度)。

⑵确定基础埋置深度。

⑶确定地基承载力特征值。

⑷确定基础的宽度和剖面尺寸。

⑸软弱下卧层强度验算。

⑹绘制施工图(平面图、详图)。

(四)设计要求⑴计算书要求书写工整、数字准确、图文并茂。

⑵制图要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。

⑶设计时间三天。

二、墙下条形基础课程设计指导书(一)荷载计算1.选定计算单元对有门窗洞口的墙体,取洞口间墙体为计算单元;对无门窗洞口的墙体,则可取1m为计算单元(在计算书上应表示出来)。

2.荷载计算计算每个计算单元上的竖向力值(已知竖向力值除以计算单元宽度)。

(二)确定基础埋置深度dGB50007-2002规定d min =Z d -h max 或经验确定d min =Z 0+(100~200)mm 。

式中 Z d ——设计冻深,Z d = Z 0·ψzs ·ψzw ·ψze ; Z 0——标准冻深;ψzs ——土的类别对冻深的影响系数,按规范中表5.1.7-1; ψzw ——土的冻胀性对冻深的影响系数,按规范中表5.1.7-2; ψze ——环境对冻深的影响系数,按规范中表5.1.7-3; (三)确定地基承载力特征值fa)5.0()3(m d b ak a -+-+=d b f f γηγη式中 f a ——修正后的地基承载力特征值(kPa ); f ak ——地基承载力特征值(已知)(kPa );ηb 、ηb ——基础宽度和埋深的地基承载力修正系数(已知);γ——基础底面以下土的重度,地下水位以下取浮重度(kN/m 3);γm ——基础底面以上土的加权平均重度,地下水位以下取浮重度(kN/m 3); b ——基础底面宽度(m ),当小于3m 按3m 取值,大于6m 按6m 取值; d ——基础埋置深度(m )。

土壤力学工程案例分析

土壤力学工程案例分析

土壤力学工程案例分析土壤力学工程是土木工程中一个重要的分支,研究土壤的力学性质及其在地基工程中的应用。

本文将通过具体的案例分析,深入探讨土壤力学工程在实际工程中的重要性和应用。

案例一:地基处理工程某工程项目需要建设一个高层建筑,但工程地基土壤较为松软,无法满足建筑的承载要求。

土壤力学工程师在进行现场勘察后,提出了一种地基处理方案:采用振动加固法进行地基处理。

通过在土壤中注入水泥搅拌桩,利用振动后的土壤凝固性能,增加了地基土壤的承载能力,从而确保了高层建筑的安全性。

案例二:边坡稳定工程某山区道路边坡出现了严重的滑坡现象,威胁到了路旁居民的生命财产安全。

土壤力学工程师对该边坡进行了详细的勘察和分析,确定了边坡的稳定性问题主要是由于土壤的抗剪强度不足所致。

针对这一问题,土壤力学工程师采用了加固边坡的方式,通过在边坡上设置抗滑桩及加固网格,有效提高了土壤的抗剪强度,避免了进一步的滑坡发生。

案例三:基坑支护工程某大型地下停车场工程需要在繁华商业区建设,但周围建筑密集,基坑支护难度较大。

土壤力学工程师结合现场实际情况,设计了一套有效的基坑支护方案:采用悬臂式支撑结构,通过设置加固梁和支撑墙,增加了基坑周围土壤的稳定性,有效保证了施工过程中周围建筑物和道路的安全。

结语通过以上案例分析可见,土壤力学工程在地基工程中的应用是至关重要的。

只有深入了解土壤的性质和特点,并根据实际工程情况进行科学合理的设计和施工,才能有效确保工程的安全性和永久性。

因此,在土木工程实践中,土壤力学工程师的作用不可忽视,他们的专业知识和技术将为工程的成功实施提供有力支撑。

土壤力学工程领域还有许多待挖掘的潜力和发展空间,相信在未来的发展中会有更多更好的实践经验值得我们学习和借鉴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土力学与地基基础设计实例《土力学与地基基础》课程设计第一部分墙下条形基础课程设计一、墙下条形基础课程设计任务书(一)设计题目某教学楼采用毛石条形基础,教学楼建筑平面如图4-1所示,试设计该基础。

(二)设计资料⑴工程地质条件如图4-2所示。

2KN/m 88=k f⑵室外设计地面-0.6m⑶由上部结构传至基础顶面的竖向力值分别为外纵墙∑F 1K =558.57kN ,山墙∑F 2K =168.61kN ,内横墙∑F 3K =162.68kN ,内纵墙∑F 4K =1533.15kN 。

⑷基础采用M5水泥砂浆砌毛石,标准冻深为1.2m 。

(三)设计内容⑴荷载计算 (包括选计算单元、确定其宽度)。

⑵确定基础埋置深度。

⑶确定地基承载力特征值。

⑷确定基础的宽度和剖面尺寸。

⑸软弱下卧层强度验算。

⑹绘制施工图(平面图、详图)。

(四)设计要求⑴计算书要求 书写工整、数字准确、图文并茂。

⑵制图要求 所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。

⑶设计时间 三天。

二、墙下条形基础课程设计指导书(一)荷载计算1.选定计算单元 对有门窗洞口的墙体,取洞口间墙体为计算单元;对无门窗洞口的墙体,则可取1m 为计算单元(在计算书上应表示出来)。

2.荷载计算 计算每个计算单元上的竖向力值(已知竖向力值除以计算单元宽度)。

(二)确定基础埋置深度dGB50007-2002规定d min =Z d -h max 或经验确定d min =Z 0+(100~200)mm 。

式中 Z d ——设计冻深,Z d = Z 0·ψzs ·ψzw ·ψze ;Z 0——标准冻深;ψzs ——土的类别对冻深的影响系数,按规范中表5.1.7-1;ψzw ——土的冻胀性对冻深的影响系数,按规范中表5.1.7-2;ψze ——环境对冻深的影响系数,按规范中表5.1.7-3;(三)确定地基承载力特征值f a)5.0()3(m d b ak a -+-+=d b f f γηγη式中 f a ——修正后的地基承载力特征值(kPa );f ak ——地基承载力特征值(已知)(kPa);ηb 、ηb ——基础宽度和埋深的地基承载力修正系数(已知);γ——基础底面以下土的重度,地下水位以下取浮重度(kN/m 3);γm ——基础底面以上土的加权平均重度,地下水位以下取浮重度(kN/m 3);b ——基础底面宽度(m ),当小于3m 按3m 取值,大于6m 按6m 取值;d ——基础埋置深度(m )。

(四)确定基础的宽度、高度b ≥hf F ⨯-γa k H 0≥[]0220/tan 2H b b b b =-α 式中 F k ——相应于荷载效应标准组合时,上部结构传至基础顶面的竖向力值(kN )。

当为柱下独立基础时,轴向力算至基础顶面,当为墙下条形基础时,取1m 长度内的轴向力(kN/m )算至室内地面标高处;γ——基础及基础上的土重的平均重度,取γ=20 kN/m 3;当有地下水时, 取γ'=20-9.8=10.2 kN/m 3; h ——计算基础自重及基础上的土自重G K 时的平均高度(m )。

b 2——基础台阶宽度(m);H 0——基础高度(m)。

(五)软弱下卧层强度验算如果在地基土持力层以下的压缩层范围内存在软弱下卧层,则需按下式验算下卧层顶面的地基强度,即cz z p p + ≤az f式中 p z ——相应于荷载效应标准组合时,软弱下卧层顶面处的附加应力值(kP a );p cz ——软弱下卧层顶面处土的自重压力标准值(kP a );f az ——软弱下卧层顶面处经深度修正后的地基承载力特征值(kP a )。

(六)绘制施工图(2号图纸一张)合理确定绘图比例(平面图1:100、详图1:20~1:30)、图幅布置;符合《建筑制图标准》。

三、参考文献1.中华人民共和国国家标准.建筑地基基础设计规范(GB 50007-2002). 北京:中国建筑工业出版社,20022.孙维东主编. 土力学与地基基础. 北京:机械工业出版社,20033.中华人民共和国国家标准. 砌体结构设计规范(GB50003-2001). 北京:中国建筑工业出版社,20024.沈克仁主编. 地基与基础. 中国建筑工业出版社,1993四、设计实例1.设计题目某四层教学楼,平面布置图如图4-1所示。

梁L-1截面尺寸为200mm×500mm,伸入墙内240 mm,梁间距为3.3 m,外墙及山墙的厚度为370 mm,双面粉刷,本教学楼的基础采用毛石条形基础,标准冻深为1.2m。

由上部结构传至基础顶面的竖向力值分别为外纵墙∑F1K=558.57kN,山墙∑F2K=168.61kN,内横墙∑F3K=162.68kN,内纵墙∑F4K=1533.15kN。

2.工程地质情况该地区地形平坦,经地质勘察工程地质情况如图4-2所示,地下水位在天然地表下8.5m,水质良好,无侵蚀性。

3.基础设计⑴荷载计算1)选定计算单元取房屋中有代表性的一段作为计算单元。

如图4-3所示。

外纵墙:取两窗中心间的墙体。

内纵墙:取①—②轴线之间两门中心间的墙体。

山墙、横墙:分别取1 m宽墙体。

2)荷载计算 外纵墙:取两窗中心线间的距离3.3 m 为计算单元宽度则m /kN 26.169kN/m 3.357.5583.31k 1k ==∑=F F 山墙:取1 m 为计算单元宽度则m /kN 61.168m /kN 161.16812k 2k ==∑=F F 内横墙:取1 m 为计算单元宽度则m /kN 68.162m /kN 168.16213k 3k ==∑=F F 内纵墙:取两门中心线间的距离8.26m 为计算单元宽度则m /kN 61.185m /kN .26815.1533.2684k 4k ==∑=F F ⑵确定基础的埋置深度dd =Z 0+200 =(1200 +200)mm=1400 mm⑶确定地基承载特征值f a假设b <3m ,因d =1.4m >0.5m 故只需对地基承载力特征值进行深度修正 33m m /kN 29.17m /kN 0.90.59.0185.016=+⨯+⨯=γ()[]22m d ak a m /kN 89.220m /kN 5.04.129.176.1196)5.0(=-⨯⨯+=-+=d f f γη⑷确定基础的宽度、高度1)基础宽度外纵墙:b 1≥m 877.0m 4.12089.22026.169a 1k =⨯-=⨯-h f F γ 山墙:b 2≥m 874.0m 4.12089.22061.168a 2k =⨯-=⨯-h f F γ 内横墙:b 3≥m 843.0m 4.12089.22068.162a 3k =⨯-=⨯-h f F γ 内纵墙:b 4≥m 962.0m 4.12089.22061.185a 4k =⨯-=⨯-h f F γ 故取b =1.2m <3m ,符合假设条件。

2)基础高度基础采用毛石,M5水泥砂浆砌筑。

内横墙和内纵墙基础采用三层毛石,则每层台阶的宽度为 0.16m m 31224.022.12=⨯⎪⎭⎫ ⎝⎛-=b (符合构造要求) 查GB50007-2002允许台阶宽高比[b 2/H 0=1/1.5],则每层台阶的高度为H 0≥[]m 24.0m 5.1/116.0/022==H b b 综合构造要求,取H 0=0. 4m 。

最上一层台阶顶面距室外设计地坪为(1. 4-0. 4×3)m = 0.2m >0.1m故符合构造要求。

(如图4-4所示)外纵墙和山墙基础仍采用三层毛石,每层台阶高0. 4m ,则每层台阶的允许宽度为b ≤[][]0.267m m 4.05.1/1/002==H H b又因单侧三层台阶的总宽度为(1.2-0.37)m /2=0.415 m 故取三层台阶的宽度分别为0.115 m 、0.15 m 、0.15 m ,均小于0.2m (符合构造要求)最上一层台阶顶面距室外设计地坪为(1.4-0.4×3)m = 0.2m >0.1m 符合构造要求。

(如图4-5所示)⑸软弱下卧层强度验算1)基底处附加压力 取内纵墙的竖向压力计算22m k k c k 0158.47kN/m m /kN )4.129.1712.14.112.12061.185(=⨯-⨯⨯⨯⨯+=-+=-=d AG F p p p γ 2)下卧层顶面处附加压力因Z /b =4.1/1.2=3.4>0.5,E s1/E s2=10/2=5 故由GB50007-2002中表5.2.7查得θ=25°则220z m /kN 85.37m /kN tan254.121.2158.472.1tan 2=⨯⨯+⨯=+= θz b bp p 3)下卧层顶面处自重压力22cz 98kN/m 5)kN/m 185.016(=⨯+⨯=p4)下卧层顶面处修正后的地基承载力特征值 33m m /kN 82.17m /kN 50.55185.016=+⨯+⨯=γ()()[]22m d ak az kN/m 1.177m /kN 5.055.082.170.1885.0=-+⨯⨯+=-++=z d f f γη5)验算下卧层的强度22kN/m 85.135kN/m )9885.37(=+=+cz z p p <az f =177.1kN/m 2 符合要求。

⑹绘制施工图 如图4-6所示。

第二部分柱下钢筋混凝土独立基础设计一、柱下钢筋混凝土独立基础设计任务书(一)设计题目某教学楼为四层钢筋混凝土框架结构,采用柱下独立基础,柱网布置如图4-7所示,试设计该基础。

(二)设计资料⑴工程地质条件该地区地势平坦,无相邻建筑物,经地质勘察:持力层为粘性土,土的天然重度为18 kN/m3,地基承载力特征值f ak=230kN/m2,地下水位在-7.5m处,无侵蚀性,标准冻深为1.0m(根据地区而定)。

⑵给定参数柱截面尺寸为350mm×500mm,在基础顶面处的相应于荷载效应标准组合,由上部结构传来轴心荷载为680kN,弯矩值为80kN·m,水平荷载为10kN。

⑶材料选用混凝土:采用C20(可以调整)(f t=1.1N/mm2)钢筋:采用HPB235(可以调整)(f y=210 N/mm2)(三)设计内容⑴确定基础埋置深度⑵确定地基承载力特征值⑶确定基础的底面尺寸⑷确定基础的高度⑸基础底板配筋计算⑹绘制施工图(平面图、详图)(四)设计要求⑴计算书要求书写工整、数字准确、图文并茂。

⑵制图要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。

相关文档
最新文档